Molecular Structure of rac-cis-1,4-2-Butenylenebis(1-indenyl)zirconium Dichloride

Youn Jaung Cho, Sung Cheol Yoon, Won Scok Sco, Byoung Won Woo, Byoung-Jae Bac, II-Hwan Suh, ${ }^{\dagger}$ and Joon T. Park ${ }^{*}$
Department of Chemistry and Center for Molectular Science, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
${ }^{\dagger}$ Department of Physics. Chungnam National Unwersity, Taejon 305-701, Korea
Received March 24. 1998

ansa-Metallocene catalysts have been designed by variation of the transition metals, the bridging groups, and the π ligands in order to improve the α-olefin polymerization performance. ${ }^{1}$ The presence of bridging groups restricts the mobility of the ansa-metallocene onto the growing polymer chain in an enantiomorphic site controlled process. ${ }^{2}$ Slight structural variations of the bridging group are known to significantly affect the activity and the stereoregularity in α olefin polymerization reactions. In particular, the length of the bridging chain has an influence not only on the rigidity and the conformational geometry of π-ligands but also on the angle between the π-ligand centroids and the metal atom. Various bridging groups have been employed to investigate the influence of the corresponding ansa-metallocene catalysts on the polymerization behavior. The bridging unit is commonly oriented at the back side of the ansa-metallocene, i.e. disposed away from the σ-ligands at the pseudo-tetrahedrally coordinatied group 4 metal center. The catalytically active site is known to be the open front side of the ansametallocene catalyst where the σ-ligands are located.

In previous work, ${ }^{3}$ we reported the synthesis of a four-carbon bridged zirconocene, rac- α-phenylenedimethylenebis(indenyl)zirconium dichloride ($\mathrm{rac}-\mathrm{l}$), and its polymerization results. A single crystal of rac-1 suitable for an X-ray diffraction study could not be obtained. We, therefore, prepared rac-cis-1.4-2-butenylenebis(indenyl)zirconium dichloride (rac-2), which has a similar bridging moiety to that of compound rac-1, in order to understand structural details of rac-1. Herein we report structural characterization of rac-2.

rac-1

rac-2

The overall molecular geometry and the atomic labeling scheme of rac-2 are illustrated in Figure 1. Details of the crystallographic data and selected bond distances and angles are shown in Tables I and 2, respectively. The zirconium center of rac-2 is coordinated to two substituted η^{5}-indenyl

Figure 1. Molecular structure of rac-2 with atomic numbering scheme (leit). Projection perpendicular to $/ \mathrm{rCl}(1) \mathrm{Cl}(2)$ plane (right)

Table I. Crystallographic data for complex rac- $\mathbf{2}$

Formula	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{Zr}$
Fw	444.48
Crystal system	Triclinic
Space group	$P 1$
a. A	9.748 (6)
b. \AA	10.477 (2)
c. A	9.084 (3)
α. deg	86.52 (2)
B. deg	74.40 (4)
γ. deg	91.48 (3)
V. A^{\prime}	891.1 (6)
Z	2
$\mathrm{D}_{\text {talctd }} \mathrm{g} \cdot \mathrm{m}^{-3}$	1.657
temp. K	293
crystal size. mm	$0.66 \times 0.36 \times 0.12$
Radiation	Graphite-monochromated MoK α
$\mu . \mathrm{mm}^{-1}$	0.918
scan mode	$\omega / 2 \theta$
$2 \theta_{\text {max. }}$ dce	50
no. of unique reflns	2478
no. of retlns ($\$ 2 \sigma(f)$	2636
no. of params	226
R^{*}	0.058
$R_{u}{ }^{\prime \prime}$	0.132
GOF	1.05

Table 2. Selected bond distances (λ) and bond angles (deg) for rac-2 with estimated standard deviations

Bond distances			
$\mathrm{Zr}-\mathrm{Cl}(1)$	2.437(2)	$\mathrm{Zr} \mathrm{C}(16)$	2.461(7)
$\mathrm{Zr}-\mathrm{Cl}(2)$	2.417(2)	$\mathrm{Zr}-\mathrm{C}(17)$	$2.604(7)$
$\mathrm{Zr} \mathrm{C}(1)$	$2.549(7)$	$\mathrm{Zr}-\mathrm{C}(22)$	$2.676(7)$
$\mathrm{Zr} \mathrm{C}(2)$	2.494(7)	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.505(1)$
$\mathrm{Zr} \mathrm{C}(3)$	$2.450(7)$	$\mathrm{C}(11)-\mathrm{C}(12)$	1.324(1)
$\mathrm{Zr} \mathrm{C}(4)$	2.554(7)	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.480(1)$
$\mathrm{Zr} \mathrm{C}(9)$	$2.637(8)$	Zr -Ind(Cen) ${ }^{\prime \prime}$	2.23(2)
$\mathrm{Zr}-\mathrm{C}(14)$	$2.538(7)$	$\mathrm{Zr}-\mathrm{Ind}(\mathrm{Cen})$	2.25(2)
$\mathrm{Zr}-\mathrm{C}(15)$	2.481 (7)		
Bond angles			
$\mathrm{Cl}(1)-\mathrm{Zr}-\mathrm{Cl}(2)$	97.1(3)	Ind(Cen)-Zr-Ind(Cen)	129.8(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	124.8(8)	Ind-Ind ${ }^{\text {/ }}$	47.3(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	125.8(8)		

(Ind) ligands and two chlorides in a pseudotetrahedral environment, in which Ind(Cen)- Zr - $\mathrm{Ind}(\mathrm{Cen})$ angle is $129.8(2)^{\circ}$ and $\mathrm{Cl}-\mathrm{Zr}-\mathrm{Cl}$ bond angle is 97.1 (3) ${ }^{\circ}$ (Cen-ring centroid). The Zr - Cl bond lengths are 2.437 (2) and 2.417(2) Λ, and the Zr -Ind(Cen) lengths are 2.23(2) λ and $2.25(2) \lambda$. The dihedral angle between two indenyl rings is $47.3(2)^{\circ}$. These values are in the typical range observed for many zirconium dichloride complexes. The two indenyl moicties are iwisted with respeet to each other, presumably, due to the signilicant strain by the 2-butenyl bridging group. One indenyl sixmembered ring is oriented forward the open front side of the ZrCl_{2} group, the other six-membered ring backward, and the 2-butenyl bridging group is placed in a side position (see the right view of Figure 1). Consequently, rac-2 posseses a crystallographically imposed C_{1} symmetry with two inequivalent indenyl ligands. The ${ }^{1}$ I NMR spectrum of rac-2, however, has previously shown that the two indenyl ligands are equivalent in solution on the NMR time scale. ${ }^{3}$ This observation admits two possible explanations that either rac-2 exists as a C_{2}-symmetric structure in solution or it undergoes rapid conformational interchange between two equivalent C_{1} structures. This phenomenon has also been previously observed with $r a c-{ }^{-1 P r}\left(\left[\mathrm{InHH}_{4}\right) \mathrm{TiCl}_{2}\right.$ ($\mathrm{IndH}_{4}=$ tetrahydroindenyl) ${ }^{\prime}$ and rac:-($\left.\mathrm{Me}_{2} \mathrm{SiOSiMe}_{2}\right)(\text { Ind })_{2} 7 \mathrm{rCl}_{2}{ }^{5}$ complexes.

Structural features of known racemic ansa-metallocenes with various bridging groups can be classified as shown in Scheme 1. Racemic ansa-metallocenes with one- $\left(\mathrm{CH}_{2}=\right.$, $\mathrm{Me}_{2} \mathrm{C}=$ or $\mathrm{Me}_{2} \mathrm{Si}=$) or two-atom bridge possess a C_{2}-sym-

metric ligand system (see l in Seheme 1), in which the bridging unit is oriented at the back of the bent-metallocene wedge and thus the active site (σ-ligand sites) is widely open resulting in high activity for isospecific propylene polymerzation. Structurally characterized examples include rac-
 $\mathrm{rac}-\mathrm{El}(\mathrm{Ind})_{2} \mathrm{ZrCl}_{2}{ }^{9} \quad \mathrm{rac}-\left(\mathrm{HC}\left(\mathrm{Cl} \mathrm{I}_{3}\right)\left(\mathrm{Cll}_{3}\right) \mathrm{ClI}\right)(\mathrm{lnd})_{2} \mathrm{ZrCl}_{2}{ }^{10}$ and rac- $\left.\left(\mathrm{CHICH}_{2}\right)_{4} \mathrm{C} \mathrm{I}\right)\left(\mathrm{IndF} \mathrm{I}_{4}\right)_{2} \mathrm{TiCl}_{2}$. ${ }^{11}$ Those with three- to six-atom bridge. however, display an unsymmetrical $\left(\mathrm{C}_{1}\right)$ arrangement of the ligand system due to the significant strain imposed by the bridging moicty (see II). The bridge is no longer found in the back of the molecule, but rather bulges to one side. As a result, the indenyl rings are twisted with respect to each other and one of the rings is directed toward the σ-ligand side, which results in reduced catalytic activities due to shielding of the catalytically active site. Previously reported complexes with three- to six-atom bridge are $r a C^{-1} \operatorname{Pr}\left(\operatorname{lndl} \mathrm{I}_{4}\right)_{2} \mathrm{TiCl}_{2}{ }^{4}$ and $r a c-\left(\mathrm{Me}_{2} \mathrm{SiOSiMc}_{2}\right)(\mathrm{Ind})_{2} \mathrm{ZrCl}_{2}{ }^{5}$ (three-atom bridge), $\mathrm{rac}-\left(\mathrm{Mc}_{2} \mathrm{SiCl}_{2} \mathrm{Cl}_{2} \mathrm{SiMe}_{2}\right)\left(\mathrm{Ind}_{2} \mathrm{ZrCl}_{2}{ }^{6}\right.$,
 $\left.\mathrm{OCMe}_{2} \mathrm{OCHCl}_{2}\right)\left(\mathrm{IndH}_{4}\right)_{2} \mathrm{ZrCl}_{2}{ }^{1.3}$ (four-atom bridge), and (R)-(-)-2, 2^{\prime}-bis(1 -indenylmethyl)-1, 1^{1}-binaphthyl] $\mathrm{TiCl}_{2}{ }^{1 / 4}$ (six-atom bridge). Erker and coworkers have recently reported a welve-carbon bridged ansa-zirconocene, rac-1.12-dodecanediylbis(3-indenyl)zirconium dichloride, ${ }^{15}$ in which the long bridging dodecamethylene chain is unusually oriented in the front side of the ansa-metallocene (see III). This molecule has approximate C_{2} symmetry. The $\left(-\mathrm{Cl}_{2}-\right)_{12}$ unit occupies a narrow band in the center of the open front side, which is also arranged in a C_{2} symmetric conformation.

In conclusion, the molecular structure of complex rac-2 shows an unsymmetrical C_{1} geometry in which the two indenyl rings are twisted with respect to each oher and active site is shielded by one of the six-membered ring of the indenyl moiely owing to the strain of the long cis-2-butenyl bridge. These structural features may explain that the previously reported roc-1/M^O (methylaluminoxane) catalytic system ${ }^{3}$ has revealed a low activity and stercoregularity in propylene polymerization due to the unsymmetric nature and the rapid conformational change of rac-1, which are caused by the four-carbon o-phenylenedimethylene bridge.

Experimental Section

Data collection and structure solution of rac-2. Compound rac- $\mathbf{2}$ was prepared by the procedures reported previously. ${ }^{3}$ Single crystals of rac- 2 were obtained by slow recrystallization from chloroform at $-20^{\circ} \mathrm{C}$. A yellow crystal with approximate dimensions $0.66 \times 0.36 \times 0.12 \mathrm{~mm}$ was sealed under argon in a thin walled glass capillary. Preliminary examination and data collection were performed using an Enraf-Nonius CAD4 diffractometer equipped with graphite monochromated MoK α radiation $(\lambda=0.71069 \AA$) at 293 K . Unit cell parameters and orientation matrices were determined by least-square method of 9 reflections with 11.48° $<\theta<14.09^{\circ}$. Intensity data for 2636 independent reflections in the range $-10 \leq \mathrm{h} \leq 10,0 \leq \mathrm{k} \leq 11,-9 \leq \mathrm{I} \leq 9$ were col-

Table 3 . Atomic coordinates $\left(\times 10^{\circ}\right)$ and equivalent isotropic displacement coellicients $\left(\AA^{2} \times 10^{2}\right)$ for $\mathrm{mac}-2$

alom	X	y	z	$V_{\text {enf }}{ }^{\text {a }}$
Zr	$3177(1)$	2902(1)	3978(1)	$3.1(1)$
Cl(1)	5141(2)	2277(2)	5015 (3)	5.1 (1)
Cl(2)	2042(2)	4240)(2)	5993 (3)	5.1 (1)
C(1)	2943(8)	4294(7)	$1744(9)$	$38(2)$
C(2)	3697(9)	$5060(8)$	2586(9)	$4.9(2)$
C (3)	5003(9)	$4489(8)$	2517(1)	$5.9(2)$
C (4)	$5130(7)$	3490 (8)	1505(9)	$4.2(2)$
C (5)	$6185(9)$	2595(1)	998(1)	5.8 (3)
$C(6)$	6057(1)	1807(1)	-96(12)	6.4 (3)
$\mathrm{C}(7)$	4873(9)	18269)	-715(10)	$5.5(2)$
$\mathrm{C}(8)$	$3805(8)$	2631 (8)	-181(9)	$4.5(2)$
(9)	$3860(7)$	3447(7)	$991(9)$	3.8 (2)
C(10)	$1555(8)$	$4796(8)$	1484(1)	$5.6(2)$
C(11)	$691(8)$	$3785(8)$	$978(1)$	5.6 (2)
C(12)	-130(8)	2875(8)	1901(1)	$4.9(2)$
C(13)	-327(8)	2678(8)	3573(1)	4.6 (2)
C(14)	$799(7)$	$1856(7)$	3978(9)	3.4 (2)
C (15)	1891(7)	1230(7)	2979(9)	3.4(2)
$C(16)$	2712(8)	$602(7)$	3815(9)	$3.9(2)$
$C(17)$	$2074(8)$	724(7)	5389(9)	3.8(2)
$C(18)$	2393(1)	287(8)	$6756(1)$	$5.9(3)$
$C(19)$	1512(1)	569(1)	$8140(1)$	6.8 (3)
$C(20)$	287(1)	1288(9)	$8208(1)$	6.3 (3)
C C(21)	-57(9)	1767(8)	6945 (1)	5.3 (2)
C(22)	847(7)	1482(7)	$5495(9)$	3.60)

${ }^{\text {" }} U_{\text {eq }}$ is defined as one-third of the trace of the orthogonalized $U_{i l}$ ten sor:
Table 4. Anisotropic displacement parametets $\left(\Lambda^{2} \times 10^{2}\right)$ for rac-2

	${ }_{\text {Fil }}$	Fix	$\%_{33}$	[3,	El_{13}	H_{1}
7 t	2.1(1)	3.2 (1)	4.9(1)	0.3 (1)	-0.5(1)	-0.6(1)
Cl(1)	3.4(1)	6.41)	$5.7(1)$	1.2(1)	-1.8(1)	-0.2(1)
Cl(1)	3.8(1)	4.4 (1)	$6.62)$	-1.6(1)	-0.2(1)	-0.7(1)
C(1)	3.5 (4)	3.3 (4)	$4.15)$	0.9(4)	-0.7(1)	-1.0(4)
$\mathrm{C}(2)$	$5.4(6)$	$3.04)$	52(5)	1.1(4)	$0.2(4)$	-1.4(4)
C(3)	4.165	$6.0(6)$	5.065	$1.765)$	$-1.8(4)$	-3.2(4)
$\mathrm{C}(4)$	1.7(4)	$5.7(6)$	$4.2(5)$	$1.9(4)$	$0.3(3)$	-1.0(4)
C(5)	2.3 (4)	7.2(7)	$6.060)$	2.76)	-0.5(4)	-0.1(5)
C(6)	$4.1(5)$	$6.8(7)$	$6.7(7)$	$1.3(5)$	$0.9(5)$	$1.4(5)$
C(7)	$4.3(5)$	$6.2(6)$	$4.6(5)$	0.644	1.04 ($0.0(4)$
C(8)	3.04 (4)	$5.5(5)$	$4.5(5)$	1.2(4)	-0.9(4)	0.1(3)
$\mathrm{C}(9)$	1.8(4)	$4.4(5)$	4.765	1.7(4)	-0.7(3)	-1.2(3)
$\mathrm{C}(10)$	$3.6(5)$	4.3 (5)	$6.76)$	$1.2(4)$	-0.8(4)	-0.8(4)
C(11)	3.695	5.4 (3)	$6.2(6)$	$1.1(5)$	-2.1(4)	$0.5(4)$
C(12)	2.3 (4)	$5.7(5)$	$6.76)$	-0.1(5)	-1.6(4)	0.4(4)
C(1.3)	$1.8(4)$	$4.8(5)$	7.1 (6)	-0.1(4)	-1.0(4)	-0.1(i)
C(14)	1.9(4)	$2.9(4)$	$4.8(5)$	0.2(i)	$0.0(3)$	-1.0(3)
C(15)	2.7(4)	3.0(4)	3)(4)	-0.3(3)	-0.1(3)	-1.1(i)
C(16)	3.4(4)	2.8 (4)	$5.3(5)$	-0.4(4)	-0.9(4)	0.1(3)
C(17)	3.8(4)	2.5 (4)	$4.9(5)$	1.04 (4)	-1.3(4)	-1.2(3)
C(18)	$6.096)$	$3.9(5)$	7.97 ($2.4(5)$	-3.1(6)	-1.5(4)
C(19)	9.698	$6.4(7)$	$4.1(6)$	1.45	-2.0(6)	-4.7(6)
C(20)	8.2(8)	$6.1(6)$	4.1 (6)	-0.76)	-0.4(5)	-3.0(6)
C(21)	4.4(5)	$5.0(5)$	$5.0(6)$	-0.9(4)	1.04	-2.1(4)
C(22)	2.7(4)	3.0(4)	$4.5(5)$	0.1 (3)	-0.3(3)	-1.6(3)

(f_{y}-The anisolropic displacement lactor exponent takes the form: $-2 \pi^{2}$

lected using $\omega / 2 \theta$ scan mode. ω-scan angle $=(0.8+0.35$ $\tan \theta)^{\prime \prime} .2 \theta_{\mathrm{max}}=50^{\circ}$. Two standard reflections showed less than
3.0% variation in intensity over the course of data collection. Lorent: and polarization corrections were applied to the intensity data. An empirical absorption correction was also applied to the data on the basis of φ scans. All the calculations were carried out using the SHELXTL system ol computer program. ${ }^{16}$ The structure was solved by direct methods ${ }^{16 a}$ and refined by the full matrix least-square methods employing unit weights. ${ }^{\text {kh }}$ All non-hydrogen atoms were refined anisotropically and hydrogen atoms were gencrated at calculated positions. Final reliability lactors for 2478 unique observed reflections $[I>2 \sigma(I)]$ were $R=0.058$ and $R_{\mathrm{H}}=0,132$. The linal residual values and structure refinement parameters are listed in Table 1 . The atomic coordinates and anisotropic thermal parameters for the nonbydrogen atoms are listed in Tables 3 and 4. respectively.

Acknowledgment. We are grateful to the Korea Academy of Industrial Technology for linancial support of this rescarch

References

I. (a) Brint/inger H. H.: Fisher, D.: Mülhaupt, R: Rieger, B.: Waymouth, R. M. Angew, Chem., In. Ed. Engl. 1995, 3t, 1143. (b) Keii, J.: Soga, K. Catalyic Olefm Polymerization: Elsevier: New York, 1990: p 501.
2. Ewen, J. A.J. Im. Chem. Soc. 1984, 106, 4226.
3. (a) Ilan, I. K.: Woo, B. W.: Park, J. T.: Do, Y.: Ko, Y. S.: Woo, S. I. Hacomolectles 1995, 28, 4801 (b) Park, J. T.: Woo, B. W.: Yoon, S. C.: Shim, S. C. J. Organomet. (hem. 1997, 535, 29.
4. Röll, W.: 7solnai. I.: Huttner. G.: Brintringer, H. H. J. Organomet. Chem 1987. 322,65.
5. Naderer, H.: Sichel, F.: Fischer, R. D. J. Organomet. Chem. 1996, 518, 181.
6. Hermanni. W. A.: Rohmmann, I.: Herdweek. F., Spaleek, W: Winter, A . ingew Chem. In. Ed. Engl, 1989, 28, 1511.
7. Luttilchedde, II. I. G.: Leino, R.: Wilen, C.-E.: Laine. E. : Sillanpää, R.: Näsman, J. II. J. Orqanomet. Chem. 1997. 547, 129 .
8. Voskoboynikor, $\Lambda . L:$ Agarkov, Λ. Y.: Chernyshev; L. G.: Beletskaya, I. P.: Churakov, \wedge. V: Kuzmina, L. (. J. Organomet (hem 1997, 530, 75.
9. Piemontesi. F: Camurati. I.: Rexconi, I.: Balboni, D: Sirmi. A: Moret M.: 7iegler. R.: Piccoltovaryi, N. Ofganometallics 1995. $1+1256$.
10. Rheingold, A. L.: Robinson, N. P.: Whelan, T.: Bosmich, B. Orgonometallics 1992, 11, 1869.
11. Steinherst. A.: Firker G.: Grehl, M.: Fröhlich: R. J. Oiganomet. Chem. 1997.542, 191.
12. Ifollis, T. K.: Rheingold, A. L.: Robinson, N. P.: Whelan. I.: Bosnich, B. Organometallics 1992, 11, 2812.
13. Bandy, I. A.: Green. M. L. H.: Gardiner, I. M.: Prout. K.J. (hem. Soc., Dalton Trans 1991, 2207.
14. Burk, M. I.: Colletti. S. L.: I Ialterman, R. L. Organometallics 1991, 10, 2998
15. Frker G.: Mollenkopi, C.: Grehl, M.: Fröhlich, R. Ofzanometallics 1994, 13, 1950.
16. (a) SHTI XS86; Sheldrick, G. M. Acta Civst 1990, A46, 467. (b) SHTT XI.93: Sheldrick, (G. M. Program for the Refinement of Ciystal Sinuchues: Jniversity of Gottingen: Germany. 1993.

