Synthesis toward Epothilone A: Coupling Reaction between the Sulfone of C1-C10 and the Allylic Bromide of C11-C21

Hyo Won Lee,* Yong Dcog Hong, and Ihl-Young Choi Lee ${ }^{\dagger}$
Department of Chemistry, Chungbuk National University, Cheongiu 361-763, Korea
"Korea Research Institute of Chemical Technology, Daejeon 305-606, Korea
Received February 3, 1999

Macrolide epothilones I and 2, isolated by Ifolle et af. from the myxobacterium Soranginm cellilowam, have been drawing considerable attention because of their novel structural leatures and paclitaxel (Taxol ${ }^{\text {it }}$)-like antitumor activity. ${ }^{1}$ The biological activity of epothilones came from their binding and stabilization of the microtubule assembly. ${ }^{2}$ But epothilones differ from paclitaxel in respect of retaining activity against multidrug-resistant cells, solubility in water, and their easy availability by fermentation.
The synthetic studies have been recently exploited by many organic chemists. ${ }^{3}$ Our retrosynthetic analysis of epothilones suggests disconnection at C10-Cll bond and lactonic bond. Thus, our synthetic plans require two building blocks $\mathbf{3}$ and $\mathbf{4}$ with appropriate protecting groups (Scheme 1). The coupling reaction between the allylic bromide 3 and a carbanion of the sulfone 4 will lead to the key intermediate, which can be furnher cyclized into a macrolide.

The subunit of allylic bromide can be constructed from protected (R)-(1 -glycidol as its t-butyldimethylsilyl ether (TBDMS). As a candidate for the sulfonyl subunit we decided to use the sulfone derivative from 1,10-decanediol in order to examine our approach.

Aecording to our synthetic plan, the TBDMS ether 5 of (R)-(1)-glycidol was reacted with acetylenic carbanion of 1etrahydropyranyl (TIIP) ether of propargyl alcohol in the presence of a Lewis acid, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (Scheme 2). The subsequent removal of the TBDMS group of the intermediate with n-BuNF following the protection of a secondary hydroxyl group as methyloxymethyl (MOM) ether furnished alcohol 6. The next step was the conversion of primary alcohol to methyl ketone. Accordingly, a series of reactions including oxidation of the hydroxyl group to the aldehyde, methylation of the aldehyde with methylmagnesium bromide, and oxidation of the secondary hydroxyl group gave the desired methyl ketone 7 from 6. For the introduction of a thiazole ring, Emmons reaction of phosphine oxide 8 with methyl

Scheme 1

Scheme 2. (a) $\mathrm{LiCCH}_{2} \mathrm{OTIIP}$. $\mathrm{Bl} ;-\mathrm{OLt}_{2}$. TIII: 93%; (b) MOMCI. (i-Pr) $2 . \mathrm{VEt} . \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} .97 \%$; (c) $n-\mathrm{Bu}+\mathrm{H}_{+}$VF. THF. 92% (d) Swern Ox.. 95\%; (e) $\mathrm{CH}_{3} \mathrm{MgBr}$. THF. 83%; (I) TPAP. NMO. $\mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ $86 \%:(\mathrm{g}) \mathrm{ft}$ - 3 lul i. 8 . $\mathrm{IIII}: 95 \%$: (h) $\mathrm{Pd} / \mathrm{CaCO}_{3}, \mathrm{II}$. Quinoline. $\mathrm{MeOH} .98 \%$; (i) aq. MeOIT. p-TsOH. 82%; (i) PPh_{3}. $\mathrm{CBr}_{\mathrm{I}} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$. 94\%.
ketone 7 was utilized to obtain compound $9 .{ }^{3 i}$ The triple bond of 9 was partially hydrogenated with Lindlar catalyst to furnish Z-alkene $\mathbf{1 0}$. The resulting $\mathbf{1 0}$ was hydrolyzed to the allylic alcohol under the acidic condition and the resulting alcohol was further converted into bromide 11 by treating with PPh_{3} and CBr_{4}.

The coupling of 11 with sulfone 13 was accomplished as shown in Scheme 3. The sulfone 13 was prepared from readily available 1,10 -decanediol (12) wia monosilylation and sulfonation by Hata's method. ${ }^{1}$ Compound $I I$ was coupled with a carbanion of 13 generated by treatment of n -

Scheme 3. (a) TBDPSCI. E13N. DMF. 62\%: (b) PhSSPh. ButP; (c) meppa. NallCO., 98% (2 steps): (d) I, IPA. Tillt. $11 .-78{ }^{\circ} \mathrm{C}, 68 \%$ (c) $5 \% \mathrm{Na}(\mathrm{llg})$. $\mathrm{Na}_{2} / \mathrm{IPO}_{4}$. MeOH. RT. 75% : (f) $n-\mathrm{Bu}_{2} \mathrm{NI}$. Tllf: 96\%; (g) Swern Ox.. 92%; (h) NaClO_{2}. $\left.\mathrm{NaH}_{2} \mathrm{PO}\right)_{4}$ 2-methyl-2butene. 97% : (i) $\mathrm{TMSBr} . \mathrm{CH}_{2} \mathrm{Cl}_{-}-30{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C} .92 \%$: (i) 2.4.6$\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}_{2} \mathrm{It} \mathrm{N}_{3}$. IHIF; dmap. Toluene, ITI, $30 \mathrm{~min} .75 \%$.

BuLi. The reductive removal of phenylsulfonyl group of the resulting $\mathbf{1 4}$ under condition of buffered sodium amalgam and treatment of the intermediate with n-Bu $u_{+} \mathrm{NF}$ afforded primary alcohol 15. The conversion of the alcohol 15 to carboxylic acid 16 was performed by subsequent reactions consisting of Swern oxidation and treatment with NaClO_{2}. MOM group was removed from the secondary hydroxyl group using TMSBr." The lactoni/ation of the intermediate hydroxy carboxy lic acid using Yamaguchi's method finally furnished the desired macrolide 17 . The structure of the product was confirmed by its spectroscopic data. ${ }^{7}$ Our synthetic approach seems appropriate for the preparation of the simple analogs of a macrolide with a thiazole fragment.

Acknowledgment. We gratefully acknowledge financial support from the Korea Science Foundation (Grant-in-aid KSF 98-(0501-04-01-3).

References

1. (a) Hölle, G.:. Bedorli, N.: Gerth, K.: Reichenbach, H. DГ 4138042 Al 1993 [Chem. Absir. 1993, /20, 52841]. (b) (Gerth. K.: Bedorf. N.: I lofle, G.: Irschik, I I.: Reichenbach, II. J. Antibiotic. 1996. 560. (c) Ilofle, G.: Bedorf, N.: Steimmetz, H.: Schomburg, D.: Gerth, K:: Reichenbach, II. Anger: Chem., In. Ed. Engl. 1996, 35, 1567.
2. (a) Kowalski, R. J.: Giamnakakous, P.: I Iamel, E. J. Biol. (hem. 1997, 272. 2534. (b) Bollag, D). M.: McQuener, P. A: 7hu, J.: Hensens, O.: Koupal, I.a Iicseh, T: Gocto, M.: I, ivarides, Г.. Woods, C. M. Cancer: Res. 1995, 55. 2325.
3. (a) Nicolaou, K. C. . He, Y: Vourloumis, D.: Vallberg, H.: Yang, 7. Angew: (hem, Im. Ed. Engl. 1996, 35, 2399. (b) Nicolaou, K. C.: Wihssinger, N.: Paster, T.: Nimkovic, S.: Sarabia, F.: Ile. Y.: Vourloumis, D.: Yang, Z.: Li, I.: Glannakakon. l': I lamel. E. Janme 1997, 387, 268. (c) Nicolaou. K. (.: 1le, Y.: Vourloumis, D.: Vallberg, 11. : Roschangar. F:: Sarabia, F.: Ninkovic, Z: Yang, Z.: Trujillo, J. 1. J. . Im, Chem. Soc. 1997, 119, 7960. (d) Nicolau. K. C.: Ninkovic. F.: Sarabia, D.: Vourloumis, Y:: Ile, Y.: Vallberg, M. R.: Finlay, V., Yang, 7.., Am. (hem. Soc. 1997, $/ 19,7974$, (e) Yang, 7.: He, Y.: Vourloumis, $D:$ Vallberg. H.: Nicolaol, K. C. Angew. (hem., Int. Fd. Engl.

1997, 36. 166. (f) Meng, D.: Sorensen, E. J.: Bertinato, P?: Danishetsky, S. I. J. Ory Chem. 1996, 118,7998 (g) Bertinato, P.: Sorensen, E. J.: Meng, D.: Dani-shefsky, S. I. J. Ong. Chem. 1996, 1IS, 8000. (11) Meng, D.: Su, D.-S: Balog, A.: Bertinato, I^{\prime} : Danishersky, S. J.: Zheng, Y. II: Chou. T. C \therefore He, I. Homity, S. B. J. Am. Chem. Soc. 1997, 119,2733 . (i) Balog, A.: Meng, D.: Kamenecka, T: Bertinato, P. Su, D.-S.: Sorensen, F. J.: Danishetiky, S. J. Angew. (hem., Int. Ed. Engl. 1996, 35, 2801. (i) Meng, D.: Bertinato. P: Balog, A.: Su, D.-S.: Kamenecka, T: Sorensen, Г. T.: Danishelisky, S. T. J. Am. (hem . Soc. 1997, 1/9, 10073. (k) Balog, A.: Bertinato, P.: Su, D.-S: Meng, D.: Sorensen, E. J.: Danishefsky, S. J.: Zhen, Y. II.: Chou, I.-C.: Ile, L.: I lonwitz, S. B. Tetrahedron Lett. 1997, 35, 4529. (1) Mulzer, J.: Mantoulidis, A. Tetrahedron Letl. 1996, 37, 9179. (m) Chakraborty, I. K.: Dutta, S. Tetrahedron Lett 1998, 39, IOI, (n) Claus, E.: Pahl, Λ : Jones, P. (I.: Meyer, II. M.: Kalesse, M. Tetrahedion Lett. 1997, 38, 1359. (0) Gabriel, T.: Wessiohann, I. Tetrahedron Lett. 1997, 38, 1363. (p) Brabander, J. D.: Rosset, S.: Bemardinelli, G. Sinhett. 1997, 824. (c) Avery, A.: Bijoy, P. Tetrahedron Lett. 1998, 39, 209. (r) Mulzer, J. Mantoulidis, A: Ohler, F.. Tetrahedron Lett. 1998, 39, 8633. (i) I,iu, 7..-y:Yu, C.-\%: Wang, R.-F.: Li, G. Tetrahedron Lett. 1998, 39, 5261 . (t) Taylor, R. E.: Haley, J. D. Tetrahedron Lett. 1997, 38, 2061. (u) May, S. A.: Grieco, P. A. Chem. Commm. 1998, 1597.
4. Cleary, D. G. Sinh. Commun. 1989, 19, 737.
5. Ilanessian, S.: Delonme, D.: Dufresne, D.: Dufresne, Y. Tetrahedron Lett. 1984, 25, 2515.
6. Inanaga T.: Hirata K.: Sacki, H.: Katsuki, T.: Yamaguchi. M. Btill. (hem. Soc. Iph 1979, 52, 1989.
7. Spectral data for 17 : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .500 \mathrm{MH} \%\right) 81.25-$ $1.36(\mathrm{~m} .13 \mathrm{H}) .1 .66-1.70(\mathrm{~m}, 3 \mathrm{H}) .1 .99(\mathrm{dt} . J=13.7,6.8$ $\mathrm{H} \% \mathrm{IH}), 2.09(\mathrm{~s}, 3 \mathrm{H}) .2 .12(\mathrm{dt} . J=13.7 .6 .8 \mathrm{H} \approx \mathrm{IH}) .2 .28$ (dt. $J=14.3,7.1 \mathrm{H} / 1 \mathrm{H}) .2 .34(\mathrm{dt} . J=14.3 .7 .1 \mathrm{~Hz} . \mathrm{IH})$, 2.37-2.42 (m, 111), 2.59-2.65 (m, 1HI), 2.71 (s. 3H). 5.29$5.34(\mathrm{~m}, 2 \mathrm{II}) .5 .52(\mathrm{qt}, J=8.8,1.8 \mathrm{llz}, \mathrm{IH}) .6 .55(\mathrm{~s} . \mathrm{IH})$. 6.96 (s, IHI): ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 125 \mathrm{MLIz}\right) \delta 14.92,19.20$, $24.23,25.94,26.19,26.34,26.42,26.55,26.76,27.83$. $31.21,34.62,78.21,116.15,120.52,124.34$. 132.61, $137.35,152.35,152.52,164.60,173.14$: IR (neat) 2928. 2856, 1732. $1458 \mathrm{~cm}^{\text {' }}$: HRMS Calcd. For $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NOS}$: 375.22.32. Found $\left.375.2234:[\alpha]_{\mathrm{T}}^{7}\right)=-25.3\left(\mathrm{c} 1.90, \mathrm{CHCl}_{3}\right)$.

