Synthesis of C_{2}-Symmetric 1,3-Imidazolidin-2-ones as Bifunctional Chiral Auxiliaries from Industrial Chiral Waste

Chun Rim Oh, Choong Eui Song,* Eun Joo Roh, Sang-gi Lee, and Jong Hwa Jeong ${ }^{*}$
Division of Applied Science, Korea Instinte of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650, Korea
'Deparment of Chemistry, Kyungpook National University, Taegu 702-701, Korea
Received Jonuary 20, 1999

Unlike chiral catalysts, chiral auxiliaries are used stoichiometrically since they allow for asymmetric induction by modifying the structure of the substrate molecule. Thus not only the efficiency of auxiliary is important for the economics but also the molecular weight of the chiral auxiliary. A "bifunctional chiral auxiliary", in which a chiral auxiliary bearing two stereogenic centers is attached to two reactive side chains, will provide an elegant means for minimizing the amount of the auxiliary required. Recently Davies et al. reported ${ }^{1.8}$ a novel series of highly effective bifunctional chiral auxiliaries, homochiral 1,3-diacylimidazolidin-2-ones 1. which possess C_{2}-symmetricity and bifunctionality, reducing the effective molecular mass. ${ }^{9}$ The compounds 1 were synthesized by thionation of chiral diamines with CS_{2}, followed by acylation and finally, by dethionation with mercury acetate (II), whereas the direct synthetic route to $1,3-$ imidazolidin-2-ones 2 by carbonylation of chiral diamines with phosgene or phosgen equivalents was failed (Scheme 1). ${ }^{7}$

In context with our study of the utilization of industrial waste material, we used the enantiomerically pure compound 3 for the synthesis of C_{2}-symmetric 1,3-imidazolidin-

Scheme 1. Reagents and conditions: (i) $\mathrm{CS}_{2} \mathrm{II}_{3} \mathrm{O}^{-}$(ii) $\mathrm{R}^{\prime} \mathrm{COCl}$. pyridine. DMAP (iii) $\mathrm{Hg}\left(\mathrm{OAC}_{2}\right.$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (iv) COCl_{3}.

Figure 1. Crystal structure of 3.

2-ones 2 as bifunctional chiral auxiliaries. The compound 3 could be obtained as a chiral waste material in the synthetic process of D-Biotin. We first determined the structure of $\mathbf{3}$ by spectroscopic and X-ray crystallographic analyses (Figure 1).

The following simple sequence (Scheme 2) was successfully employed to convert the waste material 3 into novel bifunctional chiral auxiliaries, 4.5-disubstituted-1,3-imida-zolidin-2-ones $\mathbf{2 a}$ and $\mathbf{2 b}$. The acid-alcohol $\mathbf{3}$ underwent esterification with $\mathrm{CH}_{3} \mathrm{OH}-[\mathrm{MSCl}$ to afford the ester-alcohol 4 in nearly quantitative yield. Reduction of ester-alcohol 4 with LiBH_{4} afforded the diol 5 in 95% yield. Methylation of 5 gave 1,3-dibenzyl-4,5-bis(methoxymethyl)imidazoli-din-2-one 6, which was debenzylated with Na in NH_{3} to afford 4,5-di(methoxymethyl)-1,3-imidazolidin-2-ones (2a) in 75% yield. 4,5-Dimethyl-1,3-imidazolidin-2-one (2b) was also easily prepared by the reaction of diol 5 with dimethylsulfamoyl chloride, and subsequent treatment with Na in NH_{3}. The utility of 1,3-imidazolidin-2-ones $\mathbf{2 a}$ and $\mathbf{2 b}$ as efficient bifunctional chiral auxiliaries was already illustrated by Davies and coworkers in the asymmetric aldol and alkylation reactions.'

In summary, we have synthesized novel bifunctional chiral auxiliaries 2a and $\mathbf{2 b}$ having low effective molecular mass

3

4

5

Scheme 2. Reagents and conditions: (i) TMSCl. MeOH. 95\% (ii)

 $-78^{\circ} \mathrm{C} .33 \%$.
(EMM $=87$ and 57. respectively) in four steps starting from a chiral waste 3 which could be oblained as a by-product in the industrial synthetic process of D-biotin.

Experimental Section

General. Chromatographic purification of products was carried out using Merck silica gel 60 (230-400 mesh). Melting points were measured with a Thomas Hoover capillary melting point apparatus and were uncorrected. Optical rotation was measured on a AUTOPOL* Ill polarimeter (Rudolph Rescarch). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \%$) and ${ }^{1.2} \mathrm{C}$ NMR (75.0 Hz) spectra were recorded on a Varian Gemini 300 spectrometer using TMS as an internal standard. IR spectra were recorded on a MIDAC 101025 FT-IR spectrometer and main absorption frequencies were given in cm^{1}. Elemental analyses were performed at Advanced Analytical Rescarch Center in KIST using Perkin Elmer 240 C elemental analyzer.
(4S,5S)-1,3-Dibenzyl-5-(hydroxymethyl)-2-oxoimida-zolidine-4-carboxylic acid 3. The homochiral compound 3. which could be isolated as a by-product in the industrial synthetic process of D-Biotin. was generously gifted by I-Sung Chemical Co. in Korca. Single crystals suitable lor X-ray crystallographic structure analysis were obtained by recrystallization from aqucous methanol.
m.p. $\left.157^{\circ} \mathrm{C}\left(\mathrm{McOH}-\mathrm{H}_{2} \mathrm{O} .95: 5\right):[\alpha]_{\mathrm{C}}^{16}-7.63(c) 1.0\right] 6$. ElOH): IR (KBr) 3346. 1704. 1674. 1468. 1265. 745.696 $\mathrm{cm}^{1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MH} \not, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right) ~ \delta 7.4-7.2(\mathrm{~m}$. $10 \mathrm{H}) .5 .07(\mathrm{~d} . J=15.3 \mathrm{H} \% \mathrm{lH}) .4 .80(\mathrm{~d} . J=15.6 \mathrm{H} \% \mathrm{lH})$. $4.23(\mathrm{~d} . J=12.8 \mathrm{H} \not .1 \mathrm{H}) .4 .18(\mathrm{~d} . J=12.4 \mathrm{~Hz} .1 \mathrm{H}) .3 .87(\mathrm{~d}$. $J=5.7 \mathrm{H} \not .1 \mathrm{H}) .3 .65-3.49(\mathrm{~m} .3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MH} \neq$ $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.74$. 161.87. 138.10. 137.67. 129.75. 129.56. 129.22. 128.87. 128.69. 61,23, 59.18, 57.62, 47.42, 46,28. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$: C. 63.67: H. 6.18: N. 7.81. Found: C. 63.9: H. 6.30: N. 7.86.

Crystal data of 3. $\mathrm{C}_{19} \mathrm{H}_{2 \sim} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right)$. monoclimic. $\mathrm{P} 2_{1}, \mathrm{a}=6.7925(8), \mathrm{b}=13.809(2), \mathrm{c}=10.174(2) \mathrm{A}$. $\beta=107.48(1)^{\circ} . V=910.2(2) A^{3} . Z=2 . \quad D_{c}=1.308 \mathrm{~g} / \mathrm{cm}^{3}$. $\mathrm{F}(000)=380 . \quad\left(\mathrm{MoK}_{\alpha}\right)=0.71073 \mathrm{~A} . \quad 1324 \quad$ Independent reflections with $\mathrm{I} / \sigma(\mathrm{I})>2.0$ are used on the analysis. $\mathrm{R}=0.036$. Data for crystallographic analysis were measured on an Enraf-Nonius CAD-4 diffractometer using Mo radiation and $0-2$ scans in the range of $\theta: 2.10<\theta<24.96$. Structure was solved by direct methods and relined by least squares using the SHEL-X.
(4S,5S)-Methyl 1,3-dibenzyl-5-(hydroxymethyl)-2-oxoimidazolidine-4-carboxylate 4. To a sitirred solution of $3(1.0 \mathrm{~g} .2 .9 \mathrm{mmol})$ in $\mathrm{McOH}(10 \mathrm{~mL})$ was added TMSCl (1.10 mL .8 .7 mmol) at room temperature. After stiring for 24 hr at room temperature. the reaction was quenched by addition of water. The McOH was removed in vactoo and the resulting residue was extracted with E1OAc ($3 \times 10 \mathrm{~mL}$). The combined organic phase was dricd over MgSO_{4} and cvaporated. The crude product was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give $+(0.98 \mathrm{~g} .95 \%)$ as a white solid. m.p. $102^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{16}$ -23.72 (c 1.016. CHCl_{3}): IR (KBr) 3317. 1743. 1677. 1470.
1452. 1221. $701 \mathrm{~cm}{ }^{1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.4-$ $7.2(\mathrm{~m} .10 \mathrm{H}) .4 .92(\mathrm{~d} . J=15.5 \mathrm{H} \not . \mathrm{lH}) .4 .69(\mathrm{~d} . J=15.5 \mathrm{H} \not .$. $1 \mathrm{H}) .4 .29(\mathrm{~d} . J=15.5 \mathrm{H} 九 .1 \mathrm{H}) .4 .22(\mathrm{~d} . J=15.5 \mathrm{H} \% \mathrm{lH})$. $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.43(\mathrm{~m}, 3 \mathrm{H}):{ }^{1.3} \mathrm{C}$ NMR ($75.0 \mathrm{MH} \%$ $\left.\mathrm{CDCl}_{3}\right) \delta 170.99,160,02,137.19 .136 .25 .128 .86 .128 .65$. $128.35,127.88,127.74 .127,64.61 .00(\mathrm{~m}) .58 .01(\mathrm{~m}) .56 .88$. $56.48 .52 .49(\mathrm{~m}) .47 .11(\mathrm{~m})$. Anal, Calcd for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}$. 67.78: H. 6.25: N. 7.90 . Found: C. 67.7: H. 6.30: N. 7.86.
($\mathbf{4 S}, \mathbf{5 S}$)-4,5-Bis(hydroxymethyl)-1,3-dibenzylimidazoli-din-2-one 5. To a stirred mixture of $\mathrm{LiBH}_{+}(0,08 \mathrm{~g} .3 .68$ mmol) in THF (10 mL) was added a solution of $+(0.87 \mathrm{~g}$. 2.45 mmol) in THF (6 mL) at room temperature. The reaction mixture was refluxed for 12 hr . and the reaction was quenched at room temperature by addition of 3 N HCl (2 mL) and water (5 mL). subsequently. The organic layer was seperated and the aqucous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 10 \mathrm{~mL})$. The combined organic phase was dried over MgSO_{4} and craporated in vacto. Recrystallization of the crude product from $\mathrm{Et}_{2} \mathrm{O}$ gave $5(0.77 \mathrm{~g} .96 \%)$ as a white solid. m.p. $142{ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{16}+26.08(c 0.460 . \mathrm{EtOH}): \mathrm{IR}(\mathrm{KBr})$ 3391 . $1636.1507 .1436 .742 .702 \mathrm{~cm}^{1}:{ }^{1} \mathrm{H}$ NMR (300 MHz. DMSO- d_{6}) $\delta 7.4-7.2(\mathrm{~m} .10 \mathrm{H}) .4 .83(\mathrm{t} . J=5.1 \mathrm{H} \approx 2 \mathrm{H}) .4 .70$ $(\mathrm{d} . J=15.6 \mathrm{H} \not .2 \mathrm{H}) .4 .14(\mathrm{~d} . J=15.6 \mathrm{H} \not .2 \mathrm{H}) .3 .5-3.3(\mathrm{~m}$. 4H). 3.22 (m. 2H): ${ }^{1.3} \mathrm{C}$ NMR ($75.0 \mathrm{MH} \neq$ DMSO- d_{6}) δ 159.82 . 137.90. 128.35, 127.53. 126.92. 60.73 (m). 56.03 (m). $44.80(\mathrm{~m})$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C} .69 .91: \mathrm{H}$. 6.79: N. 8.58. Found: C. 69.7: H. 6.82: N. 8.53.
(4S,5S)-4,5-Bis(methoxymethỵ)-1,3-dibenzylimidazo-lidin-2-one 6. Sodium hydride (60% dispersion in mineral oil) (0.32 g .8 .0 mmol) was added to a solution of $5(0.65 \mathrm{~g}$. 2.0 mmol) in DMF (10 mL) at room temperature and the reaction mixture was stirred for 1 hr. lodomethane (1.00 mL . 16.0 mmol) was added at ambient temperature. After stirring for 4 hr. the reaction was quenched by addition of saturated aqueous ammonium chloride solution. The mixture was extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{+}. After evaporation of the solvent in vactoo. the crude product was purified by column chromatography on silica gel (hexane: $\mathrm{EtOAc}=2: \mathrm{I}$) to give $6(0.68 \mathrm{~g} .96 \%)$ as a pale yellow oil. $[\alpha]_{D}^{77}+16.60(c$ $0.747 . \mathrm{CHCl}_{3}$): IR (ncat) $2928.288 \mathrm{I} .1684 .1450 \mathrm{~cm}^{1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ 7.4-7.2 (m. 10 H). 4.82 (d. $J=15.4 \mathrm{~Hz} .2 \mathrm{H}) .4 .23(\mathrm{~d} . J=15.4 \mathrm{H} \% 2 \mathrm{H}) .3 .32-3.23(\mathrm{~m}$. 6 H). 3.18 (s. 6H): ${ }^{13} \mathrm{C}$ NMR (75.0 $\mathrm{MH} \neq \mathrm{CDCl}_{3}$) $\delta 160.33$. 137.82. 128.45. 128.13. 127.24. 73.24. 58.97. 55.34. 46.33 (m).
(4S,5S)-4,5-Bis(methoxymethyl)imidazolidin-2-one 2at A solution of $6(0.71 \mathrm{~g} .2 .0 \mathrm{mmol})$ in THF (20 mL) was added dropwise to a saturated solution of NH_{3} in THF (15 $\mathrm{mL})$ at $-78^{\circ} \mathrm{C}$. Sodium metal (0.41 g .18 .0 mmol) was added and the reaction mixture was stirred until blue color disappeared. The reaction was quenched by addition of solid ammonium chloride (0.97 g .18 .1 mmol) and stirring continued for 2 hr. The excess of ammonia and THF were cyaporated in vacuo. The white residuc was extracted with methylene chloride by soxhlet extractor. After csaporation of solvent. the crude product was recrystallized from elhyl
ether/hexane $=1 / 1$ to give $2 \mathrm{a}(0.25 \mathrm{~g} .71 \%)$ as a white solid. m.p. $103{ }^{\prime \prime} \mathrm{C}:[\alpha]_{\mathrm{D}}^{10}+108.72$ (c $1.021 . \mathrm{CHCl}_{3}$): IR (KBr) 3233. 1703. 1463. $1141.1092 \mathrm{~cm}^{\mathrm{l}}$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \approx$ $\left.\mathrm{CDCl}_{3}\right) 83.58(\mathrm{sym} . \mathrm{m}, 2 \mathrm{H}) .3 .40-3.30(\mathrm{~m}, 4 \mathrm{H}) .3 .37(\mathrm{~s}, 6 \mathrm{H}):$ ${ }^{15} \mathrm{C}$ NMR ($75.0 \mathrm{MH} \neq \mathrm{CDCl}_{3}$) $\delta 163.18 .75 .04,59.12 .54 .72$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{1+} \mathrm{N}_{2} \mathrm{O}_{3}$: C. 48.26: H. 8.10: N. 16.08. Found: C. 48.6: H. 8.11: N. 16.10.
(4S,5S)-4,5-Bis|(dimethylamino)sulfonỵloxymethylJ-1,3-dibenzylimidazolidin-2-one 7. Sodium hydride (60% dispersion in mineral oil) $(0.38 \mathrm{~g} .9 .5 \mathrm{mmol})$ was added to a solution of $3(1.0 \mathrm{~g} .3 .06 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ at room temperature and allowed to stir for 1 hr . $\mathrm{N} . \mathrm{N}$-Dimethylsulfamoyl chloride (0.99 mL .9 .19 mmol) was added at $-5^{\circ} \mathrm{C}$ and the reaction stirred for a further 4 hr before the reaction was quenched by addition of saturated aqueous ammonium chloride solution. The mixture was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine. dried over MgSO_{4} and evaporated in vocto. The crude product was purificd by column chromatography on silica gel (hexane : $\mathrm{ElOAc}=2: 1$) to give $7(1.45 \mathrm{~g} .88 \%)$ as a palc ycllow solid. m.p. $93{ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{-7}-2.59\left(c \quad 1.003 . \mathrm{CHCl}_{3}\right)$: IR (KBr) 1675. 1477. 1374. 1173. 964. $813 \mathrm{~cm}{ }^{1}:{ }^{1} \mathrm{H}$ NMR (300) MHュ. CDCl_{3}) $\delta 7.4-7.2(\mathrm{~m} .10 \mathrm{H}) .4 .91(\mathrm{~d} . ~ J=15.4 \mathrm{H} \%$ $2 \mathrm{H}) .4 .15$ (d. $J=15.4 \mathrm{H} \not .2 \mathrm{H}) .4 .06(\mathrm{dd} . J=4.1 .11 .0 \mathrm{H} \neq$ $2 \mathrm{H}) .3 .96(\mathrm{dd} . J=2.6 .11 .0 \mathrm{~Hz} .2 \mathrm{H}) .3 .54(\mathrm{~m} .2 \mathrm{H}) .2 .73(\mathrm{~s}$. 12H): ${ }^{13} \mathrm{C}$ NMR (75.0 MH\%. CDCl_{3}) $\delta 159.38 .136 .47$. 128.92. 128.28. 127.86. 67.07 (m). 54.00 (m). 46.13. 45.87. 38.46 (m). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}_{2}:$ C. $51.09: \mathrm{H} .5 .96$: N. 10.36: S. 11.86. Found: C. 51.5 : H. 6.04: N. 10.30: S. 11.60
(4R,5R)-4,5-Dimethylimidazolidin-2-one 2b. A solution of $6(1.0 \mathrm{~g} .1 .85 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ was added dropwise to a saturated solution of NH_{3} in THF (20 mL) at $-78{ }^{\circ} \mathrm{C}$. Sodium metal (2.27 g .98 .74 mmol) was added in small pieces and the mixture was stirred until blue color disappeared. The reaction mixture was quenched by addition of solid ammonium chloride (5.30 g .99 .12 mmol). The excess of ammonia and THF were evaporated in vacto. To the resi-
due was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the organic layer was separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brinc. dricd over MgSO_{4} and evaporated in vacto. The crude product was purificd by column chromatography on silica gel $\left(\mathrm{McOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}: n\right.$-hexane $\left.=7.5: 42.5: 40: 10\right)$ to give 2b ($0.07 \mathrm{~g} .33 \%$) as a white solid. Purilication of crude product was also accomplished by recrystallization from cthỵl ether/cthyl acctate $=10 / 1$. m.p. $177^{\circ} \mathrm{C}: \quad[\alpha]_{\mathrm{D}}^{16}$ $35.06\left(c 0.755 . \mathrm{CHCl}_{3}\right)$: $\mathrm{IR}(\mathrm{KBr}) 3212.1702 \mathrm{~cm}{ }^{1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) $\delta 3.27$ (sym.m. 2 H). $\mathrm{I} .12(\mathrm{~d} . J=5.3 \mathrm{H} \neq$ 6 H): ${ }^{1.3} \mathrm{C}$ NMR ($75.0 \mathrm{MH} \neq, \mathrm{CDCl}_{3}$) δ I 64.12 .56 .20 .20 .35. Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$: C. 52.61: H. 8.83: N. 24.54 Found: C. 52.8: H. 8.86: N. 23.70.

Acknowledgment. This work was supported by a grant (2V00361) from Ministry of Science and Technology in Korca.

References

1. Davies, S. G.: Evans, G. B.: Pearce, S. Tetrahedron 1994. 50, 7521
2. Davics, S. G.: Fdwards, A. T.: Frans, G. B.: Morlock, A. A. Tetrohedron 1994, 50,6621
3. Davices S. G.: Fvans, G. B.: Mortlock, A. A. Tetrahectron 1994, 50, 585.
4. Davics, S. G.: Mortlock, A. A. Tetrohedron 1993, 19, 4419.
5. Davies, S. G.: Mortlock, A. A. Tetrahedron Lett. 1992, 33, 1117.
6. Davies, S. G.: Mortlock, A. A. Tetrahedrom Aswmety 1991, 2, 1001 .
7. Davies, S. G.: Mortlock, A. A. Tetrahedron Lett. 1991, 32. 4791.
8. Davies, S. G.: Mortlock. A. A. Tetrahedron Lett. 1991: 32, 4787.
9. For a related C-symmetric bifunctional auxilary; se Alm, K. H.: Yoo. D. T.: Kim. I. S. Tetrahedron Iett. 1992, 33. 66661
