
720 Bull. Korean Chem. Soc. 1999, Vol. 20, No. 6 Duckhwan Lee

The Gauge Invariant Formulation for the Interaction 
of the Quantized Radiation Field with Matter

Duckhwan Lee

Department of Chemistry, Sogang University, Seoul 121-742, Korea 
Received May 25, 1999

It has been proved by the semi-classical gauge invariant formulation (GIF) that the correct interaction operator 
for coupling the field-free material states with the radiation field must be the position form regardless of the 
gauge chosen for expressing the electromagnetic potentials, in accordance with the well-established principle 
of gauge invariance. The semi-classical GIF is now extended to the quantized radiation field interacting with 
matter by defining the energy operator for the quantized radiation field in the presence of matter. It will be 
shown in this paper that the use of the energy operator guarantees the position form of the interaction operator 
even in the Coulomb gauge, contrary to the conventional approach in which the dark material Hamiltonian is 
used to get the interaction operator of the momentum form. The multipolar Hamiltonian is examined in the con
text of the quantum mechanical gauge transformation.

Introduction

The interaction of the radiation field with the matter pro
vides important spectroscopic tools for probing the quantum 
mechanical structure of the matter. Theoretically, the interac
tion is described by an interaction operator for coupling the 
quantum mechanical material states with the radiation field. 
Within the electric-dipole approximation (EDA), many dif
ferent forms of the interaction operator have been proposed 
for various reasons.1 Among those operators, the position 
form, E(t) • r, and the momentum form, A(t) -p, are the best 
known forms of such interaction operators. The latter is 
often regarded as the more fundamental form since it 
appears to be resulted from more rigorous derivation 
employing fully quantized radiation field. The former is 
regarded as an approximation which is more practical in 
many calculations for various reasons.

In early 1950's, however, it was pointed out by Lamb that 
the different forms of the interaction operator are in fact 
related to the choice of gauge condition for the electromag
netic potentials to express the radiation field.2 It was sug
gested that the position and momentum forms of the 
interaction operator correspond to the Lamb gauge and the 
Coulomb gauge, respectively.3 Since the electromagnetic 
potentials in different gauges are related through a gauge 
transformation, these interaction operators must be equiva
lent according to the principle of gauge invariance. Never
theless, the controversy over the correct form of the 
interaction operator has been raised repeatedly. The apparent 
inequivalency among the different forms of the interaction 
operator has been pointed out in connection with the spectral 
line-shape and the transition probability involving nonlinear 
interactions, non-local potentials, spin-forbidden transitions, 
and many others.3

The controversy was finally resolved, at least within the 
semi-classical formulation, by the gauge-invariant formula
tion (GIF) proposed by Yang.4 It was pointed out that the 
apparent difficulty arises from the use of the dark eigen

states, (|0M >}, of the field-free (dark) material Hamiltonian, 
HM, for expressing the material state, | 甲M(t)>, in the pres
ence of the radiation field. Since the phase of | 甲M(t)>
changes with a gauge transformation, the expansion coeffi
cients of | 甲M(t)> in terms of the (gauge independent) dark 
eigenstates, (|0M>}, inevitably become gauge dependent. 
The problem becomes more serious when the perturbation 
technique is used for finding the expression for the transition 
probability.

In order to overcome the difficulty, the energy operator for 
matter in the presence of the radiation, Hme, was introduced 
in the semi-classical gauge invariant formulation (GIF) pro
posed by Yang and others.3,4 Within the EDA, Hme is 
defined by a unitary transformation of HM and it represents 
the instantaneous energy of the matter in the presence of the 
radiation field. Now, unlike the dark eigenstates, the phase 
of the eigenstates of Hme, ( | VM(t)>}, also depends on the 
choice of the gauge by the same fashion as | 甲M(t)>, thus 
making the expansion coefficients of | 甲M(t)> in terms of 
{| VM(t)>} gauge invariant. It can also be shown that the rate 
of change of Hme becomes the power in accordance with the 
classical Poynting's theorem.5 The semi-classical GIF sim
ply asserts the fact that the material energy eigenstates must 
acquire the phase factor, in the presence of the radiation 
field, which depends on the gauge chosen to express the 
radiation field.

According to the semi-classical GIF, the interaction oper
ator always takes on the position form at the EDA regardless 
of the gauge chosen for the radiation field. The transition 
amplitudes defined in this fashion do not indeed depend on 
the gauge as they must be as a physically meaningful quan
tity according to the principle of gauge invariance. Although 
the semi-classical GIF results in the interaction operator 
which is incidentally identical to the form obtained from the 
conventional formulation with the Lamb gauge, it is impor
tant to emphasize that the GIF does not prefer any particular 
gauge for the radiation field.6

Although the semi-classical GIF has been successful in 
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resolving the controversy over the form of the interaction 
operator, the radiation field, in addition to the material part, 
must also be quantized in order to develop the more rigorous 
description of the interaction between the radiation field and 
matter.7 Such a fully quantized description becomes crucial 
for various nonlinear parametric processes including har
monic generations and wave mixings. Spontaneous emission 
step in these nonlinear parametric processes is conspicu
ously quantum mechanical in its nature.8

In this paper, the semi-classical GIF is extended to the 
fully quantized description of the interaction of the radiation 
field with the matter. The full Hamiltonian for the matter and 
the radiation will be examined in detail. Especially, it will be 
emphasized that the radiation part of the Hamiltonian must 
be expressed in terms of the displacement vector, D(t), 
instead of the field strength, E(t), in order to take into 
account the effect of the polarization in the matter in the 
presence of the radiation field.5 Then, it will be shown that 
the energy operator for the radiation in the presence of the 
matter, Hfe, can also be defined through a unitary transfor
mation of the free field Hamiltonian as in the semi-classical 
GIF. The use of Hfe, together with Hme for the matter, auto
matically guarantees the physically meaningful gauge 
invariant transition amplitudes for the combined system of 
the matter and the radiation field.

However, it has to be pointed out that in the fully quan
tized description arbitrary gauge transformation is not possi
ble since the quantization rule for the radiation field is 
uniquely determined by the gauge condition chosen.9 There
fore, the radiation field expressed in the Coulomb gauge will 
be extensively examined in this paper since it is the most 
convenient gauge for quantization. Contrary to the conven
tional result, it will be shown that the interaction operator at 
the EDA still takes on the position form, E(t) • r, rather than 
the momentum form, N(t) • p, even though the radiation is 
expressed in the Coulomb gauge.

Finally, the multipolar Hamiltonian formulation proposed 
by Power et al.10 will be discussed briefly in the context of 
the gauge transformation. The multipolar Hamiltonian, Hmp, 
was obtained through a unitary transformation of the free- 
field Hamiltonian quantized in the Coulomb gauge. Hmp 
contains the interaction terms directly expressed as a multi
pole series which is evidently gauge invariant. For this rea
son, it was suggested that the multipolar part of Hmp 
corresponds to the gauge invariant interaction operator to be 
used for defining the physically meaningful transition ampli
tudes. It will be shown, however, in this paper that the uni
tary transformation leading to Hmp does not correspond to a 
gauge transformation and that the so-called "multipolar" 
gauge is not acceptable as a gauge condition for representing 
the electromagnetic radiation.

The semi-classical GIF is briefly reviewed in Section II. 
The field energy operator, Hfe, is defined and examined in 
Section III. In Section IV, the interaction operator, when the 
radiation field is expressed in the Coulomb gauge, is derived 
from the fully quantized GIF. Discussion on the multipolar 
Hamiltonian is given in Section V.

Semi-Classical Gauge Invariant Formulation

The semi-classical gauge invariant formulation proposed 
first by Yang4 is briefly summarized in this Section. The 
more details can be found elsewhere.3,8

In the semi-classical theory, the time-evolution of the 
material system in the presence of the radiation field is 
described by the time-dependent Schrodinger equation,

访허-쓰스 = Hm (r,t)\^M( t )> (1)

where HM(r, t) is the minimally coupled Hamiltonian for the 
matter in the presence of the radiation field,

1 -|2
Hm(r,t) = 2m\p - ¥(r,t)」+V(r) + q4°(r,t) (2)

Here, A(r,t) and /°(r,t) are respectively the vector and scalar 
potentials for the radiation field, and V(r) is the static Cou
lomb potential. In this equation, the matter is denoted as a 
system of a sin이e charged particle with charge q and mass m 
for the sake of notational simplicity.

According to the principle of gauge invariance, the elec
tromagnetic radiation must be invariant under the following 
gauge transformation on the electromagnetic potentials, 
A(r,t) and /°(r,t),

A'(r,t) = A (r,t) + 厶人(r,t) (3 a)

..,,.,, 1 dA(r,t) ,O1、A '(r /■) =』 (r /) — ---- 、'丿 (3b)A o (r，'丿 Ao(r，'丿 c -dt (3b)

where A(r, t) is an arbitrary gauge transformation function 
from the (unprimed) original to the (primed) new potentials, 
{A'(r, t), Ao'(r, t)}. In other words, the principle of gauge 
invariance requires that all physically meaningful properties 
must be equally described by either set of the electromag
netic potentials, {A(r, t), Ao(r, t)} or {A'(r, t), Ao'(r, t)}.

In quantum mechanics, the time-dependent Schrodinger 
equation in Eq. (1) is form invariant under any gauge trans
formation, since the Hamiltonian, HM(r,t), and the wave 
function, | 甲M(t)>, are transformed respectively as follow- 
ing,11

Hm ' (r,t) = UHM(r,t) ^ + 由씈# (4a)

\-M \ t) > = 이%(t )> (4b)

where

U = exp [c* A(r,t)] (4c)

Here, Hm0 t) and | 甲"(t)> are the minimally coupled 
Hamiltonian and the wave function expressed in the new 
(primed) gauge, respectively. It is noted here that the mini
mally coupled Hamiltonian in the new (primed) gauge is not 
given as a simple unitary transformation of HM(r, t) in the 
old (unprimed) gauge. Instead, there appears the additional 
term involving the time derivative of the transformation 
function, which guarantees the form invariance of the 
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Schrodinger equation. It is thus important to emphasize the 
fact that the expectation value of the minimally coupled 
Hamiltonian which contains a time-dependent potential is 
not invariant under a gauge transformation. The minimally 
coupled Hamiltonian controls the time-evolution of the 
material system interacting with the radiation through the 
form-invariant time-dependent Schrodinger equation given 
by Eq. (1).

The controversy over the form of the interaction operator 
arises from the phase factor of the wave function which is 
changed with a gauge transformation as shown in Eq. (4b). 
Unlike | 甲M(t)>, the eigenfunctions, (| ©씀'〉}, of the field-free 
dark Hamiltonian, HM (r, t), are entirely independent of the 
choice of the gauge since there is no radiation field involved 
in HM(r,t). Therefore, the expansion coefficients of the 
gauge dependent | 甲M(t)> in terms of the gauge independent 
{| ©씸〉} inevitably depend on the gauge chosen for |甲M(t)>. 
It is for this reason that the expansion coefficients defined in 
the conventional formulation cannot be accepted as physi
cally meaningful transition probability amplitudes which 
must be invariant under any gauge transformation.

In the semi-classical gauge invariant formulation (GIF), 
the following basis defining operator, Hme(f, t), is employed

Hme (r,t) = Hm (r,t) - qA°(r,t)

1 厂 -|2
=2篇何-q A (r,t)」+V( r ) + qAo(r,t) (5)

The two operators, Hme(f, t) in the old (unprimed) gauge and 
Hme' in the new (primed) gauge, are related by a simple uni
tary transformation,

Hme' = U HmeU (6)

And, the eigenfunction, |^M (t)>, of Hme(f, t) satisfying the 
following equation,

Hme (r,t)|《(t )>=E'M (圳元(t) > (7)

is related to the eigenfunction | 奶炉(t)> of Hme。，t) by the 
following relation,

""(t )> = U I^M (t )> (8)

Here, it can be readily seen that upon a gauge transformation 
|VM(t)> acquires the same additional phase factor as 
甲M(t)> as shown in Eq. (4b). Now, | 甲m (t)> can be 
expressed in terms of {| vM(t)>}, instead of the eigenstates 
of the field-free dark Hamiltonian, {| vM(t)>}, as following

i^m (t )>=I aM (t )M" t) > (9)
n

The gauge invariance of the expansion coefficients, {aM (t)}, 
is evident since both | 甲M(t)> and |vM(t)> carry the same 
phase factor, as shown in Eqs. (4b) and (8), upon a gauge 
transformation. Furthermore, the following relation can be 
readily derived,

d〈甲m(t)1 HME(r,t) I 甲(t)> = < 甲Mt) IP(t)| 甲(t)> 
dt (10)

where P(t) is the power operator given as

P(t) = 2[v(t) - qE(r,t) + qE(r,t) - v(t)] (11)

Here, v(t) = p - (q/c) A (r,t) is the velocity operator. Then, 
Eq. (10) corresponds to the classical Poynting's theorem, by 
which the rate of energy change is given by the power of the 
system, if HME(r,t) is regarded as the energy operator repre
senting the instantaneous energy of the material system in 
the presence of the radiation field. Furthermore, HME(r,t) is 
reduced to the field-free dark Hamiltonian, H M (r,t), in the 
absence of the field, A(r,t) = 0. Now, the gauge invariant 
expansion coefficients, {a 씨 (t)}, defined in this fashion can 
be regarded as the transition probability amplitudes between 
the energy eigenstates of the matter regardless of a gauge 
chosen for the radiation field.

Furthermore, at the EDA, it can be shown that the energy 
operator in Eq. (5) is expressed as a unitary transformation 
of HM(r, t),

HME(r,t) = U1 H U「 (12a)

and that an eigenstate of the energy operator is related to the 
corresponding dark eigenstate according to

玲=奇 (12b)

I^M (t )> = U】(t) I©M> (12c)

where e^ is the eigenvalue of the dark Hamiltonian. Here,

U1= expc-r . A (t)] (12d)

Now, the equation of motion for {^(t)} at the EDA can be 
written as

山쁙料~=島0：(t)+1 优"t)«怡 - qr -E(t)\©m>
m (13)

The interaction operator is clearly in the position form. It 
is emphasized that Eq. (13) is valid no matter which gauge is 
chosen to expressed the radiation field.

According to the semi-classical GIF briefly summarized in 
this Section, the interaction operator for coupling the field- 
free dark eigenstates always takes on the position form 
regardless of the choice of the gauge for the radiation field. 
The position form obtained in this approach happens to coin
cide with the interaction operator obtained from the conven
tional formulation with the radiation field expressed in the 
Lamb gauge in which A(t) - 0 and A°(t) - -qr - E(t) at the 
EDA. In the semi-classical GIF, however, no gauge condi
tion is assumed at all at the beginning and Eq. (13) is valid 
for any gauge chosen.

Energy Operator for the Radiation Field

In this Section, the Hamiltonian for the free radiation field 
in the absence of the matter is examined first and then the 
full Hamiltonian for the combined system of the matter and 
the radiation field is briefly discussed. The energy operator 



Gauge Invariant Formulation Bull. Korean Chem. Soc. 1999, Vol. 20, No. 6 723

for the field in the presence of the matter is defined at the 
EDA.

Free Radiation Fi이d. The Hamiltonian for the radia
tion field in the absence of the matter is given by9

HF (r,t) = 2{\E (t )|2 비H (t) |2} (14)

When the Coulomb gauge (V • A = 0 and /° = 0) is chosen, 
the vector potential A(r, t) can be written in the quantized 
form,

A(r,t) =NRae"'r-羽 + ae-'(k'"质)} (15)

where a and at are the creation and annihilation operators of 
the radiation field, respectively, satisfying the commutation 
relation,

[a, at] = 1 (16)

In Eq. (15), e, k and (D are the polarization unit vector, the 
wave vector, and the frequency of the radiation respectively, 
and N = [ hc / 2dV]1/2 is the normalization constant. Here, 
the radiation field is treated as completely monochromatic 
for the sake of notational simplicity. For the polychromatic 
radiation field, the vector potential in Eq. (15) must contain 
all the frequency and polarization components. With the vec
tor potential given in Eq. (15), E(r,t) and B(r,t) in Eq. (14) 
are given as following,

wu i(DN」 i(k - r- at) + -i(k - r+at)E(r,t)  -----e{ a e -aae } (17a)c
B(r,t)=iN(k x e) {ael(k r- at)-ate"(k'r+at)} (17b)

Then, the free-field Hamiltonian in Eq. (14) can be expressed 
in the quantized form,

HF=h 3(a at + 2) (18)

Again, the right-hand side of the Eq. (18) must contain the 
summation over all the frequency and polarization compo
nents in the polychromatic radiation field. The Hamiltonian 
in the quantized form in Eq. (18) is unique for the Coulomb 
gauge. It is not possible to obtain the Hamiltonian quantized 
in any other gauge by direct transformation of the above 
Hamiltonian expressed in the Coulomb gauge since the 
quantization rule is completely different for every gauge 
condition chosen.

Full Hamiltonian for the Matter and the Radiation. The 
matter consisted of charged particles is polarized in the pres
ence of the radiation field. Along with the external radiation 
field, the resulting polarization of the matter also becomes a 
source of the field acting on the charged particles in the mat
ter. The overall field can be expressed in terms of the dis
placement vector (or electric induction), D(r,t), and the 
magnetic induction, B(r,t)5

D (r,t)= E(r,t) + 4nP(r,t) (19a)

B (r,t) = H (r,t) + 4nM (r,t) (19b)

where P(r,t) and M(r,t) are respectively the electric polariza

tion and the magnetization arising from the polarizable mat
ter in the presence of the external radiation field.

Now the Hamiltonian for the field in the presence of the 
polarizable matter becomes7

Hg = 土J {E(r,t) - D(r,t) + H(r,t) - B(r,t)}dV (20) 

and the full Hamiltonian for the matter and the radiation 
field is given as

H=Hm (r,t)+Hf (r,t) (21)

where Hm(M) is the minimally coupled Hamiltonian, given 
in Eq. (2), for the matter in the presence of the radiation 
field. The use of D(r,t) and B(r,t) for the energy of the radia
tion field in the presence of the polarizable matter is well 
established in classical theory on electromagnetism. In the 
quantum mechanical description of light-matter interaction, 
however, the polarization effect is often neglected in HF(r,t) 
probably due to the fact that D(r,t) and B(r,t) are not easy to 
express in closed quantized forms. Instead, HF(r,t) is often 
replaced by the Hamiltonian for the free field, H F, in Eq. 
(18). Then the interaction appears only in the material part of 
the Hamiltonian, HM(r,t).

At the EDA, the electric polarization can be written as fol
lowing,

P(E=qr E(t) (22)

and the magnetization can often be ignored. Therefore, 
HF(r,t) in Eq. (20) can be written as

Hg = HF+qr E(t) (23)

at the EDA.
Energy Operator at the Electric Dipoe Approximation. 

In the semiclassical GIF, the energy operator, Hme, for the 
matter in the presence of the radiation field is given as the 
unitary transformation of the dark Hamiltonian, Ho, as 
shown in Eq. (12a). It will be now shown that the energy 
operator, HFE, for the field in the presence of the matter can 
be defined through the same unitary transformation of the 
free-field Hamiltonian, HoF , in Eq. (18).

When two quantum mechanical operators Q and S do not 
commute with each other, it can be readily shown that the 
unitary transformation of Q with Ui = exp[iS] becomes

UiQUit = Q + [iS, Q] +1 [iS,[iS, Q]]

+1 [iS,[iS, [iS, Q]]] + … (24)

When Ui = exp[(iq/c方)r • A(t)] (i.e. S = (iq/c方)r • A(t)), which 
corresponds to the transformation function in Eq. (12d) at 
the EDA, the commutation relation in Eq. (16) can be used 
to derive the following relations,

[ iS, p] = 뽕- A (t) (25a)

[i S, a ] = --h (r . e )eat (25b)
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[ iS, 세 ] = %( r - 宅) e'at (25c)

Since [iS, [- [iS, a]]] = [iS, [- [iS, at]]] = 0 and [iS, [••• 
[iS, p]]] = 0.

Thus, it can be readily confirmed that the relation in Eq. 
(12a) is still valid when the vector potential in U is 
expressed in the quantized form in Eq. (15). This means that 
the energy operator for the matter in the presence of the radi
ation field as defined by Eq. (5) is related to the field-free 
dark material Hamiltonian by the unitary transformation in 
Eq. (12a) even if the radiation field is quantized in the Cou
lomb gauge. Thus, the eigenstates of the energy operator 
retains the same phase factor as in the semi-classical 
approach.

Now, it is interesting to find the unitary transformation of 
HF with Ui, which may be regarded as the energy operator, 
Hfe, for the radiation field in the presence of the matter in 
analogy with the energy operator, Hme, for the matter in the 
presence of the radiation field given by Eq. (5). By writing 
Uiata Uit = (Uiat Uit) (UiaUit) along with Eqs. (25a) and 
(25b), one can easily obtain the following result,

Hfe= UiHFUjt= HF+qr - E(t) + [£?}r - "e)2 (26)

Here, Eq. (i7a) has been used for E(t) at the electric dipole 
approximation.

Now, the following relations can be readily verified,

《或 (27a)

试(t )> = Ui( t )《 (27b)

where {En} and {|v；(t)>} are the eigenvalues and eigen
functions of Hfe while {况} and {|©；>} are the eigenvalues 
and eigenfucntions of H“ the Hamiltonian for the free field 
in the absence of the matter. The above relations are reminis
cent of the relations for the material energy operator in the 
presence of the radiation field as given in Eqs. (i2b) and 
(i2c). That is, the eigenvalues of Hfe and H F are the same, 
but the eigenfunctions differ by a phase factor. Thus, in view 
of the successful role of Hme as the basis defining Hamilto
nian for achieving the gauge invariant transition probability 
amplitude in the semi-classical approach, one can expect the 
similar role of Hfe in the fully quantized description of the 
radiation field interacting with the matter.

Interaction Operator

It is now possible to derive the interaction operator for 
coupling the quantized radiation field with the quantum 
mechanical matter states by using Hfe in Eq. (26) as the 
basis defining Hamiltonian.

The total Hamiltonian for the combined system of the mat
ter and the radiation field expressed in the Coulomb gauge at 
the EDA can be written as following,

H=Hm+Hf=%+Hfe - "쓰J(r - 上)2 (28)

Hm, Hf, Hme and Hfe are given by Eqs. (2), (24), (5), (26), 
respectively. The last term in the above equation is added in 
order to cancel out the extra term appeared in the unitary 
transformation of HF in Eq. (26).

The time evolution of the combined system is described 
by the time-dependent Schrodinger equation,

ih3^^ =H\^( t) > (29)

where | 甲(t)> represents the quantum mechanical state of the 
combined system. It is now possible to express | 甲(t)> in 
terms of the direct product of the eigenstates of Hme and 
Hfe. That is,

\^( t) > = I an, m(t)\《(t) 기v；(t) > (30)
n, m

where the indices n and m represents the eigenstates of the 
matter and the radiation field, respectively. Then, the equa
tion of motion for {an,m(t)} is given by

ih尧m흐 = 成 + 島)an, m(t)

+ II an, m(t)
nm

/ M F \ .. d (q2^Y 、2 I F M、、 
<Wn Vm\ -负希—財(r - e) \WmWn>

- \ J -
(3i)

As explained above, the eigenstates of Hme and Hfe are 
related to the eigenstates of Ho and H by the same unitary 
transformation with Ui given by Eq. (i2d). Thus, the above 
equation can be rewritten as following,

ih尧m흐 = 成 + 島)an, m(t)

+11 an, m (t)

■새印厢 Ui -ihd - 穿 (r - "e)2 UitEM；> (32) 
tc

L \ 7 J

Since

Ui%Uit = -iT-2-\[ [iS, iT] (33)

-i[iS, [iS, iT]]-^

. _ dS .... ......................................... .where T = ---- and S = (iq/ch )r - A (t), it can be proven that
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So, Eq. (32) becomes

m(t) ,M , F,小 
员—■d-— = (£n +Em)an, m(t)

+ XX an, mt(t)〈裁卜qr - E(t) w"¥>(35) 
n m

in which the interaction operator is clearly the position form, 
not the momentum form, even though the Coulomb gauge 
has been employed from the very beginning. Although the 
position form of the interaction operator is not at all conspic
uous at the Hamiltonian level given in Eq. (28), the position 
form of the interaction operator is nevertheless recovered at 
last mainly from the time derivatives of the time-dependent 
phase factors of the energy eigenstates.

Multipolar Hamiltonian

In late 1970's, Power et al. proposed the so-called the mul
tipolar Hamiltonian, Hmp, in which the interaction operators 
of the form of the classical multipolar series are clearly 
exposed at the Hamiltonian level.10,12 They suggested that 
the multipolar Hamiltonian corresponds to the minimally 
coupled Hamiltonian expressed in the "multipolar gauge" as 
they called it. They obtained the multipolar gauge by the fol
lowing unitary transformation of the minimally coupled 
Hamiltonian given in Eq. (2),

Hmp (r,t) = U H")
=H。-丄-E(t)-M(r) - B(r) (36)

with

U = exp[Cf r - A (r,t)] (37)

Here, the quantization of the radiation field is expressed in 
the Coulomb gauge signified by the commutation relation 
given in Eq. (16). They claimed that the unitary transforma
tion in Eq. (36) corresponds to the gauge transformation 
from the Coulomb gauge to the so-called multipolar gauge.

There are two serious difficulties in accepting the multipo
lar Hamiltonian as a physically meaningful operator. First of 
all, as clearly indicated in Eq. (37), the transformation func
tion used to get Hmp from Hm is time-dependent. Because of 
the time-dependent nature of the transformation, the time
evolution of the wavefunction in the transformed representa
tion now have to be given by the following equation,

.d^MP(t)> . dU
ih -- = HMP(r,t) I 中MP(t) > -负 -万厂 | 中MP(t) >

1 力 (38)

The last term does not automatically vanish even at the 
EDA because the time derivative of the vector potential in 
the Coulomb gauge must be directly related to the electric 
field strength which cannot vanish. Thus, the wavefunction 
in the transformed representation does not satisfy the usual 
time-dependent Schrodinger equation. In other words, it is 
no longer possible to use the usual time-dependent 
Schrodinger equation once Hm is tranformed into Hmp by 
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the time-dependent transformation function.
The other difficulty with the multipolar gauge is that the 

vector and scalar potentials implied from Hmp does not 
really corresponds to the acceptable legitimate gauge condi
tion. According to power et al.,10 the multipolar gauge is 
identified by A(r,t) = 0 and qAo being expressed by the mul
tipole series. The vanishing vector potential implies B(r,t)= 
VxA(r,t) = 0 for the radiation field, which is clearly not 
acceptable as realistic description of the radiation field 
beyond the EDA. It is a quite different matter for the Lamb 
gauge mentioned above in which A(r,t) is also null, since the 
Lamb gauge is defined in a limited sense of the EDA.

Concluding Remarks

The quantum mechanical description of the interaction of 
radiation field with matter is examined from the point of 
view of the gauge invariance. The full Hamiltonian for the 
combined system of the radiation field with the matter has 
been closely examined with the quantized radiation field. It 
is pointed out that in the presence of the matter consisted of 
charged particles the displacement vector which includes the 
polarization effect due to the charged particles must be used. 
The resulting Hamiltonian expressed in the Coulomb gauge 
at the electric dipole approximation (EDA) is presented. 
Then, the basis defining energy operator for the radiation 
field in the presence of the matter is defined by the unitary 
transformation of the free field Hamiltonian, analogous to 
the energy operator for matter in the presence of radiation 
field. The use of such gauge-dependent basis defining 
function guarantees the gauge invariance of the time-evolu
tion of the combined system of the radiation field in the pres
ence of the matter as in the semi-classical description. It has 
been proved that the interaction operator for coupling the 
dark eigenstates of the free material eigenstates and of the 
free field eigenstates is given by the position form at the 
EDA even if the Coulomb gauge is employed for the radia
tion field. In the conventional formulation using the free 
material and free field eigenstates, the Coulomb gauge is 
believed to result in the momentum form of the interaction 
operator.

It has also been shown that the multipolar Hamiltonian 
proposed by power et al. has serious theoretical difficulties. 
Since the transformation of the minimally coupled Hamilto
nian in the Coulomb gauge to the multipolar Hamiltonian is 
inherently time-dependent due to the vector potential 
involved, an additional term must be added to the time
dependent Schrodinger equation in order to maintain the 
validity of the description of the time-evolution of the sys
tem. Furthermore, it is also pointed out that the so-called 
multipolar gauge which is believed to be the gauge condition 
corresponding to the multipolar Hamiltonian cannot be 
accepted as a legitimate gauge condition for the radiation 
field.
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