Stability of the Rydberg $\mathrm{H}_{3} \mathrm{O}$ Radical

Jong Keun Park
Deparment of Chemismy and Central Laboratoy, Pusan National Linversity, I'usan 609-735, Korea Received A/arch 10, 1999

Proton and charge transfers in water solvent have been an issue in the quantum dy namics and energetics of $\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}$ clusters. ${ }^{1-1=}$ Although the structure and solvent effect of hydrated and neutral water clusters in chemical and biological processes have been extensively investigated with the theoretical ${ }^{1-1]}$ and experimental ${ }^{12-1^{-}}$methods. the Rydberg $\left(\mathrm{H}_{3} \mathrm{O}^{-}\right)\left(e^{-}\right)_{3 k}$ radical has not been sludied until now. The Rydberg $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)\left(e^{-}\right)_{3:}$ radical can be formed in water clusters like the Rydberg $\left(\mathrm{NH}_{4}^{-}\right)\left(e^{-}\right)_{3 s}$ radical. In the Rydberg $\left(\mathrm{NH}_{4}^{+}\right)\left(e^{-}\right.$)3: radical. ${ }^{18.15}$ the stability and electronic structure of NH_{4} depend greatly on the avoided curve crossing between the dissociative slate of $\left(\mathrm{NH}_{\dagger}^{-}\right)\left(e^{-}\right)_{3}$ and the repulsive state emerging from ($\mathrm{NH}_{3}+\mathrm{H}$). In ammonia clusters. NH_{4} las been known to be stabilized by the complesation with ammonia species. The lifetime of the NH_{4} radical in cluster was measured to be 13 pico second. ${ }^{19}$

In this work. we studied state-to-state correlation curves of the ground and excited states for $\mathrm{H}_{3} \mathrm{O}$ dissociating into ($\mathrm{H}_{2} \mathrm{O}$ +H). For the dissociation reaction. the molecular orbitals and geometric structures at each internuclear distance were optimized using the restricted open-shell Hartrec-Fock method (ROHF). keeping $\mathrm{C}_{2 r}$ symmetry. And the molecular orbitals and optimized structures were used as input for subsequent the singly and doubly excited configuration interaction (SDCI) calculations. That is. the molecular orbitals for a configuration interaction (CI) are determined with the ROHF's results. The singly and doubly excited configuration interaction (SDCI) calculation is used with the GAMESS package. By changing the internuclear distance. the entire procedure was repeated from $\mathrm{H}_{3} \mathrm{O}$ to $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$. The internuclear distances $\left[\mathrm{R}_{10}: H_{1}\right\rangle$ range from 0.80 to 10.0 A . The SDCIs for $\mathrm{H}_{2} \mathrm{O} . \mathrm{H}_{3} \mathrm{O}^{+}$. and $\mathrm{H}_{3} \mathrm{O}$ are also performed separately. The geometric structures of the ground states of $\mathrm{H}_{2} \mathrm{O}$. $\mathrm{H}_{3} \mathrm{O}^{-}$. and $\mathrm{H}_{3} \mathrm{O}$ are also optimized with the second-order M Iler-Plesse1 (MP2) and coupled cluster with both single and double substitution [CCSD(T)] levels using GAUSSIAN 94. The basis sets chosen are the triple reta basis on O ($5311111 /$ $32111)^{20}$ and $\mathrm{H}(511){ }^{-1}$ Two cxira d type polarization functions are added to oxygen $\left(\alpha_{11}=2.22,0.874\right)^{2=}$ and one extra plype function is added to liydrogen $\left(\alpha_{1}=0.990495\right)$. ${ }^{53}$ The diffuse Rydberg basis functions $\left(\alpha_{\mathrm{s}}=0.08\right.$. 0.032: $\left.\alpha_{1}=0.051,0.02: \alpha_{i 1}=0.345,0.1+3\right)^{-2}$ are furtier auginented on oxygen to describe the Rydberg states of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}$.

The geometric parameters and the relative energies of $\mathrm{H}_{3} \mathrm{O}$ dissociating into ($\mathrm{H}_{2} \mathrm{O}+\mathrm{H}$) are listed in Table 1 together with the ionization and excitation energies of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}$. There are no previous experimental and theoretical results on $\mathrm{H}_{3} \mathrm{O}$ to compare with our results. Since the ground state of $\mathrm{H}_{3} \mathrm{O}$ has an electron in a Rydberg is orbital. $\mathrm{H}_{3} \mathrm{O}$ itself is
often called the Rydberg radical and $\mathrm{H}_{3} \mathrm{O}$ is a semi-ionic structure described as $\left(\mathrm{H}_{3} \mathrm{O}^{-}\right)\left(e^{-}\right)_{3 \leqslant}$. Therefore. in the ground geometric structure of $\mathrm{H}_{3} \mathrm{O}$. the equilibrium internuclear dis-
 $\mathrm{A}]$ of $\mathrm{H}_{2} \mathrm{O}$. The bond Iength $\left[\mathrm{R}_{!6} \cdot \mathrm{H}_{\text {is }}\right]$ at the transition state is $\simeq 1.21 \mathrm{~A}$. that is. the bond breaking takes place near the equilibrium geometry of $\mathrm{H}_{3} \mathrm{O}$. The energy barrier lieights from the transition state to $\mathrm{H}_{3} \mathrm{O}$ and $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$ are $\simeq 0.11$ and 0.93 cV . respectively. The energy gap between $\mathrm{H}_{3} \mathrm{O}$ and $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$ is $\simeq 0.82 \mathrm{cV}$. Because the ground potential of $\mathrm{H}_{3} \mathrm{O}$ has an encrgy batricr of $\simeq 0.11 \mathrm{cV}$ along the OH bond ruplure. $\mathrm{H}_{3} \mathrm{O}$ is very unstable. Because of the weak interaction between the nucleus and a Rydberg electron the ionization and excitation energies of $\mathrm{H}_{3} \mathrm{O}$ are relatively low.

Potential energy curves for the ground and low lying cxcited states of $\mathrm{H}_{3} \mathrm{O}$ dissociating into $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$ are drawn in Figure 1. They are labeled as $1^{2} \mathrm{~A}_{1}, 2^{2} \mathrm{~A}_{1 .}, 3^{2} \mathrm{~A}_{1} .1^{2} \mathrm{~B}_{1}$. and $2^{2} \mathrm{~B}_{\text {। }}$. respectively. The potential energy of $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$ is sel equal to \%ero. To represent the avoided curve crossing clearly. the broken lines indicate estimated diabatic potential energy curves and these were drawn by hands. The ground ${ }^{2} \mathrm{~A}_{1}$ state of $\mathrm{H}_{3} \mathrm{O}$ correlates with an antibonding orbital emerging from the $\left[\mathrm{H}_{2} \mathrm{O}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}\left({ }^{-} \mathrm{S}\right)\right]$ asymptote. This

Table 1. Geometric parameters and relative energies (eV) for the ground ${ }^{2} \Lambda_{1}$ state along the $\mathrm{H}_{3} \mathrm{O}$ radical dissociating into $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$. Ionization and excitation encrgies (eV) of $\mathrm{H}_{3} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$

Figure 1. Potential energy curves for the ground and low lying excited states of the Rydbero $\mathrm{H}_{3} \mathrm{O}$ radical dissociating into $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$.
curve is quasibound. which means that its equilibrimm energy is higher than that of the dissociation asymptote of $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$. The potential curve has an energy barrier near the equilibrium geometry of $\mathrm{H}_{3} \mathrm{O}$. It is made by an avoided curve crossing between the dissociative diabatic state of the Rydberg $\left[\left(\mathrm{H}_{3} \mathrm{O}\right)(e)_{3_{s}}\right\rfloor$ radical and the repulsive diabatic state emerging from an antibonding orbital of the $\left[\mathrm{H}_{2} \mathrm{O}\right.$ $\left.\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}\left({ }^{-} \mathrm{S}\right)\right]$ asymptote. The barrier height and potential well are very low and shallow, respectively. The maximmm position $\left[\mathrm{R}_{(1,11)} \simeq 1.21 \mathrm{~A}\right]$ of the transition state of the ground potential curve is located out of line of those $\left[\mathrm{R}_{(, 11)} \simeq 1.95\right.$ AJ of the first and ligher excited states.
ln $\mathrm{H}_{3} \mathrm{O}$ dissociating into ($\mathrm{H}_{2} \mathrm{O}+\mathrm{H}$), the ground Rydberg $\mathrm{H}_{3} \mathrm{O}$ radical diabatically dissociates into two kinds of asymptotes, that is. $\mathrm{H}_{3} \mathrm{O}$ diabatically dissociates into the $\left[\mathrm{H}_{2} \mathrm{O}\left({ }^{1} \mathrm{~A}_{1}: \mathrm{lb}_{1} \rightarrow 3 \mathrm{p}_{\mathrm{x} . \mathrm{y}}\right)+\mathrm{H}\left({ }^{-} \mathrm{S}\right)\right]$ and $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)^{*}\left({ }^{-} \mathrm{A}_{1}\right)+\mathrm{H}\left({ }^{1} \mathrm{~S}\right)\right]$ asymptotes. In the second dissociation path. one electron jumps from the lb_{1} orbital of $\mathrm{H}_{2} \mathrm{O}$ to the ls orbital of H . The ion pair has strongly attractive ionic character as the ions approach each other. Therefore. by avoided curve crossing between two dissociative diabatic states of $\left[\left(\mathrm{H}_{3} \mathrm{O}^{-}\right)\left(e^{-}\right)_{3 s}\right]$ and the repulsive diabatic state emerging from $\left[\mathrm{H}_{2} \mathrm{O}\left({ }^{1} \mathrm{~A}_{1}\right)\right.$ $+\mathrm{H}(-\mathrm{S})$], the potential well and barrier height should be very deep and ligh, respectively: But. since the energy gap between the $\left[\mathrm{H}_{2} \mathrm{O}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}\left({ }^{-} \mathrm{S}\right)\right]$ and $\left[\mathrm{H}_{2} \mathrm{O}\left(\widetilde{T^{1}} \mathrm{~A}_{1}\right)+\mathrm{H}\left({ }^{(} \mathrm{S}\right)\right]$ asymptotes is large, the potential energy barrier of the ground ${ }^{2} \mathrm{~A}_{1}$ state is slifted to the equilibrium geometry of $\mathrm{H}_{3} \mathrm{O}$. The barrier height of the curve is found to be very low.

The dominant configuration for the ground A_{1} state is
 [core]2aị lb
 $\mathrm{H}_{3} \mathrm{O}^{-}$. 4al indicates an electron of the Rydberg 3s orbital having a $\mathrm{H}_{3} \mathrm{O}^{-}$structure as a core. Therefore, the electronic structure of $\mathrm{H}_{3} \mathrm{O}$ appears to be $\left[\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)\left(e^{-}\right)_{s}\right]$. $\mathrm{H}_{3} \mathrm{O}$ is a semiionic state. Along OH bond rupture, the $+\mathrm{a}_{1}$ orbital is nonbonding. i.e., a character of Is of H . tal indicates one electron in the ls orbital of H .

Generally, the ground-to-Rydberg transition energies are found to be lugher than $5 \mathrm{eV}-6 \mathrm{eV}$. But. in $\mathrm{H}_{3} \mathrm{O}$ the Rydberg excitation energy is found to be low. that is, the excitation energy ($3 \mathrm{~s} \rightarrow 3 \mathrm{p})_{\text {Kysllexy }}$ is $\simeq 2.05 \mathrm{eV}$. While, in $\mathrm{H}_{2} \mathrm{O}$ the excitation energy ($1 b_{1} \rightarrow 3 \mathrm{p}_{\mathrm{N} . .}$) is $\simeq 10.21 \mathrm{eV}$. In the correlation curve if the potential energy barriers of the ground and excited states are determined by the avoided curve crossings, the barrier height should be ligh and the maximum position should be located at the middle place between $\mathrm{H}_{3} \mathrm{O}$ and $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$. But. in our ground potential curve of the dissociation. the potential energy barrier of $\simeq 0.11 \mathrm{eV}$ is located near the equilibrium geometry of $\mathrm{H}_{3} \mathrm{O}$. In the avoided curve crossing between the attractive diabatic states emerging from $\left[\mathrm{H}_{2} \mathrm{O}\left({ }^{-} \mathrm{A}_{1}\right)+\mathrm{H}\left({ }^{-} \mathrm{S}\right)\right]$ and $\left[\left(\mathrm{H}_{2} \mathrm{O}^{\prime}\right)^{*}\left({ }^{-} \mathrm{A}_{1}\right)+\mathrm{H}\left({ }^{1} \mathrm{~S}\right)\right]$ and the repulsive state from an antibonding interaction of $\left\lfloor\mathrm{H}_{2} \mathrm{O}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}\left({ }^{-} \mathrm{S}\right)\right]$. the energy gap between two asymptotes plays an important role in the ground correlation curve. As a result, the position of the potential barrier is slufted to the equilibrium geometry of $\mathrm{H}_{3} \mathrm{O}$. That is the maximum position of potential barrier of the ground state formed by the avoided curve crossing is located out of line of those of the excited potential energy curves. And the barrier height is found to be very low. Because of the low barrier the existence of the Rydberg $\mathrm{H}_{3} \mathrm{O}$ radical has not been observed experimentally.

In the excited ${ }^{\circ} \mathrm{A}_{1}$ state, the curve crossing between the dissociative diabatic excited states of $\left(\mathrm{H}_{3} \mathrm{O}^{\circ}\right)(e)_{\text {kyybery }}$ and the repulsive diabatic states from the antibonding interaction of $\left[\mathrm{H}_{2} \mathrm{O}\left({ }^{\prime} \mathrm{A}_{1}\right)+\mathrm{H}\left({ }^{-} \mathrm{S}\right)\right]$ are found around $\mathrm{R}_{4 \cdot 1 / 11} \simeq 1.5 \mathrm{~A}$ and +.0 A. In the excited ${ }^{-} \mathrm{B}_{1}\left(3 \mathrm{~s} \rightarrow 3 \mathrm{p}_{\mathrm{s}}\right)$ state of $\mathrm{H}_{3} \mathrm{O}$, the state correlates with a bonding interaction of the $\left[\mathrm{H}_{2} \mathrm{O}\left({ }^{1} \mathrm{~B}_{3}\right.\right.$: $\left.\left.\mathrm{lb}_{1} \rightarrow 3 \mathrm{~s}\right)+\mathrm{H}(-\mathrm{S})\right]$ asymptote. An antibonding interaction emerging from $\left[\mathrm{H}_{2} \mathrm{O}\left({ }^{\prime} \mathrm{B}_{1}: \mathrm{lb}_{1} \rightarrow 3 \mathrm{~s}\right)+\mathrm{H}\left({ }^{-} \mathrm{S}\right)\right]$ is found to be repulsive. By the avoided curve crossings between the attractive diabatic state emerging from the electrostatic attraction of $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)^{*}\left({ }^{-} \mathrm{B}_{1}\right)+\mathrm{H}\left({ }^{1} \mathrm{~S}\right)\right]$ and the other states with the same symmetry, the potential energy curves of the ground and excited states for the dissociation of $\mathrm{H}_{3} \mathrm{O}$ into $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$ show an irregular shape. Our state-to-state correlation diagram gives detailed information of the crossing positions and barrier heights for $\mathrm{H}_{3} \mathrm{O}$ dissociating into $\left(\mathrm{H}_{2} \mathrm{O}\right.$ +H).

Acknowledgment. The author thanks Prof. Sun and Mr. Do-Hoon Kim for their invaluable help.

References

I. Guissami, Y: Guillot: B.: Bratos, S. J. Chem. Phes 1988, 88, 5850 .
2. Wei, D.: Salahub D. R.J. (hem. Phrs. 1994 . 101.7633.
3. Tuckerman. M.: Laasonen, K.: Sprik. M.: Parrinello. M. J. Chem. Phes 1995, 103, 150.
4. Lobaugh. J.: Voth. G. A. J. Chem. Phus. 1996. 104. 2056.
5. Vuilleumier. R.: Borgis. D. (hem. Fhys. Lett. 1998, 284. 77
6. Newton, M. I..J. Chem. Phws. 1977, 67, 5535.
7. Botschwina, P.J. Chem. Phes 1986, $84,6523$.
8. Peterson, K. A: Xantheas, S. S: Divon, D. A: Dunning,

Jr., I. H. I. Phys Chem. 1998, 102, 2449.
9. Del Bene, J. F.: Mettee, H. 1): Frisch, M. I.: Luke, B. T.: l'ople, J. A. J. Phys Chem. 1983, 87, 3279.
10. Curtiss, 1.. A: Raghavachari, K.: Trucks, (i. W.: Pople, I. A. J. Phes. Chem. 1991, 94, 7221.
11. Bucker, II. II.: Uggerud, E. J. Phes. (hem. 1995, 99, 5945.
12. Itonma, K.: Sunderlin, L. S.: Ammentrout. P. B. J. Chem. Phys. 1993, 99, 1623.
13. Ng, C. Y.: Trevor, D. J.: Tiedemam, P. W.: Cever, S. T.: Kronebusch, 1. 1.: Mahan, B. H.: L.ee, Y. I. J. Phys. (hem. 1977, 67, 4235.
14. Nagashima, U.: Shinohara, H: Nishi, N.: Janaka, H. ./. (hem. Phas 1986, 84, 209
15. Herzberg, (i. Moleclar Spectra and Molectar Structure. Electronic Spectra and Electronic Structure of Polyatomic Molecales, Vol. III: Van Nostrand, New York, 1966.
16. Liu, D.-J.: Oka, T.: Sears. T. T. J. (hem. Phys. 1986, 84,

1312
17. Yeh. L. I.: ()kumura, M.: Myers J. ID.: Price, J. M.: Lee, Y. 1.J. Chem. Hhs 1989.91. 7319 .
18. (a) Park, J.K.J. (Them. Phys. 1997, 107, 6795. (b) Park, J K.J. (hem. Phos 1998, 109, 9753.
19. (a) Fuke, K.: Takasu, R. Bull. Chem. Soc, Jph. 1995, 68 , 3309. (b) Fuke, K.: Takasu, R.: Misaizu, F. Chem. Phys. Lett. 1994, 229, 597.
20. Duijneveldt, F. B. IBM Research Report NO. RJ 1971 , 945.
21. Hasimoto, K.: Osamura, Y. J. Chem. Phes. 1991, 95, 1121.
22. Partridge, $\mathrm{H}:$ Bauschlicher, Jr. C. W.: Langhoff, S. R. Theor Chim. Acta 1990, 77, 323.
23. Huzinaga, S: Andzeln, J.: Klobukowski, M.: RadzioAndzelm, K: Sakai, Y: Tatewaki, H. Physical Science Data: Gaussian Basis Sets for Molecular Calculations, Vol. 16: Elsevier: Amsterdam, 1984.

