Unusual Directed Synthesis of a Carceplex or a Supramolecule Composed of Calix[4]arene and Resorcin[4]arene Moieties Using Solvent Templation

Hyejae Ihm and Kyungsoo Paek*
Department of (hemistry, 'roongsil Vhwersity, Seoul 156-743, Korea
('enter for Biofinctional Molecules, P.O. Bor 125, Pohang 790-600, Korea
Received April 10, 1999

The sy ntheses of artificial receptor molecules by the modification or simple rigid building blocks such as calivarenes. ${ }^{\text {. }}$ resorcinarenes. ${ }^{2}$ and cyclodestrins ${ }^{3}$ have resulted in various host molecules with small cavities suitable for the complesation of alkali metal cations. anions. or small organic molecules. The supramolecular chemistry has been expanded from the combination of calix[4]arenes with other building blocks such as cyclodentrins ${ }^{+}$or porplyyrins. ${ }^{5}$

Recently. Reinhoudt et af, bave reported the supramolecules by the combination of calix[t]arene and resorcin $[+\rceil$ arene moieties. ${ }^{6-}$ The $[2+2\rceil$ holand from two calix $[4]$ arene and wo resorcin $[4]$ arene moieties has a rigid cavity of nanosize dimensions and the $[t+1] C_{10}$ carcerand laving an incareerated DMF molecules showed the unprecedented carcerostereoisomerism owing to the different oricntations of incarcerated guest molecule at low temperature. The $[1+2]$ supramolecules from a resorcin[4]arene and two calix[t]arene moieties as well as their complevation of steroids were also reported. ${ }^{*}$ Here we report the directed synthesis and structural analysis of a Cir carceplex and a supramolecule composed of a calix[t]arene and lwo resorcin[t]arene moieties using solvent templation method.

Tetrol 1^{9} oblained from p-bromocalix $[4$ arene hexyl ether was treated with $\mathrm{TsO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}^{2}-\mathrm{Cs}_{2} \mathrm{CO}_{3}$-DMF at $50{ }^{\circ} \mathrm{C}$ to give tetrachloride 2 in 54% yield (Scheme 1). When potassium carbonate was used as a base at the same condition. the distal etlylene-bridged product 3 and tetrachloride 2 were oblained in 33% and 15% yield. respectively. It scems that the Cs^{\prime} templates in the cavity of the calix[+]arene and prohibits the 1.3 -aromatic rings from approaching each other enough to be bridged by chlylene unit. The tetrachloride 2 was refluxed with NaI in methyl ethyl ketone to give tetraiodide 4 in 74% yield. When tetrol 1 was treated with an excess of $\mathrm{TsO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTs}_{5}-\mathrm{Cs}_{2} \mathrm{CO}_{3}$-DMF at $40{ }^{\circ} \mathrm{C}$ to obtain a tetratosylatc. only a distal bridged analoguc of $\mathbf{3}$ was oblained due to the high reactivity of a tosylate group.

Under hightdilution condition. the shell closing reaction between tetraiodide 4 and tetrol 5^{10} in $\mathrm{Cs}_{2} \mathrm{CO}_{3} /$ DMF at 55$60{ }^{\circ} \mathrm{C}$ produced a carceplex $6 \square$ DMF in 10% yield (Scheme 2). When DMA. NMP. McCN. or 1.4-dioxane were used as a glest solvent. none of a carceplex or a hemicarceplex was observed.
Pyrazine has been known as the best template in the formation of carceplex based on the resorcin $[4]$ arene. ${ }^{11}$ In case of the above reaction in pyrazine ($1 \mathrm{~mol} \%$)-NMP any desired carceplex was not isolated, which means both of

$1: \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$

Nal / MEK $\begin{array}{r}2:(X=C l \\ \mathbf{4}:(X=1,74 \%)\end{array}$
3 (33\%)
Scheme 1
these potential templates are not good cnought for the formation of carcerand 6. ${ }^{7}$ Howerer. the reaction in pyrazine (1 $\mathrm{mol} \%$)-DMF produced $6 \square$ DMF and a supramolecule 7 in 5% and 2% yield. respectively. As the reaction condition is changed to 1 cquiv: of tetraiodide 4 and 2 cquiv. of tetrol 5 . the yield of 7 was increased up to 15%. When pyrazine (I $\mathrm{mol} \%$)-DMA was used as a mixed solvent. only the $1: 2$ host 7 was obtained in very low yield. It is probable that pyrazine-calix 4]arene affinity is larger than that of pyra-zine-resorcin[t]arene due to the facile squeczability of calixf + |arene to give maximum $\pi-\pi$ interactions. This results in the deformation of calix $[+$ arene to the pinched-cone confommer. which prohibits the $[1+1\rceil$ shell-closing reaction.

The structure of 6ロDMF was confinned by spectroscopic and elemental analyses. The $\mathrm{FAB}(+)$ mass spectrum of $6 \square$ DMF showed a strong molecular ion peak (mz z $188+.67 \%$) and its IR spectnum showed v, band of DMF at $167+\mathrm{cm}$ '. Its 'H NMR spectnum shows two singlets for the aromatic protons of the resorcin[4]arene and calix[4]arene at $\delta 6.72$ and 6.43 . two doublets ($J_{\text {AE }}=7.1 \mathrm{~Hz}$) for the bridging dioxymethylene protons of the resorcin[4]arene moiety at δ

$4: \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$
$+$

5: $\mathrm{R}_{2}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$

6© DMF

7

Scheme 2

5.74 (outer $\mathrm{OCH}_{2} \mathrm{O}$) and 4.19 (inner $\mathrm{OCH}_{2} \mathrm{O}$). and two doublets $\left(/_{A B}=12.0 \mathrm{~Hz}\right)$ for the bridging methylene protons of calix[+]arene moiety at $\delta+3+\left(\mathrm{H}_{\text {endo }}\right)$ and $3.0+\left(\mathrm{H}_{\text {exo }}\right)$. Characteristic upfield-shifted glest signals are found ($\delta 5.35$ for formyl H. 0.27 for cis- CH_{3} and $-0 .+5$ for trans $-\mathrm{CH}_{3}$) due to the shielding of the aromatic moieties of the hosts. The incarcerated DMF was not decomplexed at $150{ }^{\circ} \mathrm{C}$ for 5 d and the so-called carceroisomerism was not observed up to $-70{ }^{\circ} \mathrm{C}$. which is similar to $D_{\text {lit }}$ carceplex composed of two resorcin[4]arene moiety connected by dioxyethylene unit. ${ }^{12}$

The $\mathrm{FAB}(+)$ mass spectrum of 7 gave its molecular ion peak at $\mathrm{m} / \mathrm{z} 2691$ as a base peak. which suggests that it is a trimer consisted of two resorcin[4]arene units and one calix[4]arene unit. For this trimer three kinds of [1+2] isomers, endo-endo, endo-exo and exo-exo isomers, are possible. ${ }^{6}$ The endo-endo and exo-exo isomers have a (${ }_{2 r}$ point group, and the endo-exo isomer has a ('s point group.

The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz} . \mathrm{CDCl}_{3}$) of 7 showed two singlets for the aromatic protons of the resorcin $[+]$ arene unit at $\delta 6.84$ and $\delta 6.61$ and two singlets for the aromatic protons of the calix[+4 arene unit at $\delta 6.51$ and $\delta 6.2+$. Also the dionymethylene protons of resorcin[t]arene unit appeared as three kinds of doublet of doublets at $\delta 6.03\left(J_{\mathrm{AB}}\right.$ $=7.0 \mathrm{~Hz}) .5 .97\left(J_{\mathrm{AB}}=7.2 \mathrm{~Hz}\right)$ and $5.93\left(J_{\mathrm{AB}}=6.9 \mathrm{~Hz}\right)$ for outer $\mathrm{OCH}_{2} \mathrm{O}$ and at $\delta+.53\left(J_{\mathrm{AB}}=6.9 \mathrm{~Hz}\right) .+.45\left(J_{\mathrm{AB}}=7.0\right.$ $\mathrm{Hz})$ and $+.3+\left(J_{\mathrm{AB}}=7.2 \mathrm{~Hz}\right)$ for inner $\mathrm{OCH}_{2} \mathrm{O}$. Also two kinds of doublet of doublets for methy lene of calix[[] arene unit were appeared at $\delta+.48\left(J_{\mathrm{AB}}=13 .+\mathrm{Hz}\right)$ and $4.39\left(J_{\mathrm{AB}}=\right.$ $13.0 \mathrm{~Hz})$ for $\mathrm{H}_{\text {endo }}$ and at $\delta \quad 3.16\left(/_{\mathrm{AR}}=13.4 \mathrm{~Hz}\right)$ and 3.0 I $\left(/_{\mathrm{AB}}=13.0 \mathrm{~Hz}\right)$ for $\mathrm{H}_{\text {ero }}$. These ${ }^{1} \mathrm{H}$ NMR spectral data of 7 shows its (${ }_{21}$ point group, which excludes the exo-endo isomer.

2D NOESY spectnum of 7 shows a connectivity between the protons $\left(\mathrm{H}_{a}\right)$ of the aromatic rings of the calix[4]arene moiety and the bridging outer methylene protons $\left(\mathrm{H}_{2}\right)$ of the resorcin[+]arene moiety (Figure 1). The H_{a} protons also show the cross peaks with H_{i} and H_{i} protons. CPK molecular
(a)

Figure 1. Parts of (a) the NOE Connectivity and (b) 2D NOLSY Spectrum (500 MH 7) of 7 in CDCl , at $27^{\circ} \mathrm{C}$.
model shows that. if this isomer was an exo-exo isomer the 2D NOESY spectrum should show a connectivity between the H_{a} protons and the bridging inner methylene protons $\left(\mathrm{H}_{\mathrm{h}}\right)$. This supports that the endo-endo isomer is obtained
among the three possible $2: 1$ isomers. ${ }^{6}$
In conclusion. a new calix[+]arene-based C_{4}. carceplex 6 \square DMF and an unexpected endo-endo supramolecule made of one calix[4]arene unit and two resorcin[+]arene units were obtained using template effect and their structures were determined. Currently the molecular recognition studies as well as the functionalization of hydrosy groups of this supramolecule is in progress.

Experimental Section

General details. All chemicals were reagent grades and used directly unless otherwise specified. All anhydrous reactions were conducted under an argon atmosphere. Melting points were measured on an Electrothemal 9100 apparatus and were uncorrected. IR spectra were taken with a Mattson 3000 FT-IR spectrometer. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance DPX300 (300 MHz). JEOL lambda- $400(400 \mathrm{MHz})$ or Bruker Avance DPX500 (500 MHz) in CDCl_{3} unless stated otherwise. Residual solvent protons were used as internal standard and chemical shifts are given relative to tetramethylsilane (TMS). FAB mass spectra were run on a HR MS (VG70-VSEQ) at Korea Basic Science lnstitute using m-nitrobenzyl alcohol as a matrix. Gravity column chromatography was performed on silica gel 60 (E. Merck. 70-230 mesh ASTM). Flash chromatograply was performed on silica gel 60 (E. Merck, 230-400 mesh ASTM). Thin layer chromatography was done on silica plastic sheets (E . Merck, silica gel $60 \mathrm{~F}_{25 \cdot /} 0.2 \mathrm{~mm}$). Elemental analyses were performed by Galbraith Laboratories (Knoxville, Tennessee).
5,11,17,23-Tetrakis(2-chloroethyloxy)-25,26,27,28-tetra (hexyloxy)pentacyclo[19.3.1.1 $\left.1^{3.7}, 1^{9.13} .1^{1519}\right] \operatorname{octacos} a-1(24)$, $3(28), 4,6,9(27), 10,12,15(26), 16,18,21(25), 22$-dodecaene (2). To a solution of tetrol $1^{9}(1.0 \mathrm{~g} .1 .2 \mathrm{mmol})$ and cesium carbonate (3.9 g .12 mmol) in DMF (60 mL) was added 2 -chloroethane tosylate (4.3 g .18 mmol) and the reaction mixture was stirred for 3 d at $50^{\circ} \mathrm{C}$. After cooling to room temperature the mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and $2 \mathrm{~N} \mathrm{HCl}(2 \times 150 \mathrm{~mL})$. The organic phase was separated. washed with water and brine, and subsequently dried over MgSO_{4}. After evaporation of the solvent the residue was chromatographed on a silica gel gravity column using 5% EtOAc/hexane to give the product $2(0.69 \mathrm{~g} .5+\%)$: mp 87.5$88.6^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3 .} .500 \mathrm{MHz}\right) \delta 6.26(\mathrm{~s}, \mathrm{ArH}, 8 \mathrm{H})$, 4.40 (d. endo-ArCH. $J=13.1 \mathrm{~Hz} .+\mathrm{H}), 3.99\left(\mathrm{t}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right.$. $8 \mathrm{H}) .3 .81\left(\mathrm{t} . \mathrm{OCH}_{2}, 8 \mathrm{H}\right), 3.64\left(\mathrm{t} . \mathrm{CH}_{2} \mathrm{Cl}, 8 \mathrm{H}\right), 3.04$ (d. exoArCH. $J=13.1 \mathrm{~Hz} .4 \mathrm{H}$). 1.89 (m, $\mathrm{CH}_{ \pm}, 8 \mathrm{H}$). 1.38 (br s. CH ${ }_{2}$. $24 \mathrm{H}), 0.93\left(\mathrm{t}, \mathrm{CH}_{3}, 12 \mathrm{H}\right)$: Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{6} \mathrm{O}_{8} \mathrm{Cl}_{4} \mathrm{C}_{6}{ }^{-}$ $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{O}:$ C. 67.68 : H. 7.92. Found: C, 67.41: H. 8.05.

5,11,17,23-Tetrakis(2-iodoethyloxy)-25,26,27,28-tetra (hexyloxy)pentacyclo[19.3.1.1 $\left.1^{3,7}, 1^{9,13}, 1^{15,19}\right]$ octacosa- $1(24)$, $3(28), 4,6,9(27), 10,12,15(26), 16,18,21(25), 22$-dodecaene (4). A solution of sodium iodide ($155 \mathrm{mg}, 1.0 \mathrm{mmol}$) in MEK $(30 \mathrm{~mL})$ was refluxed for 1 h . To a refluxing solution was added tetrachloride $2(110 \mathrm{mg} .0 .10 \mathrm{mmol})$ and refluxed for 3 d. After evaporation of the solvent the cnide mixture was
taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL), washed with water (2×100 mL) and brine (25 mL) and subsequently dried over $\mathrm{MgSO}_{\text {. }}$. After evaporation of the solvent the residue was chromatographed on a silica gel gravity column using hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1.v/v) and then recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to afford the product $4(110 \mathrm{mg} .74 \%)$ as a white powder: mp $71.6-73.5^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .400 \mathrm{MHz}\right) \delta 6.22$ (s. ArH. $8 \mathrm{H}) .4 .37$ (d, endo-ArCH, $J=13.2 \mathrm{~Hz} .4 \mathrm{H}$). 4.02 (t. $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{l} .8 \mathrm{H}\right) .3 .78\left(\mathrm{t}, \mathrm{OCH}_{2}, 8 \mathrm{H}\right), 3.22\left(\mathrm{t} . \mathrm{CH}_{2} \mathrm{I} .8 \mathrm{H}\right)$. 3.02 (d. exo-ArCH, $J=13.2 \mathrm{~Hz} .+\mathrm{H}$). 1.86 (m. $\mathrm{CH}_{3} .8 \mathrm{H}$). $1.3+$ (br s. $\mathrm{CH}_{2} .2+\mathrm{H}$). 0.89 (t. $\mathrm{CH}_{3}, 12 \mathrm{H}$): $\mathrm{FAB}(+) \mathrm{MS} 1+40$ (M, 100).

Calix[+|arene-based Carcerand 6ロDMF. Under argon atmosphere, a solution of tetraiodide 4 (170 mg .0 .12 mmol) and tetrol 5^{101} (114 mg .0 .13 mmol) in DMF (50 mL) was added dropwise to a suspension of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($38+\mathrm{mg} .1 .2$ mmol) in DMF (80 mL) for 6 h at $55-60^{\circ} \mathrm{C}$ and the mixture was stirred for 12 h . Then the temperature was increased into $80^{\circ} \mathrm{C}$ and the misture was stirred for 3 h . After cooling to room temperature, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250$ $\mathrm{mL})$ and the solution was washed with $2 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$. $\mathrm{H}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. and brine (50 mL), and then dried over MgSO_{1}. After evaporation of the solvent the residue was chromatographed on a silica gel columm using hexaneEtOAc (9: $1, v / s$) and the recrystallization from $\mathrm{CH}_{3} \mathrm{Cl}_{2}-$ MeOH gave the product $6 \square$ DMF ($21 \mathrm{mg} .10 \%$); mp >268 ${ }^{9} \mathrm{C}$ dec.: FT-IR (KBr) $167+\mathrm{cm}^{1}\left(v_{\mathrm{c}} \mathrm{u}\right)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$. $300 \mathrm{MHz}) \delta 6.72(\mathrm{~s} . \mathrm{ArH}, 4 \mathrm{H}) .6 .43(\mathrm{~s}, \mathrm{ArH}, 8 \mathrm{H}), 5.7+(\mathrm{d}$. $\left.\mathrm{OCH}_{2} \mathrm{O}, J=7.1 \mathrm{~Hz} .4 \mathrm{H}\right) .5 .31(\mathrm{~s}, \mathrm{COH} .1 \mathrm{H}) .4 .61(\mathrm{t}, \mathrm{ArCH}$. $4 \mathrm{H}) .4 .3+$ (d. endo-ArCH. $J=12 \mathrm{~Hz} .4 \mathrm{H}) .4 .32$ (m. OCH_{2}, $8 \mathrm{H}) .4 .19\left(\mathrm{~d} . \mathrm{OCH}_{2} \mathrm{O} . J=7.1 \mathrm{~Hz} .4 \mathrm{H}\right), 4.05\left(\mathrm{~m}, \mathrm{OCH}_{2}, 8 \mathrm{H}\right)$. 3.72 (t. OCH $.8 H$), 3.04 (d. exo-ArCH. $. J=12 \mathrm{~Hz} .+\mathrm{H}$). 2.08 (m. CHz. 8H). $1.96\left(\mathrm{~m}, \mathrm{CH}_{2}, 8 \mathrm{H}\right), 1.57-1.29\left(\mathrm{~m}, \mathrm{CH}_{2} .48 \mathrm{H}\right)$, $0.8+\left(\mathrm{m} . \mathrm{CH}_{3}, 24 \mathrm{H}\right), 0.22\left(\mathrm{~s}, \mathrm{NCH}_{3} .3 \mathrm{H}\right),-0.49\left(\mathrm{~s}, \mathrm{NCH}_{3}\right.$. $3 \mathrm{H}): \mathrm{FAB}(+) \mathrm{MS}, \mathrm{m} / \mathrm{z} 188+\left(19 \square \mathrm{DMF}^{\prime}, 67\right), 1906$ ($19 \square$ DMF $+\mathrm{Na}, ~ 100$): Anal. Calcd for $\mathrm{C}_{115} \mathrm{H}_{151} \mathrm{O}_{21} \mathrm{~N}_{1} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ Na_{3} : C. 69.97: H, 7.74. Found: C. 69.64: H. 7.48.

2:1 Supramolecule (7). Under argon atmosphere. a solution of tetraiodide $+(150 \mathrm{mg} .0 .10 \mathrm{nmmol})$, tetrol 5 (193 $\mathrm{mg}, 0.22 \mathrm{nmmol}$), and pyrazine (650 mg) in DMF (50 mL) was added dropwise to a suspension of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(339 \mathrm{mg} .1 .0$ mmol) and py razine (650 mg) in DMF (80 mL) for 6 h at 50 ${ }^{\circ} \mathrm{C}$. The mixture was stirred for another I d and then cooled to room temperature. The mixture was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(250 \mathrm{~mL})$. washed with $2 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$. water (3×150 mL), and brine (50 nL) and dried over MgSO_{4}. After evaporation of the solvent the residue was chromatographed on a silica gel column using hexane-EtOAc (5:1. w/w) and then the recristallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$ gave the product 7 ($42 \mathrm{mg} .15 \%$); mp $266.7^{\circ} \mathrm{C}$: FT-IR (KBr) $3+62 \mathrm{~cm}^{-1}$ ($v_{\text {iн }}$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{\text {i, }}, 500 \mathrm{MHz}\right) \delta 6.8+$ (s. resorcin-ArH. +H), 6.61 (s. resorcin-ArH. +H). 6.51 (s. calix-ArH. 4H). 6.24 (s. calix-ArH. 4H). 6.02 (d. $\mathrm{OCH}_{2} \mathrm{O} . J=7.0 \mathrm{~Hz} .4 \mathrm{H}$). 5.95 (two d. $\mathrm{OCH}_{2} \mathrm{O} . J=7.0 \mathrm{~Hz} .4 \mathrm{H}$). 5.63 (brs. $\mathrm{OH}, 4 \mathrm{H}$) $.4 .78(\mathrm{t} . \mathrm{CH}$. 2H). 4.70 (t. CH. 6 H) +.53 (d. $\mathrm{OCH}_{2} \mathrm{O} . J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$). +.48 (d. endo $-\mathrm{ArCH}, J=13 . \mathrm{I} \mathrm{Hz} .2 \mathrm{H}), 4.45\left(\mathrm{~d} \mathrm{OCH}_{2} \mathrm{O} . J=\right.$ $7.0 \mathrm{~Hz} .2 \mathrm{H})+.39(\mathrm{~d}$. endo-ArCH. $J=13.1 \mathrm{~Hz} .2 \mathrm{H}) .4 .34(\mathrm{~d}$.
$\mathrm{OCH}_{2} \mathrm{O} . J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$) 4.18 (two $\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O} .8 \mathrm{H}$), 3.94 (two t. $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O} .8 \mathrm{H}$), 3.83 (t. lower- $\mathrm{OCH}_{2}, 8 \mathrm{H}$) , 3.16 (d. exo-ArCH. $J=13.1 \mathrm{~Hz} .2 \mathrm{H}$). 3.01 (d, exo-ArCH, $J=13.1$ $\mathrm{Hz} .2 \mathrm{H}), 2.18\left(\mathrm{~m} . \mathrm{CH}_{=}=16 \mathrm{H}\right), 1.90\left(\mathrm{~m} . \mathrm{CH}_{2} .8 \mathrm{H}\right), 1.43-1.35$ (m. $\mathrm{CH}_{2} .72 \mathrm{H}$). 0.93 (m. $\mathrm{CH}_{3} .36 \mathrm{H}$): $\mathrm{FAB}(+) \mathrm{MS} . \mathrm{m} / \mathrm{z} 269 \mathrm{l}$ (M', 100).
Acknowledgment. The financial support from Korea Science and Engineering Foundation (Project No. 96-0501-04-01-3 and through CBM) is gratefully acknowledged.

References

1. 1'ochini, A: Ungaro, R. In Comprehensive Supramolectlar Chemistry: Vogtle, F., Fid: Pergamon: Oxford, 1996: Vol. 2. Chap. 4.
2. (a) Cram, 1). 1.: Cram, I. M. Contaner Molecales and Their Ginests, Monographs in Stipramolecular (hemisty: Stoddart, J. F.. Ed.: The Royal Society of Chemistry Press: Cambridge. 1994: Vol. 4. (b) Maverick. E. F.: Cram, D. T. In C'omprehensive S'apromolecolar Chemisty. Vügle, F., Ed.: Pergamon: Oxford, 1996: Vol. 2. Chap. 12.
3. In C'omprehensive Siapromolectlo Chemistry, Cyclodextihs: Szejtli, I., Fd: Pergamon: ()ford, 1996: Vol. 3.
4. (a) Van Dienst. F... Shellink, B. H. M.: Von Piekartz, I.: Grote Cansey, M. H. B.: Venema, F.: Feiters, M.C.: Nolte, R. .I. M: Fingbersen, I. F. .I.: Remhoudt, I). N. J. Org. (hem. 1995, 60, 6537. (b) Van Dienst, F. \therefore Shellink, B. H. M.: Von l'iekartz, I.: Finghersen, I. F. I.: Reinhoudt, I). N. J. Chem. Soc', Chem. ('ommm. 1995, 1151.
5. (a) Nagasaki, T.: Fujishima. II.: Shinkai, S. (hem. Letl.
6. 989. (b) Milbradt, R.: Weiss, I. Tetrahedron Lett. 1995. 36, 2999. (c) Rudkevich. 1). M.: Verboom, W.: Reinhoudt, I). N. J. Org. (hem. 1995, 60,6585 . (d) Cale, P. A: Sessler, I. L.: Lsneh, V.: Sansom, I? I. Tetrahectron Left. 1996, 37, 7881 .
1. (a) Timmeman, P.: Verboom, W.: van Veggel, F. C. J. M.: van I foom, W. P.: Reinhoudt, D. N. Angew. (hem. Int. Ed. Engl. 1994, 33, 1292, (b) Timmeman, P.: Nierop, K. G. A.: Brinks, E. A.: Verboom, W.: van Veggel, F. C. J. M.: van Ifoom, W. P.: Reinhoudt, D. N. Chem. Eur J. 1995, I, 132. (c) Higler, I.: Timmerman, I': Verboom, W: Reinhoudt, 1). N. Kut: J. Org. (Chem. 1998, 2689)
2. (a) Timmerman, P?: Verboom, W.: van Vegeel, F. C'. J. M: van Duynhoven, J. P. M.: Reinhoudt I). N. Aftgen. ('hem. lht. Ed. Kiggl. 1994, 33, 2345. (b) van Wageningen, A. M. A.: Timmermann, P?: van IJuynhoven, J. P. M.: Verboom, W.: van Veggel, F. C. T. M.: Reinhoudt, D. N. (hem. Em: J. 1997, 3, 639.
3. Timmeman, P.: Brinks, E. A.: Verboom, W.: Reinhoudt, D. N. J. Chem. Soc', Chem. Commm. 1995, 417.
4. Ihm, II.: Pack, K. Bull. Korean Chem. Soc. 1995, 16, 71.
5. (a) Bryant, T. A.: Blanda, M. T.: Vincenti, M.: Cram, D. J. J. Chem. Soc., Chem. Commm, 1990, I403. (b) Bryant, J A.: Blanda, M. T.: Vincenti, M.: Cram, D. I. .J. Am. Chem. Soc. 1991, M3, 2167.
6. (a) Chapman, R. (i.: Chopra, N.: Cochien, F. I): Sherman, J. C. J. Am. Chem. Soc. 1994, 116, 369. (b) Chapman, R. G.: Shernan, J.J. Org. Chem. 1998, 63, 4103.
7. Pack, K.: Joo, K.: Kwon, S.: Ihm, H.: Kim, Y. Bull. Korean (hem. Soc: 1997, 18, 80.
