Synthesis of 6,13-Bis(thymidinyl)-5,12-dioxocyclams and the Molecular Structure of the (R, S)-Isomer

Jaiwook Park, ${ }^{*}$ Louis S. Hegedus, ${ }^{\text { }}$ and Melissa Hellman ${ }^{*}$
Department of Chemistry and Polymer Research Institute, POSTECII, San $3 /$ IIVoja Dong, Pohang 790-784, Korea
${ }^{4}$ Department of Chemistry: Colorado State University, Fort Collins, Colorado 80523, U. S. A. Received May 5, 1999

Abstract

The three stereoisomers of the 6.13-bis(thymidinyl)dioxocyclam 6 were synthesized through photoreaction of the chromium alkoxycarbene complex 2 and 1 -(benzyloxycarbonyl)-4,4-dimethyl- Δ^{3}-imidazoline. The molecular structure of (R, S) - 6 was clucidated by X-ray crystallography.

Introduction

Fourteen-membered 1,4,8,11-tetraaza macrocycles (cyclams) and their 5,7-diones (dioxo cyclams) play important roles as ligands in catalysis as well as in metal complexation chemistry. ${ }^{1-5}$ Recently, Hegedus et al. have found an unusual and efficient route for the synthesis of the related 1.4.8.11-tetraaza 5,12 -dions, which involves the acid-catalyzed cleavage/dimerization of azapenams produced by the photochemical cycloaddition reaction between N -protected imidazolines and chromium (alkoxy)carbene complexes. ${ }^{6,9}$ This route has the potential to afford cyclams that are not available by other synthetic methods. The utility of this method has been demonstrated in the synthesis of optically active dioxocyclams by employing optically active imidazolines. ${ }^{9}$ However, optically active chromium carbene complexes have not been attempted in the synthesis of optically active dioxocyclams having substituents at the 6 - and the 13 -position.

Interesting and novel properties have been found for supramolecular complexes in which interacting components are associated by non-covalent interactions. ${ }^{10}$ Nucleosides are good candidates for components interacting by hydrogen bonding. ${ }^{1}$ Here we report the synthesis and photochemical reaction of the chromium carbene complex that has a thymidine moiety as the alkoxy substituent at the carbene carbon.

Results and Discussion

The dioxocyclams 6 were synthesized as a mixture of diastereomers through the route shown in Scheme I: The chromium (pivaloyl)oxycarbene complex 1 was generated by the reaction of pivaloyl chloride and pentacarbonyl[methyl\{(tetramethylammonio)oxy; carbene]chromium(0).
The pivaloyloxy group was substituted by the thymidine derivative for which the secondary hydroxy group was protected with the terf-butyldimethylsilyl (TBDMS) group to give the alkoxycarbene complex 2 .

A dichloromethane solution of carbene complex 2 and 1-(benzyloxy)carbonyl-4,4-dimethyl- Δ^{2}-imidazoline in a Pyrex tube was irradiated under CO pressure (80 psi) with a medium-pressure mercury lamp. The combined yield of N -

Scheme 1. The synthetic route for the cyclames 6.
protected azapenams 3 was high (80%), but a diastereomeric mixture was obtained. The best yield resulted by using slightly less than one equivalent of the imidazoline. Excess imidazoline appeared to induce side reactions with the carbene complex. Each diastereomer was found to exist as a mixture of rotomers about the amide bond.

The benzyloxycarbonyl (BOC) group was removed readily at room temperature by Pd -catalyzed hydrogenolysis reaction in the presence of triethylamine to give free azapenams 4. The formation of hexahydrodiazepinones has been observed under acidic conditions. ${ }^{9}$ The virtual I:1 ratio of the diastereomers was clearly determined by 'H NMR, although separation was not feasible.

The 14-membered cyclic compounds 5 were formed in almost quantitative yield by treatment of the free azapenams 4 with camphorsulfonic acid. All three possible diastereomers were produced with insignificant selectivity: (R, R) $5:(S, S)-5:(R, S)-5-3: 3: 4$. Interconversion between diastereomers has been known for the methoxy analogues to give the centrosymmetric isomer in high yield by crystallization under acidic conditions. ${ }^{8}$ Only slow decomposition to unidentified polar species was observed in a similar attempt
with 5 to obtain one isomer as the predominant product. Fortunately, however, separation of $(R, S)-5$ from the mixture of $(R, R)-\mathbf{5}$ and $(S, S)-5$ was achieved by conventional column chromatography on silica gel.

Reduction of 5 with sodium cyanoborohydride gave the dioxocyclams 6. In CDCl_{3} solution $(R, S)-6$ exists as two distinct conformers in about $7: 3$ ratio, as evidenced by doubling of all peaks in the ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{C}$. NMR spectra. However, only one set of resonance peaks was observed in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for each of the (R, R) - and the (S, S)-isomer. The stereochemistry of $(R, S)-6$ was confirmed by X-ray diffraction analysis: Details of the X-ray data collection and structural refinement are presented in Table 1. The molecular structure and atom-numbering schemes are given in Figure I. Selected bond lengths and angles are given in Table 2. Notable features of the crystal structure are the unsymmetrical interactions of the two thymidine units. One is interacting in an intramolecular fashion through hydrogen bonding between $\mathrm{N}(8)$ and $\mathrm{O}(1)(2.942 \AA)$ while the other is interacting with another molecule through hydrogen bonding between $N(6)$ and $O(2)(2.849 \AA)$.

Experimental Section

General. If not otherwise stated, all NMR spectra were

Table 1. Crystallographic Data for (R, S)-6

molecular fommula	$\mathrm{C}_{48} \mathrm{H}_{84} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{Si}_{2}$
formula weight	1021.41
crystal system	monoclinic
space group	$P 2_{1}$
a. A	15.7177(2)
b. A	$11.6221(2)$
c. A	18.0412(3)
β. deg	$115.3390(10)$
$1 . A^{3}$	2978.57
$\%$	2
$\mathrm{d}_{\text {calcell }} \mathrm{g} \mathrm{cm}^{-;}$	1.139
crystal dimens. $1 \mathrm{~mm}^{3}$	$0.16 \times 0.45 \times 0.55$
temp. K	16.3 (2)
radiation. A	0.71073
linear abs coetfi. cm^{-1}	0.119
θ range. deg	1.251023 .25
no. of data colled	13912
no. ol unique data	8206
no. of params relined	631
GOF	1.104
$R\left(\gamma^{\prime}\right)^{\prime}$	0.0540
$R_{\mathrm{m}}\left(\rho^{\prime}\right)^{\dagger}$	0.1543

Figure 1. The molecular structure of $(R, S)-6$.
Table 2. Selected Bond I engths (A) and Angles (deg) for (R.S) -6

C(1)-O(3)	1.446(5)	$\mathrm{C}(1)-\mathrm{C}(11)$	1.501(7)
C(1)-C(2)	$1.545(6)$	$\mathrm{C}(1)-\mathrm{C}(10)$	$1.555(6)$
$\mathrm{C}(2)-\mathrm{O}(1)$	1.245(5)	$\mathrm{C}(2)-\mathrm{N}(2)$	1.329(6)
$\mathrm{C}(3)-\mathrm{N}(2)$	$1.469(5)$	$\mathrm{C}(3)-\mathrm{C}(47)$	$1.533(6)$
C(3)-C(48)	$1.537(6)$	C(3)-C(4)	1.541 (6)
$\mathrm{C}(3)-\mathrm{N}(3)$	1.471 (6)	C(5)-N(3)	$1.453(6)$
C(5)-C(6)	$1.532(7)$	$C^{C}(6)-C(8)$	$1.428(5)$
C(6)-C(28)	$1.539(7)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.545(7)$
C(7)-O(2)	1.249(5)	C(7)-N(4)	$1.341(6)$
$\mathrm{C}(8)-\mathrm{N}(4)$	1.480(6)	$\mathrm{C}(8)-\mathrm{C}(45)$	$1.523(7)$
$\mathrm{C}(8)-\mathrm{C}(46)$	$1.528(7)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.540(7)$
$\mathrm{C}(9)-\mathrm{N}(1)$	$1.481(6)$	$\mathrm{C}(10)-\mathrm{V}(1)$	$1.459(6)$
$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{C}(11)$	112.9(3)	$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	108.6(3)
$C(1)-C(1)-C(2)$	112.2(4)	$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{C}(10)$	101.04)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(10)$	112.6(4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	108.9(4)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{V}(2)$	124.5(4)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	121.5(4)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	113.9(4)	$\mathrm{V}(2)-\mathrm{C}(3)-\mathrm{C}(47)$	109.6(4)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(48)$	106.04)	$\mathrm{C}(47)-\mathrm{C}(3)-\mathrm{C}(48)$) $109.5(4)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	111.7(4)	$\mathrm{C}(47)-\mathrm{C}(3)-\mathrm{C}(4)$	108.8(4)
$\mathrm{C}(48)-\mathrm{C}(3)-\mathrm{C}(4)$	111.2(4)	$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(3)$	115.3(4)
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$110.5(4)$	$\mathrm{O}(8)-\mathrm{C}(6)-\mathrm{C}(5)$	103.5(3)
$\mathrm{O}(8)-\mathrm{C}(6)-\mathrm{C}(28)$	112.8(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(28)$	110.8(4)
$\mathrm{O}(8)-\mathrm{C}(6)-\mathrm{C}(7)$	111.1(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	107.6(4)
$\mathrm{C}(28)-\mathrm{C}(6)-\mathrm{C}(7)$	110.7(4)	$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{N}(4)$	124.5(4)
O(2)-C(7)-C(6)	118.2(4)	$\mathrm{V}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	117.2(4)
$\mathrm{N}(4)-\mathrm{C}(8)-\mathrm{C}(45)$	109.8(4)	V(4)-C(8)-C(46)	$106.4(4)$
$\mathrm{C}(45)-\mathrm{C}(8)-\mathrm{C}(46)$	110.6 (4)	$\mathrm{N}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	110.6(4)
$C(45)-C(8)-C(9)$	109.0(4)	$\mathrm{C}(46)-\mathrm{C}(8)-\mathrm{C}(9)$	110.4(4)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	112.2(4)	$\mathrm{V}(1)-\mathrm{C}(10)-\mathrm{C}(1)$	113.4(4)

recorded in CDCl_{3} at $300 \mathrm{MH}^{1} \angle$ for ${ }^{1} \mathrm{I}$ and $75.5 \mathrm{MH}^{2} \angle$ for ${ }^{13} \mathrm{C}$. Chemical shifts are given in δ ppm relative to $\mathrm{CDCl}_{3}(\delta 77.2$, $\left.{ }^{13} \mathrm{C}\right)$ or $\mathrm{ClICl}_{5}\left(\delta 7.26,{ }^{1} \mathrm{H}\right)$ which is present as an impurity in CDCl_{3} used. IR spectra were recorded on a Perkin-Elmer 1600 series FT-IR.

The following chemicals were prepared according to literature procedures: pentacarbonyl|methylf(tetramethy-
lammonio)oxy ; carbenejchromium(0). ${ }^{\text {l2 }}$ l-(benzyloxycar-bonyl)-4.4-dimethy $1-\Delta^{2}$-imidatoline. ${ }^{13}$ and the TBDMSprotected thymidine. ${ }^{1+4}$

Chromium Carbene Complex 2. Pentacarbonyl|methyl \{(tctramethylammonio)oxy\} carbene]chromium(0) (583 mg .1 .89 mmol) was dissolved in dn $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under an argon atmosphere. and the solution was cooled to $-65^{\circ} \mathrm{C}$. Pivaloy 1 chloride (0.23 mL .1 .9 mmol) was added dropwise. and the resulting suspension was stirred at $-65^{\circ} \mathrm{C} \sim-25^{\circ} \mathrm{C}$ over 3 h . The suspension was cooled again to $-65^{\circ} \mathrm{C}$ and a solution of the TBDMS-protected thymidine (565 mg .1 .72 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added through a cannula. and the resulting suspension was stirred at $-65^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$ over 15 h . The suspension was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL} \times 2)$ and brine (40 mL). dried over MgSO_{4}. and the solyent was evaporated to yield a gum which was chromatographed on silca gel (1/1 cthyl acetate/ hexane. $\mathrm{R}_{\mathrm{f}}=0.69$) to give $562 \mathrm{mg}(0.978 \mathrm{mmol} .57 \%)$ of complex 2 as yellow-orange solid. ${ }^{1} \mathrm{H}$ NMR $\delta 9.08$ (br s. 1 H. NH). $7.11(\mathrm{~s} .1 \mathrm{H}) .6 .27\left(\mathrm{dd} . J_{I}=6.6 \mathrm{H} \not . . J_{2}=6.3 \mathrm{H} \not .1 \mathrm{H}\right)$. 5.02 (br m. 2H). 4.56 (br s. 1H). 4.30 (br. s. 1H). 3.02 (s. 3 H). $2.32(\mathrm{~m} .2 \mathrm{H}) .1 .90(\mathrm{~s} .3 \mathrm{H}) .0 .91(\mathrm{~s} .9 \mathrm{H}) .0 .109(\mathrm{~s} .3 \mathrm{H})$. $0.105(\mathrm{~s} .3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 361.1 .223 .0 .216 .4,163.8 .150 .4$. 135.5. 111.7. 85.6. 84.2. 71.6. 40.6. 25.9. 18.1. 12.7. -4.46. $-4.76 . \mathrm{lR}(\mathrm{NaCl}) \vee 206+(\mathrm{C}=\mathrm{O}) .1932(\mathrm{C}=\mathrm{O}) .1693(\mathrm{C}=\mathrm{O})$ cm^{1}.

BOC-Protected Azapenam 3. The chromium carbene complex 2 (340 mg .0 .592 mmol) and l-(bentoloxycarbo-nyl)-4.4-dimethyl- Δ^{-}-imidazoline (137 mg .0 .589 mmol) were dissolved in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. and the resulting yellow-orange solution was irradiated at $35^{\circ} \mathrm{C}$ in a Pyrex tube under $\mathrm{CO}(80 \mathrm{psi})$. After 16 h the resulting light brown solution was concentrated and chromatographed on silica gel ($1 / 1$ cthyl acetate/hexanc. $\mathrm{R}_{\mathrm{f}}=0.45$) to give 306 $\mathrm{mg}(0.476 \mathrm{mmol} .80 .3 \%)$ of a mixture of 4 rotomers of $\mathrm{I}: \mathrm{I}$ diastercomeric mixture as a white solid. ${ }^{1} \mathrm{H}$ NMR $\delta 8.83 /$ 8.77/8.74/8.73 (br s. 1H. NH). 7.56/7.49/7.41/7.33 (s. IH). 7.37-7.32 (m. 5H). 6. $40-6.23$ (m. 1H). 5.32-5.00 (m. 3H). $4.49-4.25(\mathrm{~m} .1 \mathrm{H}) .4 .05-3.67(\mathrm{~m} .3 \mathrm{H}) .3 .53-3.14(\mathrm{~m} . \mathrm{H})$. 2.30-2.00 (m. 2H). 1.96/1.93/1.88/1.86 (s. 3H). 1.63/1.62/ $1.61(\mathrm{~s} .3 \mathrm{H}) .1 .34 / 1.26 / 1.22 / 1.20 / 1.19 / 1.17(\mathrm{~s} .6 \mathrm{H}) .0 .87(\mathrm{~s}$. $9 \mathrm{H}) .0 .077 / 0.074 / 0.059 / 0.052 / 0.043 / 0.033$ (s. 6H) IR (NaCl) $v 3201(\mathrm{NH}) .1778(\mathrm{C}=\mathrm{O}) .1696(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}$: C. 59.79 : H. 7.21: N. 8.72. Found: C. 59.72 : H. 7.08: N. 8.54.

Azapenam 4. The BOC-protected azapenam 3 (685 mg . 1.07 mmol) was dissolved in degassed $\mathrm{McOH}(30 \mathrm{~mL}) .10 \%$ Pd in carbon powder (303 mg) and tricthylamine (0.5 mL) were added. and the resulting suspension was stired at $25^{\circ} \mathrm{C}$ under H_{2} (55 psi). Alter 2 h the suspension was filtered through Celite. and the solvents were evaporated to give 573 mg of crude products. which was chromatographed on silica gel (cthyl acctatc. $\mathrm{R}_{\mathrm{f}}=0.45$) to give 410 mg (0.806 mmol . 75.4%) of a colorless gum. The gum was crystallized at 25 "C from hexane and a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 336 mg ($0.661 \mathrm{mmol} .61 .7 \%$) of a 1 : I diastercomeric mixture as white solid. ${ }^{1} \mathrm{H}$ NMR $\delta 9.19$ (br s. IH). $7.53 / 7.5 \mathrm{I}$ (s. 1H).
$6.34 / 6.29\left(\mathrm{dd} . J_{1}=8.1 \mathrm{H} / . J_{2}=6.0 \mathrm{~Hz} / J_{1}=7.5 \mathrm{H} / . J_{2}=6.6\right.$ $\mathrm{H} \% . \mathrm{lH}) .4 .76 / 4.71(\mathrm{~s} .1 \mathrm{H}) .4 .47-4.36(\mathrm{~m} .1 \mathrm{H}) .4 .02-3.65(\mathrm{~m}$. $3 \mathrm{H}) .3 .08 / 2.62(\mathrm{~d} . J=11.4 \mathrm{~Hz} .2 \mathrm{H}) .2 .36$ (br s. 1 H). 2.28 1.97 (m. 2H). 1.93 (s. 3H). $1.56 / 1.09$ (s. 6H). 1.33 (s. 3H). $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 175.0 .174 .9 .164 .2$. 164.1. 150.6. 135.9. 135.8. 111.1. 111.0. 90.1. 89.9. 86.4. 86.3. 85.4. 85.1. 77.7. 72.5. 65.4. 65.3. 62.1. 61.4, 41.5. 41.4. 25.8. 25.0. 21.9. 18.1, 15.3. 14.5. 12.8. 12.6. $-4.46,-4.53$. $-4.64: 1 \mathrm{R}(\mathrm{NaCl}) \vee 3350(\mathrm{NH}) .1755(\mathrm{C}=\mathrm{O}) .1696(\mathrm{C}=\mathrm{O})$. $168+(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C} .56,67: \mathrm{H}$. 7.94: N. 11.01. Found: C. 56.47: H. 7.88: N. 10.86

Unsaturated Dioxocyclam 5. The free arapenam 4 (225 mg .0 .442 mmol) and racemic camphorsulfonic acid (27 mg .0 .12 mmol) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$). and the resulting solution was stirred at $25^{\circ} \mathrm{C}$ for $2+\mathrm{h}$. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. washed with aqucous $5 \% \mathrm{NaHCO}_{3}(20 \mathrm{~mL}$) and brine (20 mL). and dricd over MgSO_{4}. The solvent was evaporated to give 216 mg $(0.212 \mathrm{mmol} .96 \%)$ of a mixture which appeared as wo spots (ethyl acctate: $\mathrm{R}_{\mathrm{f}}=0.66$ and 0.52) on TLC. (R, S) -5 : ${ }^{1} \mathrm{H}$ NMR (two conformers. a / b ~ 7/3) $\delta 9.33$ (b)/9.32(a) (br s. 2 H). $9.08(\mathrm{~b}) / 8.50$ (a) (s. 2 H$) .7 .8$ (a) $/ 7.72$ (b) (s. 2 H). $7.66(\mathrm{a}) /$ $7.62(\mathrm{~b})(\mathrm{s} .2 \mathrm{H}) .6 .40(\mathrm{~b}) / 6.27(\mathrm{a})\left(\mathrm{dd} . J_{1}=7.5 / 6.6 \mathrm{H} \ldots J_{2}=6.4 /\right.$ $6.6 \mathrm{H} \% .2 \mathrm{H}$). 4.79 (b) $/ 4.42$ (a) (br s. 2 H). 4.10 (a) $/ 3.95$ (b) (br s. $2 \mathrm{H}), 3,90-3.70(\mathrm{~m} .4 \mathrm{H}), 3,60-3,20(\mathrm{~m} .4 \mathrm{H}) .2,30-2,05(\mathrm{~m}, 4$ H). I.92(a)/I.90(b) (s. 6H). I.54/L.51/L.47 (s. I2H). I. 22 (s. $6 \mathrm{H}) .0 .87(\mathrm{~s} .18 \mathrm{H}) .0 .088(\mathrm{~b}) / 0.072(\mathrm{a}) / 0.063(\mathrm{a}) / 0.054(\mathrm{a})(\mathrm{s}$. $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 169.0(\mathrm{a}) / 168.5(\mathrm{~b})$. 167.9. 164.3. 150.6(b)/ $150.5(\mathrm{a}) .135,6(\mathrm{a}) / 136,0(\mathrm{~b}) .110 .9(\mathrm{~b}) / 110.8(\mathrm{a}) .86 .9(\mathrm{~b}) / 86.4(\mathrm{a})$. $85.9(\mathrm{a}) / 85.2(\mathrm{~b}) . \quad 80.2(\mathrm{a}) / 80.1(\mathrm{~b}) . \quad 73.1(\mathrm{~b}) / 72.7(\mathrm{a}) . \quad 70.6(\mathrm{~b}) /$ $69.7(\mathrm{a}) . \quad 65.9(\mathrm{~b}) / 65.6(\mathrm{a}) . \quad 53.8(\mathrm{a}) / 53.7(\mathrm{~b}) . \quad 41.3(\mathrm{~b}) / 41.2(\mathrm{a})$. $25.9(\mathrm{~b}) / 25.8(\mathrm{a}) . \quad 25.2(\mathrm{~b}) / 25.0(\mathrm{a}) . \quad 24.8(\mathrm{a}) / 24.7(\mathrm{~b}) . \quad 24.4$. $18.1(\mathrm{a}) / 18.0(\mathrm{~b}) .12 .8(\mathrm{~b}) / 12.2(\mathrm{a}) .-4.52(\mathrm{a}) /-4.59)(\mathrm{b}) /-4.69(\mathrm{a}) /$ $-4.72(\mathrm{~b}) . \mathrm{IR}(\mathrm{NaCl}) \vee 3198(\mathrm{NH}) .1688(\mathrm{C}=\mathrm{O}) .1678(\mathrm{C}=\mathrm{O})$ $\mathrm{cm}^{1} .(R, R)-5+(S, S)-5:{ }^{1} \mathrm{H}$ NMR $\delta 9.12 / 9.01$ (br s. 2H). $7.9 \mathrm{I} / 7.77$ (s. 2H). 7.73/7.65 (s. 2H). 7.59/7.50 (s. 2H). 6.37/ $6.29\left(\mathrm{dd} . J_{1}=6.6 / 6.6 \mathrm{~Hz} . J_{2}=6.9 / 6.9 \mathrm{H} \not .2 \mathrm{H}\right) .4 .62 / 4.42(\mathrm{br}$ m. 2H). $4.02 / 3.97$ (br d. $J=2.7 / 2.1 \mathrm{~Hz} .2 \mathrm{H}$). 3.80)-3.35 (m. 8 H). 2.30-2.05 (m. 4 H$) .1 .9 \mathrm{I}(\mathrm{s} .6 \mathrm{H}) .1 .52 / 1.5 \mathrm{I}(\mathrm{s} .6 \mathrm{H}) .1 .39 /$ $1.37 / 1.35 / 1.34(\mathrm{~s} .12 \mathrm{H}) .0 .88(\mathrm{~s} .18 \mathrm{H}) .0 .082 / 0.076(\mathrm{~s} .12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR δ 168.8. 167.7/167.0. 164.1/163.8. 150.5/150.4. 136.5/135.7. 111.2/110.9. 86.4/86.3. 85.8/85.0. 81.1/80.7. 73.0/72.6. $68.2 / 67.9 .65 .3 / 64.7 .54 .3 / 54.2 .41 .2 / 41.1 .25 .9$. $26.1 / 25.6 .25 .5 / 25.2$. 23.1/21.8. 18.1. 12.9/12.3. -4.45/ $-4.54 /-4.59 /-4.65$. IR (NaCl) v 3191 (NH). $1688(\mathrm{C}=\mathrm{O})$ cm ${ }^{1}$.

Dioxocyelam 6. The unsaturated dioxocyclam 5 (I76 mg. 0.172 mmol). $\mathrm{NaBH}_{3} \mathrm{CN}(23 \mathrm{mg} .0 .37 \mathrm{mmol})$. and a small amount of bromocresol green were dissolved in I: I $\mathrm{McOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}) . \mathrm{HCl} / \mathrm{McOH}(0.9 \mathrm{~N})$ was added dropwise to the cooled $\left(0^{\circ} \mathrm{C}\right)$ blue solution until the yellow-green color remained. and the resulting solution was stirred at 0 ${ }^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$ for $24 \mathrm{~h} . \mathrm{HCl} / \mathrm{McOH}(0.9 \mathrm{~N}$) was added. and the resulting yellow solution was stired for 30 min to destroy $\mathrm{NaBH}_{3} \mathrm{CN}$ unreacted. Aqucous $5 \% \mathrm{NaOH}$ was added until the solution turned to bluc. The solvents were evaporated, and the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}$).

The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ (20 mL) and brine (20 mL). and dried ouer $\mathrm{K}_{2} \mathrm{CO}_{3}$. The solvent was evaporated to give $101 \mathrm{mg}(0.0989 \mathrm{mmol} .57 \%$ of a white solid which was recrystallized from hesane and a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 77 mg ($0.075 \mathrm{mmol} .44 \%$) of white micro crystals. (R, S) -6 : ${ }^{1} \mathrm{H}$ NMR (wo conformers. a/b ~ 7/3) δ 9.85 (br s. 2 H). $7.20(\mathrm{a}) / 7.15(\mathrm{~b})$ (s. 2H). $7.11(\mathrm{a}) / 6.85(\mathrm{~b})$ (s. 2 H) $.6 .11(\mathrm{a}) / 6.03$ (b) (dd. $J_{1}=6,3 / 6.6 \mathrm{~Hz} . J_{2}=6,6 / 6.6 \mathrm{~Hz} .2$ H). $4.30(\mathrm{~m} .2 \mathrm{H}) .3 .91(\mathrm{~m} .2 \mathrm{H}) .3 .73-3.45(\mathrm{~m} .4 \mathrm{H}) .3 .45-$ $3.25 / 2.80-2.60(\mathrm{~m} .8 \mathrm{H}) .2 .20-2.10(\mathrm{~m} .4 \mathrm{H}) .1 .88(\mathrm{a}) / 1.86(\mathrm{~b})$ (s.6H). $1.31(\mathrm{~b}) / 1.10(\mathrm{~b})(\mathrm{s} .6 \mathrm{H}) .1 .30(\mathrm{~s} .12 \mathrm{H}) .0 .85(\mathrm{~s} .18 \mathrm{H})$. $0.045(\mathrm{~s} .12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\delta 171.6(\mathrm{~b}) / 171.5(\mathrm{a})$. $164.2(\mathrm{a}) /$ 164.1(b). $150.5(\mathrm{~b}) / 150.4(\mathrm{a})$. $136.4(\mathrm{a}) / 136.3(\mathrm{~b})$. $111,1(\mathrm{~b}) /$ 110.0(a). 86.6(b)/86.1(a). 85.7. 80.8(b)/80.3(a). 72.1(a)/ 72.0 (b) . 63.8. $57.1 / 57.0 . \quad 53.2(\mathrm{~b}) / 53.0$ (a). $40.4 .26 .9(\mathrm{~b}) /$ 26.4(a). 25.8.25.3. 19.7(a)/19.5(b). 18.0. 12.8. -4.45/-4.63. $1 \mathrm{R}(\mathrm{NaCl}) \vee 3190(\mathrm{NH}) .3049(\mathrm{NH}) .1684(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{1}$. $(R, R)-6+(S ; S)-6:{ }^{1} \mathrm{H}$ NMR $\delta 9.35$ (br s. 2 H). $7.59 / 7.42$ (s. $2 \mathrm{H}) .7,33 / 7.11(\mathrm{~S} .2 \mathrm{H}) .6,26 / 5,89\left(\mathrm{dd} . J_{1}=6,3 / 6,0 \mathrm{H} / . J_{2}=\right.$ $6.9 / 6.6 \mathrm{H} \not .2 \mathrm{H}$). $4.65 / 4.32(\mathrm{br} \mathrm{m} .2 \mathrm{H}) .3 .97 / 3.85(\mathrm{~m} .2 \mathrm{H})$. $3.75-3.35(\mathrm{~m} .4 \mathrm{H}) .3 .30 / 3.13(\mathrm{~d} . J=12.0 / 11.1 \mathrm{H} \% 2 \mathrm{H}) .2 .90-$ $2.60(\mathrm{~mm} .4 \mathrm{H}) .2 .40-1.95(\mathrm{~m} .8 \mathrm{H}) .1 .91 / \mathrm{l} .90(\mathrm{~s} .6 \mathrm{H}) .1 .40 /$ 1.33/1.32/1.30/1.26/1.16 (s. 18H). 0.88/0.87 (s. 18H). 0.067 (s. 12H). ${ }^{13} \mathrm{C}$ NMR δ 171.6/171.5. 163.9. 150.3/150.1. 137.3/135.7. 111.0/110.9. 87.9. 86,2/85.5. 80.3/79.7. 73.0/ 70.8. 63.9/62.7. 59.5/58.9/58.7. 53.9/53.6. 40.9/40.2. 27.2/ $26.4 / 24.5 / 24.2$. $25.9 . \quad 19.4 / 19.3 . \quad 18.12 / 18.07 . \quad 12.8 / 12.6$. $-4.47 /-4.53 /-4.65$. IR (NaCl) v $3193(\mathrm{NH}) .1692(\mathrm{C}=\mathrm{O})$ cm^{1}. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{Si}_{2}: \mathrm{C} .56 .44:$ H. 8.29: N. 10.97. Found: C. 56.49 : H. 8.24: N. 11.01.

X-ray Structure Analysis of $(R, S)-6$. Crystals of (R, S) 6 were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{McOH}$-hexanc solution at room temperature. Diffraction data were collected by employing graphite-monochromated Mo K_{α} radiation $(\lambda=0.71073 \mathrm{~A})$ at 163 K . A total of 13912 reflections were measured over the following ranges: $2.50 \leq 2 \theta \leq 46.50^{\circ}$. $-16 \leq h \leq 17 .-12 \leq k \leq 12 .-19 \leq 1 \leq 20$. The crystallographic data and additional details of data collection are summarized in Table 1. The structure was relined by fullmatrix least-squares methods. All the non-hydrogen atoms were refined anisotropically. The final cyele of refinement led to the R indices listed in Table I.

Conclusion

A novel chromium carbenc complex 2, which has a thymi-
dine moicty as the alkoxy substituent at the carbene carbon. was synthesized. Its photochemical cycloaddition reaction with an achiral imidazoline produced the corresponding azapenams 3 in good yield. The unsalurated dioxocyclams 5 were formed by dimerization of the free arapenam + . Insignificant stereoselectivity was observed in the photochemical cycloaddition as well as in the dimerization. However. the unsaturated dioxocyclam (R, S)-5 was scparated from the other isomers. The molecular structure of the dioxocyclam (R, S)- 6 was determined by X-ray crystallography.
Acknowledgment. This paper was accomplished with Research Funds provided by The Korca Rescarch Foundation. Support lor Faculty Abroad. Partial support for this rescarch by National lnstitutes of Health (GM 54524) is also gratefully acknow ledged.

Supplementary Material Ayailable. Tables of crystal data. atom coordinates. bond lengths and angles. and anisotropic displacement parameters for (R, S)-6 (7 pages). Ordering information is given on any current masthead page.

References

1. For a recent review; see: Busch D. II.: Aloock, N. W Chem. Rev. 1994, 94, 585.
2. Wagler, I. R.: Fang, Y.: Burrous, C. I. J. Im. Chem. Soc. 1989, 5t, 1584 and references therein.
3. Nam, W.: IIo, R.: Valentine, I. S. J. Am. Chem. Soo. 1991, H3. 7052.
4. Burrow, C. T.: Rokita, S. Г. Acc. Chem. Res. 1994, 27, 295
5. Halcrow, M. A.: Christou, G. Chem Rev: 1994, 94, 2421
6. Hsiaw, Y.: Hegedus, I. S. J. Oig. (hem. 1997. 62, 3586.
7. Dumas S.: Iastra Г..: Hegedus I. S. J. Am. Chem. Soc. 1995. /17, 3368
8. Ilegedus, L. S. Moser, W. II. J. Org. Chem 1994. 59. 7779
9. Betschart, C.: Ilegedus, L. S. J. .im. Chem. Soc. 1992. Iht, 5010
10. Armaroli, N.: Barigelletti, F.: Cakigero, (G.: Flamigni. L.: White, C. M.: Ward, M. D. J. Chem. Soc., Chem. Comm. 1997. 2181 and relerences therein.
11. Tefliey, (i . A. Seanger. W. Hydrogen Bonding in Biological Situctues: Springer-Verlag: Berlin, Gemany; 1991
12. Fischer. F. O.: Mashö, A. Chem. Ber: 1967, 100, 2445
13. Conner T. A. Tones, F.. M. J. (hem. Soc. A 1971, 3368
14. Ogilvie, K. K.: Thomson, Г. A.: Quilliam, M. A.: Westmore, J. B. Fetrahectron Lett. 1974. 15. 2865.
