A Facile Synthesis of [1,2]Oxazinane-3,5-diones

Kyukwan Zong, Seung II Shin, Hyung Ki Kim, Hyoung Rae Kim, Dong Ju Jeon, and Eung K. Ryu*
Bioorganic Science Division, Korea Research Institute of Chemical Technology. P.O. Box 107, Yusong, Taejon 305-600, Korea
Received Mey 17, 1999

4-Acyl substituted [I,2]oxazinane-3,5-diones have been recently known as herbicides, plant growth regulators, and pesticides, and extensively studied by Shy-Fuh Lee.' The preparation of [1,2]oxazinane-3,5-diones involves the reaction of N -alkyl- O -alkoxycarbonylmethylhydroxylamine and alkyl 3-chloro-3-oxopropionate, followed by the subsequent cyclocondensation and decarboxylation reactions under basic conditions.' The resulting [1,2]oxazinane-3.5-diones could be converted to 4 -acylated derivatives by O-acylation followed by consecutive cyanide catalized rearrangement. ${ }^{2}$ The diverse synthesis of [1,2]oxazinane-3,5-dione derivatives has not been studied by limited synthetic methods in spite of their biological potentials. Here we wish to report a facile synthesis of [1,2]oxazinane-3.5-diones starting from readily available amines or hydroxylamines in excellent yields.
N-Acetyl-O-benzoylhydroxylamines 2a-d were prepared by the known method from amines la-d. N, O-Diacetylation of $\mathbf{3 a}$ and $\mathbf{3 b}$ provided $\mathbf{4 a}$ and $\mathbf{4 b}$ respectively in quantitative yields. Selective deprotection of the compounds $\mathbf{2 a - d}$ and 4a-b by treatment of potassium carbonate in methanol N acetyl hydroxylamines $\mathbf{5 a - f}$ in good yields.

Reaction of the hydroxylamines 5a-f with ethyl 2-bromoisobutyrate (6) in the presence of potassium carbonate in acetone afforded O-alkylated products $7 \mathbf{a}-\mathbf{f}$ in good yields. Treatment of 7a-f with lithium bis(trimethylsilyl)amide (LiHMDS) in THF at $-78{ }^{\circ} \mathrm{C}$ gave $[1,2]$ oxazinane-3,5diones 8a-f in excellent yields.

The O-acylation of the compounds $\mathbf{8 a}$ and $\mathbf{8 b}$ with aromatic or aliphatic acyl chlorides $9 \mathbf{9}-\mathbf{c}$, followed by the cyanide catalyzed rearrangement ${ }^{2}$ provided 4 -acyl substituted [1,2]oxazinane-3,5-diones in good yields. All spectroscopic data of compounds 8a-f and 10a-e were satisfactory on ${ }^{1} \mathrm{H}$ NMR. ${ }^{15} \mathrm{C}$ NMR, IR, MS, HRMS and some of these showed

Scheme I

Scheme 3
good agreement with the data described in the literatures.'
As an extended study, new fused heterocyclic compounds were synthesized from the 4 -acyl substituted [1,2]oxazi-nane-3,5-diones (10, 11). The reaction of 4-acyl [1,2]oxazi-nane-3,5-diones with phenylhydrazine at reflux in ethanol afforded pyrazolate fused bicyclic ring system. 2.7-dihydro6 -oxa-1,2.5-triaza-inden-4-ones, in good yields. The regiochemistry of cyclocondensation was confirmed by NOE experiments. No NOE enhancements between the protons at phenyl ring of phenylhydrazine moiety and those at two methyl groups on the oxazine ring in $\mathbf{1 3 a}$ and $\mathbf{1 3 b}$ suggested that the only isomers were formed as shown in Scheme 4.

In summary, a variety of [1,2]oxazinane-3,5-diones were

Scheme 4
synthesized from a hydroxylamine or an amine in a few steps in good vields. Their ester derivatives were prepared and the cyanide ion catalyzed rearrangements were performed to yield 4 -acyl substituted derivatises in excellent y ields. Treatment of 4-acyl substituted [1.2]oxazinane-3.5diones with phenylhydrazine afforded 2.7-dihydro-6-oxa-1.2.5-tria/a-inden-4-ones in good yields

Experimental Section

Melting points were measured in capillary tubes with a Thomas-Hoover capillary melting point apparatus and are uncorrected. IR spectra were recorded on a Schimadiu IR435 spectrophotometer. ${ }^{1}$ H NMR spectra were recorded on a Varian GEMINI-200. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM-300. All chemical shifts are reported in ppm (δ) downficld from internal ietramethylsilane and coupling constants are given in her ($\mathrm{H} \%$). Mass spectra were recorded on a Shimadza GCMS-OP 1000 mass spectrometer. Chromatographic separations were carried out on silica gel column (Merck silica gel 230-400). Elemental analysis were performed by Organic Chemistry Rescarch Center at Sogang University in Scoul.

A typical procedure for the preparation of 7a

To a solution of N -acety $/ \mathrm{N}$-isopropy lhydroxylaminc (3.5 g. 29.9 mmol) and ethỵl 2-bromoisobulyrate (7.0 g .35 .9 mmol) in acetone (50 mL) was added potassium carbonate (5.0 g .35 .9 mmol) at rom temperature. The reaction mixture was wamed up to $40{ }^{\circ} \mathrm{C}$ and stirred for 8 h . The white solids were filtered off and the filtrate was concentrated under reduced pressure. The residue was dissolved in ether (150 mL). washed with water ($3 \times 20 \mathrm{~mL}$) and brine (20 mL). The organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using haxanc/chyyl acetatc $(3: 1)$ to give N-acctyl-O-dimethylethoxycarbonyl-methyl- N-isopropylhydroxylamine (7a) as a colorlcss oil. Yield: 95% : colorless oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} \not 2 \mathrm{CDCl}_{3}$) δ $4.22(\mathrm{q} . J=7.11 \mathrm{H} \% 2 \mathrm{H}) .4 .05(\mathrm{~h} . J=6.81 \mathrm{H} \% .1 \mathrm{H}) .2 .09(\mathrm{~s}$. $6 \mathrm{H}) .1 .31(1 . J=7.11 \mathrm{H} \approx .3 \mathrm{H}) .1 .26(\mathrm{~d} . J=6.81 \mathrm{H} \not .6 \mathrm{H}):{ }^{18} \mathrm{C}$ NMR (75 MHぇ. CDCl_{3}) $\delta 172.89$. 83.40. 61.37. 53.85. 23.60. 22.63. 19.44. 14.01. 13.99: FT-IR (cm ' 1 ncat) 2984.4. 2943.0 . 1737.5. 1677.9. 1384.2. 1366.8. 1290.6. 1176.6. 1134.3. 1026.5: $\mathrm{MS}(20 \mathrm{cV}) \mathrm{m} / \mathrm{z}\left(\mathrm{rcl}\right.$ intensity) $232\left[(\mathrm{M}+\mathrm{l})^{+}\right.$. 14.3]. $189(4.7) .174(1.3) .158(15.2) .115(61.1) .100(6.4)$. 87 (73.7): HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{4} 231.1470$. found 231.1468.

N -Acetyl- N - t-butyl- O -dimethylethoxycarbonylmethylhydroxylamine (7b). Yicld: 89\%: a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) $\delta+20(\mathrm{q} . J=6.10 \mathrm{H} \% 2 \mathrm{H}) .2 .09$ $(\mathrm{s} .3 \mathrm{H}) .1 .51(\mathrm{~s} .9 \mathrm{H}) .1 .37(\mathrm{~s} .6 \mathrm{H}) . \mathrm{I} .30(\mathrm{t} . J=7.32 \mathrm{H} \approx .3 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \% . \mathrm{CDCl}_{3}$) $\delta 177.21$. 172.69. 84.35. 62.21. $61.25,60.24,27.90 .26,30.24 .43 .23 .74,20.90,13.89:$ FT-IR ($\mathrm{cm}{ }^{1}$. ncal) 3627.3 .3456 .5 .2985 .7 .2942 .4 . 1734.4. 1680.8. 1365.I. 1291.4. 1175.2. $1025.5 .823 .2: \mathrm{MS}(20 \mathrm{cV}) \mathrm{m} / \mathrm{x}$ (rcl intensity) 245 ($\mathrm{M}^{+} .0 .6$). 219 (0.7). 203 (1.8). $188(0.4) .173$ (0.4). 164 (2.2). 125 (7.8). 115 (17.3). 105 (5.6). 87 (19.5):

HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{4}$ 245.1627. found 245.1659.
N -Acetyl- N -cyclopentyl- O -dimethylethoxycarbonylmethylhỵdroxylamine (7c). Yicld: 93\%: a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} \neq \mathrm{CDCl}_{3}$) $\delta 4.22(\mathrm{q} . J=7.11 \mathrm{~Hz} ., 2 \mathrm{H}) .3 .66$ $(\mathrm{m} .1 \mathrm{H}) .2 .10(\mathrm{~s} .3 \mathrm{H}) .1 .90-1.38(\mathrm{~m} .8 \mathrm{H}) .1 .50(\mathrm{~s} .6 \mathrm{H}) .1 .32$ (t. $J=7.11 \mathrm{H} \not \approx 3 \mathrm{H}$)
N-Acetyl- N -cyclohexyl- O-dimethylethoxycarbonylmethylhydroxylamine (7d). Yield: 88%, a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} \neq \mathrm{CDCl}_{3}$) $\delta 4.28-4.15$ (m. 3 H). 2.09 (s. 3 H). $1.95-1.51(\mathrm{~m} .10 \mathrm{H}) .1 .49(\mathrm{~s} .6 \mathrm{H}) .1 .29(\mathrm{t} . J=7.12 \mathrm{H} \not .3 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \% \mathrm{CDCl}_{3}$) δ 172.62. 128.17. 126.721. 83.38. 62.81, 61.20. 28.21. 23.95. 23.33.22.19. 13.83: FT-IR (cm^{1}. ncal) $3456.5,2956,7,2813.5,1737.3,1672.4 .1+48.7$. 1366.5. 1288.6. $1176.3 .1139 .3 .1026 .3: \mathrm{MS}(20 \mathrm{cV}) \mathrm{m} / \mathrm{f}$ ($(\mathrm{rcl}$ intensity) 272 [(M+1)-.0.1]. 258 (17.6). 215 (9.8). 184 (14.1). 143 (9.0). 115 (85.5), 101 (63.9). 87 (69.6): HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{4} 271.1783$, Found 271.1796.

N -Acetyl- O -dimethylethoxycarbonylmethyl- N -methylhỵdroxylamine (7e). Yicld: 85% a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) $\delta+22(\mathrm{q} . J=7.11 \mathrm{H} \not .2 \mathrm{H}$). 3.17 (s. 3 H). $2.12(\mathrm{~s} .3 \mathrm{H}) .1 .50(\mathrm{~s} .6 \mathrm{H}) .1 .30(\mathrm{t} . J=7.11 \mathrm{H} \% .3 \mathrm{H})$.

N -Acetyl- N -(2-chlorobenzyl)- O -dimethylethoxycarbonylmethylhydroxylamine (7f). Yield: 91% a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} / . \mathrm{CDCl}_{3}$) $\delta 7 .+1-7.22(\mathrm{~m} .4 \mathrm{H}) .5 .05$ (s. 2 H). 4.28 (q. $J=7.12 \mathrm{~Hz} .2 \mathrm{H}$). 2.13 (s. 3 H). $1.5 \mathrm{I}(\mathrm{s} .6 \mathrm{H})$. $1.32(\mathrm{t} . J=7.12 \mathrm{H} \approx .3 \mathrm{H}):{ }^{1.3} \mathrm{C}$ NMR ($75 \mathrm{MH} \not . . \mathrm{CDCl}_{3}$) δ 174.34. 172.18. 133.54. 132.03. 129.02. 128.03. 127.78. 126,65. 83,64. 61.34. 50,53: FT-IR (cm^{1}. ncat) 3070.5. $2990.0 .2942 .4,1737.2$, 1680.6. 1472.9. 1444.9. 1384.9. 1287.3. 1178.0.1140.9. 1037.1. 752.5 : MS (20 cV) m / c (rcl intensily) $315\left[(\mathrm{M}+\mathrm{l})^{+} .1 .4\right] .314\left(\mathrm{M}^{+} .7 .6\right) .278$ (27.3). 271 (16,1). 240 (13,6). $164(31,2) .140(35.2) .125$ (61.6). 115 (98.86). 87 (87.4): HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{2} \mathrm{ClNO}_{+} 314.1159$. found 314.1161.

A typical procedure for the preparation of 8:

To a solution of $7 \mathrm{a}(2.9 \mathrm{~g} .12 .6 \mathrm{mmol})$ in dry THF $(25 \mathrm{~mL})$ was added LiHMDS (25.2 mL .25 .2 mmol) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 0.5 h and allowed to room temperature. The solvent was removed under reduced pressure and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was extracted with ether $(3 \times 50 \mathrm{~mL})$. washed with water (20 mL) and brine (20 mL). The organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purificd by column chromatography on silica gel using hexane/cthyl acetate (3:1) to gise 2-isopropyl-6.6-dimethy]-[1.2]oxazinanc-3.5-dione (8a) as a colorless oil ($2.26 \mathrm{~g} .97 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MH} \% . \mathrm{CDCl}_{3}\right) \delta 4.62(\mathrm{~h} . J=6.71 \mathrm{H} \neq 1 \mathrm{H})$. $3.44(\mathrm{~s} .2 \mathrm{H}) .1 .38(\mathrm{~s} .6 \mathrm{H}) .1 .21(\mathrm{~d} . J=6.71 \mathrm{H} \% .6 \mathrm{H}):{ }^{19} \mathrm{C}$ NMR ($75 \mathrm{MHz}. \mathrm{CDCl}_{3}$) $\delta 207.00 .166 .44 .85 .54 .47 .31$. 46.80. 21.96. 18.91: FT-IR (cm ${ }^{1}$. ncal) 3453.8. 3346.3. 2984.4. 2941.5. 2885.9. 1741.8. 1685.0. 1402.6. 1367.8. 1184.0. 1133.4. $906.7 . \mathrm{MS}(20 \mathrm{cV}) \mathrm{m} / \mathrm{\%}$ (rel intensity) 186 [(M+1) ${ }^{-}$. 1.3]. $185\left(\mathrm{M}^{+} .11 .0\right) .170(2.9)$. 149 (1.5). 129 (2.6). 111 (13.8). 100 (7.9). 84 (8.2): HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$ 185.1051. found 185.1056: Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$: C. 58.36: H. 8.16: N. 7.56 . Found: C. 58.39 : H,

8.11: N. 7.57.

2-tert-Butyl-6,6-dimethyl-[1,2]oxazinane-3,5-dione (8b). Yield: 94% : a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.42 (s. 2H). $1.44(\mathrm{~s} .9 \mathrm{H}) .1 .38$ (s. 6H): ${ }^{13} \mathrm{C}$ NMR (75 MHz. $\left.\mathrm{CDCl}_{3}\right) \delta 207.80,167.80 .85 .44,60.58 .48 .47,27.27,21.86$: FT-IR (cm ${ }^{1}$. ncal) $3198.5,3102.0,2955.5,1735.9 .1565 .8$. 1449.1. 1301.1. 1137.1. 1017.9. 761.4: MS (20 eV) m/z (rel intensity) $200\left[(\mathrm{M}+1)^{-} .2 .7\right] .199\left(\mathrm{M}^{-} .16 .9\right) .144(33.3), 115$ (21.4). 100 (2.9). 84 (100.0). HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{3} \mathrm{NO}_{3}$ 199.1208. Cound 199.1206.

2-Cyclopentyl-6,6-dimethyl-[1,2]oxazinane-3,5-dione (8c). Yicld: 91\%: a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) δ $4.32-4.17(\mathrm{~m} .1 \mathrm{H}) .3 .47(\mathrm{~s} .2 \mathrm{H}) .1 .85-1.44(\mathrm{~m} .8 \mathrm{H}) .1 .39$ (s. 6 H): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \not . . \mathrm{CDCl}_{3}$) $\delta 206.64$. 666.17 .85 .48. $56.33 .46 .50 .27 .62 .23 .51,21.60: F T-1 R$ (cm^{1}. neat) 3528.1. 3466.2. 2961.7. 2875.8. 2251.3. 1742.7. 1682.1. 1382.7. 1167.7.917.0. $734.3 . \mathrm{MS}(20 \mathrm{cV}) \mathrm{m} / \mathrm{m}$ (rel intensity) $212\left[(\mathrm{M}+1)^{+} .40 .6\right] .211\left(\mathrm{M}^{+} .44 .6\right) .189$ (3.5). $144(83.7)$. 125 (3.6). $111(45.6) .100(19,4) .83(27.6)$: HRMS caled for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3} 211.1208$. found 211,1206 .

2-Cyclohexyl-6,6-dimethỵl-[1,2]oxazinane-3,5-dione (8d). Yield: 93% : a colorless solid: mp. 63-64: ${ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MH} \not . \mathrm{CDCl}_{3}$) 4.82-4.65 (m. 1H). 3.47 (s. 2H). 1.85-1.45 (m. $10 \mathrm{H}) .1 .40(\mathrm{~s} .6 \mathrm{H}):{ }^{15} \mathrm{C}$ NMR ($75 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) 207.16. 166,13, 85,68, 54,83, 46,87, 29.27, 25.34, 25,09. 22.07: FTIR (cm^{-1}. neal) 3464.0 .3335 .4 . 2989.7. 2934.2. 2852.6. 1740.5. 1688.4. 1475.5. 1418.0. 1310.8. 1175.9. 1151.0. $895.2: \mathrm{MS}(20 \mathrm{cV}) \mathrm{m} / \%$ (rcl intensity) $226\left[(\mathrm{M}+1)^{+} .16 .3\right]$. 225 ($\mathrm{M}^{-} .34 .0$). $208(0.5) .182(0.9) .144(95.2)$. 111 (37.2). 98 (11.0). $83(50,8)$: HRMS calcd for $\mathrm{C}_{2} \mathrm{H}_{[9} \mathrm{NO}_{3} 225,1364$. found 225.1371 .

2,2,6-Trimethyl-[1,2]oxazinane-3,5-dione (8e). Yicld: 95% : a colorless solid: mp. $62-63{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} \%$. $\left.\mathrm{CDCl}_{3}\right) 3.48(\mathrm{~s} .2 \mathrm{H}) .3 .28(\mathrm{~s} .3 \mathrm{H}) .1 .40(\mathrm{~s} .6 \mathrm{H}):{ }^{1.3} \mathrm{C}$ NMR ($75 \mathrm{MH} \not 2 . \mathrm{CDCl}_{3}$) 206.66. 165.43. 86.40. 46.42. 34.61. 21.59. 21.56: FT-IR (cm^{-1}. ncal) 3451.5. 3336.3. 2987.6. 2942.5 . 2883.4 . 1737.5. 1680.4. 1465.1. 1383.5. 1168.3. 917.0. 860.7: MS $(20 \mathrm{cV}) \mathrm{m} / \mathrm{z}$ (rel intensity) $158\left[(\mathrm{M}+1)^{+}\right.$. 21.1]. 157 ($\mathrm{M}^{-} .74 .9$). 129 (22.7). 111 (58.0). 83 (37.8). 70 (100.0): HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{3}$ 157.0738. found 157.0747.

2-(2-Chloro-benzyl)-6,6-dimethyl-[1,2]oxazinane-3,5dione (8f). Yicld: 89\%: a pale ycllow oil: ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MH} \ldots \mathrm{CDCl}_{3}\right) 7.38-7.25(\mathrm{~m} .4 \mathrm{H}) .4 .94(\mathrm{~m} .1 \mathrm{H}) .3 .55(\mathrm{~s} .2 \mathrm{H})$. $1.17(\mathrm{~s} .6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) $\delta 165.64 .132 .34$. 131.37. 129.71. 129.71. 129.60. 128.96. 126.94. 125.56. 86.45. 48.35. 46.57. 26.91. 21.49: FT-IR (cm ' ${ }^{1}$ ncat) 3528.7. 3443.9. 2986.9. 2934.3. 2254.9. 1742.4. 1680.8. 1467.5. 1381.7. 1167.8. 1098.0. 909.2. 734.8: MS (20 cV) m/x (rcl intensity) $268\left(\mathrm{M}^{+} .1 .2\right) .257(0.8) .24(0.7) .232(79.5) .190$ (3.7). 173 (17.5). 138 (33.5). 125 (100.0). 111 (28.9).

The preparation of 10a-e: refer to the procedure described in reference 1 and 2

4-Benzoyl-5-hydroxy-2-isopropyl-6,6-dimethyl-6H-[1,2] oxazin-3-one (10a). Yicld: 82\%: a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.12-7.37(\mathrm{~m} .5 \mathrm{H}) .4 .27(\mathrm{~h} . ~ J=$ $6.72 \mathrm{H} \approx 1 \mathrm{H}) .1 .38(\mathrm{~s} .6 \mathrm{H}) .1 .31(\mathrm{~d} . J=6.72 \mathrm{H} \not .6 \mathrm{H}):{ }^{17} \mathrm{C}$

NMR (75 MHュ. CDCl_{3}) $\delta 166.43,164.25,128.88 .128 .37$. 128.04, 127.56. 85.48, 47.28, 46.70. 26.78, 21.87. 21.41. 18.84. 18.70: FT-IR (cm^{1}. ncat) 2985.0. 2940.0. 1732.0. 1683.8. 1538.7. 1371.5, 1278.6. 1179.7. 768.0. MS (20 cV) $\mathrm{m} / \%$ (rel intensity) $290\left[(\mathrm{M}+1)^{+} .2 .4\right] .289\left(\mathrm{M}^{+} .3 .9\right) .231$ (5.3). 216 (30.9). 202 (1.2). 188 (2.2). 175 (1.4). 160 (3.2). 138 (7.7). 122 (17.5). 105 (100). 84 (36.4): HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} 289.1314$. found 289.1322: Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{C}, ~ 66,42: \mathrm{H}, 6,62: \mathrm{N}, 4.84$ found: C. $66,38: \mathrm{H}$. 6.50: N. 4.89.
+(2,+-Dichloro-benzoyl)-5-hydroxy-2-isopropyl-6,6-di-methyl-6H-[1,2]oxazin-3-one (10b). Yicld: 80\%: a light brown oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} / . \mathrm{CDCl}_{3}$) $\delta 7.82-7.19(\mathrm{~m} .3 \mathrm{H})$. $4.72(\mathrm{~h} . J=6.72 \mathrm{H} \not .1 \mathrm{H}) .1 .35(\mathrm{~s} .6 \mathrm{H}) .1 .32(\mathrm{~d} . J=6.72 \mathrm{H} \not$. $6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \neq \mathrm{CDCl}_{3}$) $\delta 190.71 .18+28.168 .70$. 136.71. 135.08. 132,67, 129.36, 129,17. 127.06. 84.34. 47.27. 46,08, 26,77. 21,27, 20.99. 18.68. FT-IR (cm^{1}. ncat) 2985.8. 2941.2. 2255.2. 1689.7. 1591.5. 1564.9. 14709. 1178.2. 1103.1. 910.4. 734.6: MS (20 cV) m/ (rel intensity) $358\left[(\mathrm{M}+\mathrm{l})^{-} .0 .5\right] .322$ (44.4). 280 (13.1). 264 (3.9). 247 (1.9). 215 (1.6). 190 (13.4). 173 (100.0). 145 (29.3). 109 (24.1): HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Cl}_{2}$ 357.0534, found 357.0532.
+-Butyryl-5-hydroxy-2-isopropyl-6,6-dimethyl-6H-[1,2] oxazin-3-one ($1 \mathbf{(k)}$): Yicld: 83\%: a pale ycllow oil: 'H NMR $\left(200 \mathrm{MH} \not . \mathrm{CDCl}_{3}\right) \delta 4.67(\mathrm{~h} . J=6.71 \mathrm{H} \not . \mathrm{lH}) .2 .94(\mathrm{t} . J=$ $7.52 \mathrm{H} . .2 \mathrm{H}) .1 .79-1.60(\mathrm{~m} .2 \mathrm{H}) .1 .40(\mathrm{~s} .6 \mathrm{H}) .1 .26(\mathrm{~d} . J=$ $6.71 \mathrm{H} \not .6 \mathrm{H}) .1 .01(1 . J=7.52 \mathrm{H} \approx .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MH} \not \approx$. $\left.\mathrm{CDCl}_{3}\right) \delta 196.35 .192 .28$. 169.59. 163.65. 97.97. 83.79. 46.59. 38.33.21,16. 19.22. 18.56: FT-IR (cm ' . ncat) 2981.4. 2939.I. 2877.3. 1680.4. 1469.8. 1376.0. 1181.0. 1049.0. 910.3: MS (20 cV) m/8 (rcl intensity) $256\left[(\mathrm{M}+\mathrm{l})^{-}\right.$. 18.9]. $255\left(\mathrm{M}^{+} .39 .7\right) .238(5.3) .226(0.3) .199$ (3.9). $182(83.5)$. 180 (7.1). 154 (20.8). 126 (7.1). 97 (19.9): HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4} 255.1470$. found 255.1467.
+Butyryl-5-hydroxy-2,6,6-trimethyl-6H-[1,2]oxazin-3one (10d). Yicld: 76% : a pale ycllow oil: ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MH} \not . \mathrm{CDCl}_{3}\right) \delta 3.25(\mathrm{~s} .3 \mathrm{H}) .2 .92(\mathrm{t} . J=7.32 \mathrm{H} \not .2 \mathrm{H}) . \mathrm{I} .74-$ $1.60(\mathrm{~m} .2 \mathrm{H}) .1 .4 \mathrm{l}(\mathrm{s} .6 \mathrm{H}) .1 .00(\mathrm{t} . J=7.32 \mathrm{H} .3 \mathrm{H}):{ }^{1 .} \mathrm{C} \mathrm{C}$ NMR (75 MHz. CDCl_{3}) $\delta 196.04$. 192.39. 164.(69. 102.22. 84.57.38.68. 38.16.34.27.21.16. 19.35. 13.92: FT-IR (cm '. neat) 3333.5. 2969.2. 2938.6. 2877.2. 1680.8. 1454.2. 1376.8. 1219.9. 1163.1. 1024.9.915.7: MS (20 cV) m/\% (rel intensity) 228 [(M+1)-. 0.5]. $227\left(\mathrm{M}^{+} .3 .2\right) .212$ (0.6). 181 (1.5). 169 (1.8). 154 (4.5). 126 (9.8). 97 (7.0). 84 (35.1): HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{+} 227.1157$. found 227.1172.
+-(2,4-Dichloro-benzoyl)-5-hydroxy-2,6,6-trimethyl-6H-[1,2]oxazin-3-one (10c). Yicld: 85\%: a light brown oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} \ldots . \mathrm{CDCl}_{3}$) $\delta 7.45-7.20(\mathrm{~m} .3 \mathrm{H}) .3 .36$ (s. 3 H). $1.36(\mathrm{~s} .6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (75 MHz. CDCl_{3}) $\delta 190.92 .183 .49$. 169.48. 136.34. 133.96. 132.26. 131.20. 129.34. 127.16. 85.11. 34.53. 26.84. 21.22. 20.96: FT-IR (cm ' . ncal) 3624.1. 3451.0. 3090.9. 2985.2. 2939.2. 1746.1. 1694.1. 1592.4. 1472.0. 1379.7. 1214.9. $1103.9 .825 .2: \mathrm{MS}(20 \mathrm{cV}) \mathrm{m} / \%$ (rcl intensity) $331\left[(\mathrm{M}+1)^{+} .0 .5\right] .330\left(\mathrm{M}^{-} .2 .6\right) .294$ (100.0). 250 (1.4). 236 (37.0). 208 (34.8). 173 (94.0). 145 (29.9), 123 (13.8). 109 (20.1).

A typical procedure for the the preparation of 13 b
A misture of $11(0.80 \mathrm{~g} .2 .54 \mathrm{mmol})$ and phenylhydrazine $(0.28 \mathrm{~g} .2 .54 \mathrm{mmol})$ in ethanol (25 mL) was refluxed for 4 h . and then concentrated under reduced pressure. The residue was purified by chromatography on silica gel using hexane/ cthyl acetate (3:1) to give 5-cyclopenty1-7.7-dimethy1-2.3-diphenyl-2.7-dihydro-6-oxa-1.2.5-rria/a-inden-4-one (13b) $(0.74 \mathrm{~g} .75 \%)$ as a pale yellon solid. mp $199-200^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MH} \angle . \mathrm{CDCl}_{3}$) $\delta 8.17-8.12$ (m. 2H). $7.54-7.38(\mathrm{~m}$. $8 \mathrm{H}) .4 .46-4.32(\mathrm{~m} .1 \mathrm{H}) .1 .81-1.52(\mathrm{~m} .10 \mathrm{H}) .1 .45(\mathrm{~s} .6 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR (75 MHz. CDCl_{3}) δ 162.81. 151.29. 150.87. 139.16. 131.35. 129.84. 129.35. 128.95. 128.71. 127.99. 126. (9). 108.06. 77.76, 55.42, 29.23, 25.58, 23.97: FT-IR ($\mathrm{cm}{ }^{1}$. ncal) 3070.7.2991.1. 2934.3.2852.7. 1657.8. 1503.2. 1477.7. 1459.3. 1210.1. 767.0: MS (20 cV) m/s (rcl intensity) $\left.387 \mathrm{l}(\mathrm{M}+1)^{-} .0 .8\right] .319\left(\mathrm{M}^{-} .27 .0\right) .30+(22.0) .287$ (100.0). 271 (9.7). 247 (3.5). $218(2.1) .184(0.5) .156(3.7)$. 129 (4.3). 104 (11.0): HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$ 387.1946 , found 387.1931 : Anal, calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}$. 74.39: H. 6.50: N. 10.84, Cound: C. 74.33: H. 6.64: N. 10.83.

3-(2,+-Dichloro-phenyl)-5,5,7-trimethyl-2-phenyl-2,7-di-hydro-6-0xa-1,2,5-triaza-inden-4-one (13a): Yield: 72\%: a pale yellow solid: mp $153-154{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (200 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 7.54-7.26(\mathrm{~m} .8 \mathrm{H}) .3 .24(\mathrm{~s} .3 \mathrm{H}) .1 .49(\mathrm{~s} .6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz. $\left.\mathrm{CDCl}_{3}\right) \delta 163.49 .150 .36 .147 .75 .138 .83$.
$135.22 .134 .78,132.66,130.00,129.54,129.44,126.68$.
109.41, 78.71. 33.87. 24.00: FT-IR (cm ${ }^{1}$. ncat) 3059.5. 2985.4. 2936.4. 1673.4. 1596.7. 1503.4. 1365.7. 1105.8. 756.7: MS (20 cV) $\mathrm{m} / \mathrm{\%}$ (rcl intensity) $402\left[(\mathrm{M}+\mathrm{l})^{-} .2 .4\right] .401$ ($\mathrm{M}^{-} .4 .5$). 384 (2.3). 366 (80.3). 355 (83.3). 339 (7.2). 321 (49.2). 305 (11.4). 265 (1.2). 242 (1.8). 215 (1.8). 197 (1.5). 178 (5.4). 142 (11.1): HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}_{2}$ 401.0697 . found 401.0702: Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}_{2}$: C. $59.71:$ H. $4.26:$ N. 10.45, found: C. $59.77: \mathrm{H},+24$: N. 10.39

References

1. (a) Lee, S. Europian Patent Λ ppl. $\mathrm{EP}^{3}(0394889 \wedge 2$, Oct 31, 1990 (Chem. Abstr: 1991, HA, P143,43Iz). (b) Lee, S PCI, WO 92/07,837, May 14, 1992 (Chem. . Ibstr: 1992, H7, 69,872n). (c) Lee, S. U. S. Patent 5,728,831, March 17, 1998 (Chem. .1bstr: 1998, 129, 1199,316t).
2. (a) Oliver, J. E.: Lusby, W. R. J. Heteroglic Chem. 1991, 28. 1565 . (b) 7atser, V G.: Polozov, G. I.: I akhuch, F. A. Tetrahedron 1994, 50, 6377. (c) Oliver, J. Г... Lusby, W. R. Tetrahedron 1998, 4f, 1591. (d) Oliver, J. F.: Wileer, K. R.: Waters, R. M. Sinthesis 1990, 1117. (c) Montes, I. F.: Burger T. Tetrahedron Lett. 1996, 37, 1007.
3. Wang, Q. X.: King, J.: Phansticl IV, O. J. Org. (hem. 1997, 62, 8104.
