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Application of the Instantaneous Lyapunov Exponent and Chaotic Systems,
Part 1: Theory and Simulation

Kihong Shin
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1. Introduction space. A positive Lyapunov exponent means that the

nearby trajectories in phase space will soon diverge and

in a dynamical system, the spectrum of Lyapunov the evolution is sensitive to initial conditions and the

exponents plays a very important role in the diagnosis of system becomes unpredictable. Any system containing at

whether the system is chaotic or not. The Lyapunov least one positive Lyapunov exponent is defined to be

exponents are a measure of sensitive dependence upon chaotic [1]. One of the important properties is that the

initial conditions and represent the average rate of sum of Lyapunov exponents is related to the generalized

divergence or convergence of nearby trajectories in phase divergence of the flow in phase space of the system. and
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related to the energy dissipation mechanism of a
dissipative system, i.e., the energy dissipation means the
phase volume contraction. For a dissipative dynamical
system, the n-dimensional initial phase volume in an n-
dimensional phase space will contract with time, and the
sum of Lyapunov exponents is negative. In a mechanical
system which possesses some damping the system is
categorised as a dissipative system. Thus the sum of
Lyapunov exponents must be related to the damping of a
mechanical system, and can be utilized to monitor any
changes of damping of the system. However, in order to
track the changes of damping of a system the data
segment used to calculate the Lyapunov exponents must
be short. This leads to problems since Lyapunov
exponents are calculated from a long term averaged
divergence rate as will be discussed later.

To overcome the above problem, we introduce
Instantaneous Lyapunov exponents (ILEs) which are the
derivative of the logarithm of divergence rate. We
describe how the sum of ILEs is related to the
generalized divergence of the flow and to the damping of
a mechanical system. Computer simulation results from
both differential
presented. The algorithm for computing the ILEs from

equations and a time series are

differential equations is based on the use of a phase space
plus tangent space approach suggested by Wolf ez al [2],
and on the algorithm developed by Sano et al [3] in the
case of a time series. These algorithms [2, 3] are
modified to compute the ILE, and so the computational
aspects are much the same. In practice, it is very difficult
to obtain accurate ILEs from a time series due to
computational errors, and so short term averaged
Lyapunov exponents (SLEs) are introduced. The ILE has
been introduced first time in this paper, and is defined for
a continuous-time dynamical system. Although it is not
the same, a similar concept to the SLE, the ‘Local
Lyapunov exponent’ was introduced by H. D. L
Abarbanel et al [4]. However, the ‘Local Lyapunov
exponent’ is defined in a discrete manner, and so, strictly
speaking, it is only relevant for discrete-time dynamical
systems. For an example of the Local Lyapunov
exponents for

a discrete-time dynamical system,

Lyapunov exponents calculated from n-th iterations of

142

the system refer to the Local Lyapunov exponent of order

fa?

n’. For continuous-time dynamical systems, they
defined the Local Lyapunov exponents in the same way
using a sampled version of the system. However, they
did not discuss any effects of time-discretization of
continuous systems. Also the term ‘Local’ means local to
the attractor and not local in time. On the other hand, the
SLE is the time averaged version of the ILE, so it is
defined in a continuous manner for continuous-time
dynamical systems and is the quantity which varies
locally in time. Thus the SLE is very different from the

Local Lyapunov exponent in this sense.

In this paper, We will discuss the generalized
divergence of the flow in phase space and derive the
ILEs and SLEs in section 2. The relationship between the
damping property of a mechanical system and the
generalized divergence of the flow is discussed in section
3. Computer simulation results using simple non-linear
differential equations (Duffing equation and Van der Pol
equation) are presented in section 4, as well as the results
using a time series (displacement signal) obtained from
the Duffing equation.

2. Volume in a Phase Space and the
Instantaneous Lyapunov Exponents

A
dynamical system is modelled by ordinary differential

continuous-time  n-dimensional  autonomous

equations of the form

dx
___=fx,x yoe
e

x(tp) = %o, X() € K"

dx; dx,
.,X = | —— ¢ b+ ———
) [dt dt

1

where x = [X; Xy - x,,]T is a vector in n-dimensional
phase space and x; are phase space coordinates. Equation
(1) determines the set of solution curves (trajectories or
flow) in phase space. The vector function f is the
generalized velocity vector field associated with the flow.
Suppose that the long-term evolution of an infinitesimal
n-dimensional sphere of initial conditions is monitored,
the sphere will become an n-dimensional ellipsoid due to
the locally deforming nature of the flow (the flow is a

bundle of trajectories). The i-th Lyapunov exponent in
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the n-dimensional phase space is defined in terms of the
length of the i-th principal axis Pi(t) of the ellipsoid 5]
A; = lim llnm
taeot  Py(0)
where the A; are ordered from the largest to the smallest.
The Lyapunov exponents defined in the form of (2) is not

@)

very helpful in computation, because it is impossible to

average infinitely. Thus the Lyapunov exponent may be

described by an estimate which becomes a function of

time or a function of the number of iterations. Then
equation (2) becomes

i 0=t B®

t PO

Similarly, if the system is described by difference

equations or a map, then the Lyapunov exponents are

3

defined in a similar manner to the continuous-time

system as
- . (k
A’i (k) = .l_lni.(_)
k PO
where P(k) is the length of the i-th principal axis, and k
is the number of iterations of the system. In this paper,

assuming the estimates of the Lyapunov exponents are

)

obtained from long-term averaged values, the Lyapunov
exponents (A;) usually mean the estimates of the
Lyapunov exponents, so generally we do not use the
notation in (3) and (4) explicitly, unless otherwise stated.

If one of the A; is positive, nearby trajectories
initial
the
divergence of chaotic trajectories can only be locally
exponential, because if the system is bounded Py(t)
cannot go to infinity. Thus to obtain the Lyapunov

diverge, and the evolution is sensitive to

conditions and is therefore chaotic. However,

exponents, one must average the local exponential
growth over a long time (infinite in theory). Lyapunov
exponents have been defined in terms of the principal
axes of an n-dimensional ellipsoid in an n-dimensional
phase space. Similarly, the behaviour of the volume of
the ellipsoid is related to the sum of Lyapunov
exponents. The relative rate of change of a n-dimensional
volume ‘V’ in n-dimensional phase space under the
action of flow is given by the ‘Lie derivative’
(generalized divergence of the flow, and the generalized
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divergence is the divergence of a vector function in the n-
dimensional case) [6, 7].

dv 2, of;

—_—=ff-.- —Ldx, ---dx, 3)
dt IIV J‘gaxi !

1 dv & of;

—_ =y L 6
Vodt 5 ox; ©

For a dissipative system, the generalized divergence of
the flow must be negative, and the volume will contract
with time. The average behaviour of the initial ellipsoidal
volume can also be expressed by the Lyapunov
exponents (A;),

V(D) = V(e it At %)
and the relative rate of volume change becomes [8]
1dv _ &
v - oM )

Thus, the sum of Lyapunov exponents is equal to the
generalized divergence of the flow. However, this is not a
rigorous relationship since the Lyapunov exponents are
obtained from the long-term averaged divergence rate
(see equation (2)), whereas the generalized divergence of
the flow may continuously change with the action of the
flow (e.g., the Van der Pol equation, which will be shown
later). This may be much more rigorously described by
introducing the Instantaneous Lyapunov exponents
(ILEs). The divergence rate Pi(t)/Py0) in equation (3) is
continuous in time. Since the trajectories obtained from
equation (1) are smooth and bounded, the divergence rate
is also smooth and bounded. Thus the divergence rate is
differentiable. The Instantaneous Lyapunov Exponent
(ILE) for a continuous-time dynamical system is defined
as the derivative of the logarithm of the divergence rate

a; () =i[lnm}

9
) &

Also, the Instantaneous Lyapunov exponent for a
discrete-time dynamical system (difference equation) is
more easily defined such that

P, (K)
Pik-1)
where (k) is the i-th ILE at the k-th iteration of the
system, and represents the divergence rates at each

o; (k) =1In (10)

iteration. In this paper, continuous-time dynamical
systems are considered. Unlike the Lyapunov exponent,
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the ILE represents the divergence (or convergence) rate
at a given time and is a time varying quantity. So the ILE
shows how the divergence (or convergence) rate of
nearby trajectories changes with time. The Lyapunov
exponent becomes the time average of the ILE

2 i
)\.i(t)_—‘—t‘J’éai(t])dtx (11)

or A=Al 0] (12)
where A[ ] denotes the time average. Thus, the length of

the i-th principal axis at time ‘t’ can be described by the
ILE,

o, (1))d
P, () = P, (0)ek ™ (13)
and the n-dimensional phase volume at time ‘t’ becomes
i )t j;iai(t,)d(l
V() = V(tg)e™ =V(ty)e =

14

A[iai(t,):lt

= V(to)e =t

13
let Y o;(t)=0(t) for convenience, i.e. 6(t) is the sum of
1=l

ILEs. Then, equation (14) becomes
V@) = V(to)ejﬂc((‘)dl‘ = V(to)eA[“<‘1)]'

e VO
VO d
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d & 2
where c(t):aA[c(t] )} t+A4lott)], and Alo]=3 4.
i=!
Thus, from equation (15), the sum of ILEs is equal to the
generalized divergence of the flow. Since the sum of
Lyapunov exponents is the time averaged value of the
sum of ILEs, the sum of Lyapunov exponents represents
the long time (infinite in theory) averaged behaviour of
the generalized divergence of the flow while the sum of
ILEs represents the instantaneous behaviour of the
generalized divergence of the flow. The SLE is defined
as the short-term average of the ILE, i.e., ILEs are
averaged over a defined window length to calculate the
SLEs.

S = Alos O] (16)

where t,, is the window length. The relationship between
the ILE and SLE is graphically illustrated in Fig. 1. The
SLE is introduced especially for the case of a time series
and experimental data, because the ILEs obtained from
the algorithm (linear approximation of the flow) based on
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Sano et al [3) are subject to ‘numerical’ noise.

Averaging

Window “—\
4 __/

Fig. 1 Calculation of SLE from ILE.

Moving direction

—

ILE (ei(t))
1;+1, (The point at which the SLE is computed)

By assumming that the numerical noise is uncorrelated,
the noise can be reduced by taking an average (SLEs).
The size of window length may depend on the
application. For the particular application presented in
this paper, the window length is determined by trial and
error, i.e., striking a balance between the detectability of
changes of damping and numerical errors as will be
shown later.

3. Generalized Divergence of the Flow and the
Damping Property of a Mechanical System

The equation of motion of a linear single degree of
freedom system can be written as

MegX) +CeqXy +kegXy =Teq(t) an
where Mg, Coq, Koy, and fy are the equivalent of mass,
viscous damping, spring and forcing respectively. When
the forcing term is harmonic (fcoswt), the equation of

motion can be described in augmented state form (1),

dx,
—= =X, =f1{x,X3,X3)

dt

dx f c k

-—diz CO§ X3 =—d X5 ———x; =5 (X}, %;,%3) (18)
t mg me, e

dx;

—==0=f3(X;,X5,X3)
dt 31Xy, X3, X3

where x; = t, and the generalized divergence of the
flow is
i=1 9%;

Thus the sum of Lyapunov exponents and the sum of

a9
meq

Ceq
m

which is the same as the

ILEs are equal to —
€q
generalized divergence of the flow.

The generalized divergence of a multi-degree of
freedom system is a little different from that of a single
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degree of freedom system. For a muiti-degree of freedom
linear system, the equation of motion can be written as
Mx+Cx+Kx =f(t) 20)
where M, C and K are the mass matrix, damping matrix
and stiffness matrix, and x and f(t) are n-dimensional
vectors. If the system is described in 2n-dimensional
non-autonomous phase space, by letting ‘p=x’ and

‘q=X’, the equations of motion may be written as
d
_dﬂ =q=fi(p1. - Pos% " Gn O
do @
=M -MCq-MKp = 0Py, Py G

where, fi=(fi, - , f,) and f=(f..1, - , fon). The generalized
divergence of the flow becomes

n afk 2n afk "
—+ Y —%=-sumM"C (22)
k=19Pk  kZne1 99k {Vl }

where sum{} denotes the sum of all elements of the
vector. This can be interpreted as the total damping of the
system. As a result, in a linear system, the generalized
divergence of the flow is independent of the external
force (assuming that the external forces are harmonic)
and the restoring force, and thus represents the viscous
damping property of the system.

For
divergence of the flow may change continuously. Note
that equation (22) does not hold for non-linear systems
since the damping matrix ‘C’ and stiffness matrix ‘K’

some non-linear systems, the generalized

may be the function of p and q, and the partial
derivatives in (22) depend on the non-linearities of the
system. The equation of motion of a class of non-linear
multi-degree of freedom system may be written as
Mx + C(x,x)x + K(x,x)x =f (1) 23)
By letting ‘p=x’ and ‘q=X ', the equations of motion
may be written as
dp

a

%’;_ = M) -M"Clp.0)a M K@.9p = (. ~Py-0 " Gns )

=q=f{p."".Pr. Q1"+
1\Vi 1 (24)

The generalized divergence of the flow becomes

n.?f—k-}. zzn ﬂ:
k19Pk  kins1 Odk

(25)

_sum{% (M"C(p,q)q)}—sum{% (MK, q)p)}

From (25), it can be shown that the generalized
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divergence may not only depend on C but also depends
on K when different modes interact with each other.
However, if K is a pure stiffness matrix (i.e., function of
p only ‘K(p)’), the second term of the right hand side of
(25) disappears. In general K(p,q) is not a pure stiffness
term but includes damping as well, so we may still say
that the generalized divergence represents the total
damping property of the system.

4. Numerical Simulations Using Differential
Equations and a Time Series

The algorithms in the references [2, 3] are modified
to compute the ILE, and the details of the computational
aspects of ILE can be found in [9, 10]. The simulation is
focused on the possibility of detecting changes of
damping of a non-linear (chaotic) mechanical system.
Two differential equations are investigated- the Duffing
equation and the Van der Pol equation. Additionally a
time series obtained from the Duffing equation is
considered. Simulations are conducted in which the
damping parameter is changed at a certain time.
Comparisons are made of changes in the sum of ILEs
and the sum of Lyapunov exponents. These results are
also compared to the sum of SLEs.

Example 1: The Duffing equation
(Xy+cxy —kx(1- xlz) = Acosmt ) is considered which
can be expressed in the form (1).

Xm

— =X =f1(X],X9,X

ek 1(X1,X2,X3)

dX2 _ 2 _
—a;-——cx2+kx](1—x] )+ Acos(ig) = f7(xq,X2,%g) (26)
dX3

— =w=13(x{,X,,X

" 3(x1,X2,%3)

and the generalized divergence of the flow is equal to the
negative of the damping coefficient which is constant,
3 of

ofi | O O,
axi aX] ox 2 ox 3

This implies that the sum of ILEs is equal to the
negative of the damping coefficient and does not vary
with time. The forcing parameter and stiffness parameter
are fixed and two different damping parameters are
chosen in the simulation (Fig. 2). The phase portraits for

27
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these systems are shown in Fig. 2(a), and the positive
Lyapunov exponent shows that both systems are chaotic
(Fig. 2(b). The corresponding ILEs are also shown in
Fig. 2(c). The ILEs looks apparently random, however
the sum of ILEs is always the same and equal to the
generalized divergence of the flow, and equal to the
negative of the damping coefficient as shown in Fig.
2(d). Clearly the sum of Lyapunov exponents is the same
as the sum of ILEs, so it is not shown in the Fig.. As a
result, it can be said that the sum of ILEs represents the
damping property. Now, we consider the system in which
the damping parameter is 0.5 and is changed to 0.4 at a
certain time (at 600 sec for this example). The results of
this system are shown in Fig. 3. In Fig. 3(a), it is shown
that the sum of Lyapunov exponents varies very slowly
when the damping parameter is changed, and so it is very
difficult to see whether there is any change at this time.
On the other hand, in Fig. 3(b), the sum of ILE:s is clearly
distinguishable at the right point when the damping
parameter is changed by changing the value from —0.5 to
—0.4. This shows how the sum of ILEs can effectively be
used for detecting changes of damping of a non-linear
(chaotic) mechanical system. The sum of SLEs is
presented in Fig. 3(c), and demonstrates the ability to
detect changes of damping. The SLE is obtained by
averaging 10 previous forcing periods of ILEs.

0T T TIe T 0w s
Evoliton Tame (Sucond)

o 0o 200 i wWe T e e
Evonrteon Tuns (Second

Wi Cs0 " wn
Evututon Tane (Socond)

Fig. 2 Results of the simulation for the Duffing equation
(left: A=04, k=1, ®=1,c=0.5, and right: A =
04,k=1,0=1,c=04)

(a) Phase portraits

(b) Lyapunov exponents for each case: both have a
positive Lyapunov exponent

(c) ILEs for each case: ILEs are fluctuating caused
by the continuously varying local divergence rate of
the nearby trajectrories

(d) Sum of ILEs for each case: they are equal to
~0.5(left hand side of the Fig.) and —0.4(right hand
side of the Fig.), and represent damping properties,
and these show that the rate volume contraction is
always the same

(a) ()
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i—u £l 0.3}
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2., e —
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Fig. 3 Results of the simulation for the Duffing equation
(A=04,k =1, ® =1, the damping parameter is
changed from ‘c = 0.5" to ‘c = 0.4’ at time 600 sec)
(a) The change of the sum of Lyapunov exponents is
not easily distinguishable
(b) The change of the sum of ILEs is very distinctive
(c) The change of the sum of SLEs is clearly
monitored: this is a averaged version of the sum of
ILEs at every previous 10 forcing period

Example 2: As another example an autonomous system,
the Van der Pol equation (X + u:(x2 -1Dx+kx =0)canbe
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expressed in the form of (1)

dx

o Y=hey

dt (28)
-é% =—c(x? -y -kx =f,(x,y)

(N.B. This system is not chaotic) The generalized
divergence of the flow is
2, of; _| ofy
S
This shows that the generalized divergence of the
flow is continuously changing with time, i.e., it is the
function of the variable ‘x’. Since the generalized
divergence of the flow is equal to the sum of ILEs, the
sum of ILEs is continuously varying with time and
represents the continuously changing damping property
of the system. On the other hand, the sum of Lyapunov
exponents shows the average behaviour of the damping
property of the system, and approaches the negative
value of the damping coefficient. The sum of SLEs

29

=—c(x? -1 29
axz] c(x ) (29)

shows the short term averaged behaviour of the damping
property of the system. The stiffness parameter is fixed
and two different damping parameters are chosen in the
simulation. Now, we consider the system for which the
damping parameter is 1 and is changed to 0.5 at certain
times (at 600 sec for this example). The results of this
system are shown in Fig. 4. In Fig. 4(a), we see that the
sum of Lyapunov exponents varies very slowly when the
damping parameter is changed, and so it is very difficult
to see whether there are any changes at this time. On the
other hand, in Fig. 4(b), the sum of ILEs is clearly
distinguishable at the right point when the damping
parameter is changed. Also the sum of SLEs is presented
in 4(c), and clearly demonstrates the ability to detect
changes of damping. From the above two non-linear
systems, it is shown that the ILEs or the SLEs has clear
advantage over the Lyapunov exponents in monitoring
the change of the damping property of a system.

_—
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-
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Fig. 4 Results of the simulation for the Van der Pol
equation (k = 1, the damping parameter is changed
from ‘c=1" to ‘c=0.5 at time 600 sec)

(a) The change of sum of Lyapunov exponents is not
easily distinguishable

(b) The change of sum of ILEs are very distinctive
(c) The change of SLE:s is clearly monitored: this is a
averaged version of the sum of ILEs at every
previous 10 forcing period

Example 3: The use of time series data

When we do not have prior knowledge of the
differential equations describing a system we need to use
measured data only. In order to obtain the Lyapunov
exponents from a time series, it is necessary to
reconstruct a phase portrait from a time series [11, 12].
From the reconstructed phase portrait, one can estimate
the Lyapunov exponents. The various methods of the
estimation of Lyapunov exponents can be found in [3, 4,
13-16], as well as ILEs in [9, 10]. In this simulation, a
time series (displacement signal: variable ‘x;’) of the
Duffing equation is used. All the parameters are the same
as in the previous simulation in Fig. 3, i.e., A=0.4, k=1,
c=0.5 and changed to 0.4, ®=1. As mentioned earlier, the
sum of ILEs are noisy. Thus, the sum of SLEs are used
for this simulation by assuming that one can reduce noise
by taking a time average. The results are similar to the
previous simulations. As shown in Fig. 5 (a), the sum of
Lyapunov exponents does not reveal the changes due to
the nature of estimation of Lyapunov exponents. On the
other hand, the change of damping parameter is
demonstrably monitored from the sum of SLEs as shown
in Fig. 5 (b) and (c). The effect of size of the ‘Window
length (orbital periods)’ for calculating the SLEs is also
shown in these Fig., i.e., the smaller window length gives
carlier detection while the larger window length gives
less variation. A smaller window length with reliable
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estimation of SLEs would be ideal, however this is
mainly depending on the algorithm used for the
estimation. Algorithms for calculating the Lyapunov
exponents from a time series are still a growing subject
as are studies of the SLEs (and ILEs).

(@)

0] w3
Feod 3o
Y x
14 109

1065 1so0 000 00 3000 0 0 1006 1300 3000 800
Evotunon Tare (Secuad) Evolutan Tine (Sucond)

] 50

Fig. S Results of the simulation from a time series
(corresponding to x, of the Duffing equation in Fig.
2,and A=04,k=1, =1, and the damping
parameter is changed from ‘c=0.5"to ‘c = 0.4’ at
time 1350 sec)

(a) Sum of Lyapunov exponents: the changes of the
sum of Lyapunov exponents are not clear

(b) Sum of SLEs averaged at 100 previous orbital
periods: numerical errors are greatly reduced, but
after 2000 sec the changes are evident

(c) Sum of SLEs averaged at 60 previous orbital
periods: numerical errors are not much reduced,
however the changes are evident after 1500 seconds

Conclusion

the
quantification of chaotic dynamics, but they represent

Lyapunov exponents are very useful for
only the average behaviour of the system, i.e., the
Lyapunov exponent is a measure of exponential growth
rate of nearby trajectories on average. On the other hand,
the ILEs describe the instantaneous behaviour of the
system, so when the characteristics of a system are
subject to change it may be possible to monitor these,
i.e., the ILE is a temporal measure and varies with time.
As an example of the use of the ILE and the sum of ILEs
we use mechanical systems to detect any changes of the
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damping. The numerical results show the possibility of
using ILEs in such variable conditions. The details of this
method to a real physical system is given in Part 2.
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