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The Development of Equivalent System Technique for Deriving an Energy
Function Reflecting Transfer Conductances
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Abstract - This paper shows that a well-defined energy function can be developed to reflect the transfer conductances
for multi-machine power systems under an assumption that all transmission lines have uniform R/X ratios. The energy
function is derived by introducing a pure reactive equivalent system for the given system. In this study, a static energy
function reflecting transfer conductances is also derived as well as the transient energy function. The proposed static
energy function is applied to voltage stability analysis and tested for various sample systems. The test results show
that the accuracy of voltage stability analysis can be considerably improved by reflecting transfer conductances into the

energy function.
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1. Introduction

The direct energy method has been developed for
transient stability analysis of power systems to avoids
which
integration.

simulation requires
Although
considerable progresses have been recently reported, it
still involves formidable problems to be solved for field
applications such as reflecting the effects of transfer
conductances and the control effects of exciters and speed
governors[2-11]. Recently it has been attempted to apply
the direct energy method to stability
analysis[12-13], which is another encouraging event in
the research area of the direct energy method. In the

the conventional time

time-consuming  numerical

voltage

application to voltage stability analysis, it has become
more important to reflect the effects of transfer
conductances since the voltage instability is rather a local
problem sensitively influenced by the transmission
resistances. Actually, local transmission lines of low
voltage level have relatively high R/X ratios. In this
respect, this study aims to develop a new energy function
to reflect the effects of transmission conductances for
multi-machine systems, which will be applied to voltage
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stability analysis.

Many authors have been contributed to the
development of an energy function to reflect the effects
of transfer conductances[4,5810,11]. However, most of
them could succeed in dealing with two-generator
systems only. Gudarul5] and Uemura[3] challenged the
task with multi-machine systems. They made some
progress with partial success but failed to provide a
well-defined energy function for general use. Later,
Chiang[6] discussed the non-existence of general energy
function for any lossy system with more than 3
machines. However, Moon et al[14] proved that a
well-defined energy function can be developed to reflect
transfer conductances for multi-machine systems under
the assumption of uniform R/X ratios for all transmission
lines by introducing several theorems regarding the
energy integral, in which complicate mathematics is
included.

This study is the extension of the
research{14], and provides a simpler approach to derive

previous

an energy function reflecting transfer conductances for
multi-machine systems by introducing an equivalent
pure-reactance system for the lossy system with uniform
R/X ratios. The equivalent system can be easily obtained,
from which a well-defined transient energy function can
be directly set up. In this study, a static energy function
reflecting transfer conductances is also derived as well as
the transient energy function. The proposed static energy
function is applied to voltage stability analysis and tested
for various sample systems. The test results show that

175



VAP EIWE L 46A% 10 1999% 10R

the accuracy of voltage stability analysis can be
considerably improved by reflecting transfer conductances
into the energy function.

Il. Derivation of An Energy Function for Multi
-Machine Power Systems with Uniform R/X Ratios

In order to derive a well-defined energy function for
the multimachine system, we have adopted a classical

connecting bus i and j
The system admittance matrix Yy, can be expressed
as follows:

Yius =[Gj;+iB;) 2)

Then, We can easily find the following relationships

between line impedances and elements of Y.

model for the generators and an assumption that the
system has uniform R/X ratios after removing all the
generator terminal nodes. Fig.l (a) shows the original
system. Fig.l1 (b) shows the reduced system, where it is
noted that a generator can be denoted as an ideal
generator with zero internal impedances. We will consider
the reduced system Fig.l (b) rather than the original

Figl. (a) to derive an energy function.

(a) Original System

@ -(Gy +iBy)

@ -®

PLk + jQLk
(b) Reduced System
Fig. 1 System representation

In Fig 1.(b), all generators can be considered as ideal
generators with zero-internal impedances. Actually, we
will assume that all transmission lines in Fig 1.(b) have
uniform R/X ratios. That is

L
Xi =K 1)

where T1;;, X; being resistance and reactance of a line
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i Tiby = e ; 3.
i1 Ty +ix; riz,~+]xi2j (32)
Giy=—g;, By=—by, i¥ij 3

Giiz_zGij , Bii=_ZBij (3.c)

From the above relationships, the elements of Yy

also keep the following uniform ratios:

G I

—_— = —

BIl Xjj (4.a)
_— Gi‘

o B g (4b)

The swing equations for the system in Fig 1.(b) can
be given by

(Pn'u —Diwi - M,a),) - P?ﬂ = gvivi(Gﬁ Cos 0ii + BijSin aij)
(5.a)
Q?}?—Qil:= ’g“ViVi(Gﬁ sin 05_BijCOS aii) (5b)

With the use of (4.a) and (4.b), the above equations
can be rewritten as

(P —Diw;—M; ;) — P}
= gV,V,( - KBii Ccos 0ij + Bij sin 0ii) (6.a)

Q& - ?5=§Vivi(—KBﬁ sin 83— Bj;cos 6;) (6.b)

By manipulating the above equations, we can derive
the following equations, which are just the same form of

the swing equation as the pure reactance system yields.

@ (6.a) - Kx(6.b) yields:

P;ni—Diwi“Mi(l.)i= gV;Vj((l‘l”Kz)Bﬁsinﬂﬁ) (7
| a5
where Poi=P.~KQg (8.a)



PL=PE-KQ¥ @ =12N) (8.b)

® K*(6.a) + (6) yields:

Qai~Qui==(1+K)ByVE= 3 ViV,(1+K)Byeos 6,(9)
jFi

where QGizQGi_'_K(Pmi_Dia)i—‘Mia.)i) (10.a)

Qu=QF+KP{® (i = L2,N) (10.b)

By using the above result, we can establish an
equivalent pure-reactive network for the system in Fig.l
(b} with uniform R/X ratios. Fig.2 shows the equivalent
network.

Now, one can easily check that the swing equation for
the above equivalent system are just the same as (7) and
(9), which reconfirms the equivalence of the two systems.

For convenience, say that generator buses are
numbered first up to m and load buses next. Since the
equivalent system is a pure reactance network, the

energy function can directly be set up as follows:

E=-%'2‘1M.w|2
(v.a
_'% 2;[(1 +K2)BﬁV?+ g(l +K2)BijViViCOS aij
it [ Vs, 6]
6 8
=% [ Pnde+ 3] [ Pide,
V' Q6 —Qu
- g . Vu—Tdvi (11)

In the energy function above, Vi (i=1,2,--,m) denotes
the generator internal voltage which is kept constant.

Consequently, the last term vanishes for generator buses.

Py +iQu

Hy, D,
P2 O2

Fig. 2 Equivalent pure reactance network
That is
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By substituting (8.a), (8.b), (10.a), (10.b) and (12) into
(11), we can obtain the following energy function:

=1 2
E= 2 |gl\di(l),
1 5 2 ) [v.8
- 2 igi[(l'f'K )BﬁV; + ’g(l"‘K )Bi;ViV,-cosﬁij]
it (Vy, &)
8 8:
-3 [ (Pu—KQee+ 3] . [ (PR-KQENE,
= 8o i= 8o
Vi Q5P s
+2 ., QLKL gv, (13)

Since it is derived for the pure-reactance system in
Fig.2, the above energy function should satisfy the
semi-negativeness of its time derivative. However, we
can directly check the semi-negativeness of the the
energy function (13) by using the partial derivative chain

rule.

B _ 3 g8 du gp dV, o8 d6,
dt i= a(l)i dt 3V, dt 30, dt

=—§Diwf <0 (14)

The proof is given in Appendix. Here, it is noted that
the proof in the appendix shows that the original swing
epuations (5.a) and (5.b) govern the system so that the
energy function in  (13) exactly satisfy the
semi-negativeness in (14). This means that the the
function given by (13) is suitable for the energy function
for the original system described by (5.a) and (5.b),
although it is an energy function derived for the
equivalent system in Fig.2, which verifies the validity of

the equivalent system.

lll. Application to Voltage Stability Analysis

Voltage stability analysis concerms only the static
stability due to parameter changes, which makes the
proposed energy function well applied. For voltage
stability analysis, a new static energy function is derived
to reflect the transfer conductances, of which the effects
are not negligible in the local voltage stability problems.

In order to set up a static energy function, we first
remove the dynamic part from the energy function (13)
by letting

W= 0 (153)
Pmi = (s}l; (15b)
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This is the first study to show the applicability of the
proposed energy function, and thus we adopt the
assumption that all loads be constant power loads so as
to make the problem simplest. That is

P, =P% (16.3)
Qu=Q%f (16.b)

Since Qci can be determined by (6), the energy

function (13) can be simplified as

1 [v.,6
=13 [(1 +KH)BiVi+ 2‘1(1 +KHB;V:V;cos 0;
i (V. 8]
8
- P86 -6+ 3] . [, KQa(V. 05,
+ S (PE-KQEX 6~ 6)
+ QR +KPD o (V,/ V) an

Here, a new energy function is proposed for the
multi-machine system with uniform R/X ratios for all
transmission lines. However, the evaluation of the integral
term in (17) has some problem for general applications
since Qg is a function of state variables ( §, V). The
integration of the integral term should require some
approximation to avoid the problem of path-dependency.
One of the approximation methods is to take the integral
along a straight line which connects the starting point
and the end point of the integrall. The approximation

procedures can be found in Reference[14]

Check of the Validity of the Static Energy Function

In order to show the validity of static energy function
(17), it must be proven that its local extremum or saddle
points satisfy the load flow equations. With the careful
treatment of the double summation, the partial derivatives
of the energy function (17) can be easily calculated as

follows:

OE
36,

= L1 +KIB,VV,sin6,] - (PE~KQa) + (PT - KQE)

1F1

=0 (1j=123 -, Nandi * slack) (18.a)
JE
av,
Sl? SQ
=—(1+K»B;V,+ $(1+K2)Bi,»v,»coseﬁ+—i'iv@—” =0

(i=mtl, m+2, -, Nand j =1, 2, -, N) (18b)
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Here, one can easily check that [(18.a) + Kx(6)] and
[(186) - K*(18.a)] yield the following load flow equations
respectively.

GiiViZ+ g(GﬁViVicos 0ﬁ+BﬁViV,-sin 6,,)-P?;':+Pil:=0
(i,j=1,23 ~,Nandi* slack) (19.)

_BiiV:i)' + gl‘ViVj(GijSin 05 _BijCOS 05) +Qi‘; =)
(196}

Therefore, the proposed energy function can be well
applied to the direct energy method for voltage stability
analysis which concermns only the static stability due to
parametric changes.

In this study, the proposed static energy function (17)
is examined to determine the maximum loadability and to
provide an appropriate voltage stability index. It is
well-known that the energy function provides the most
reliable voltage stability index for the system with pure
reactive transmission lines. However, its application has
been limited since the conventional energy function can
not reflect the effects of transfer conductances, which
may crucially affect the voltage stability for the heavily
loaded local sub-systems. The proposed energy function
alleviates these disadvantages of the energy function
direct method by taking into consideration partially the
effects of transfer conductances.

In the practical point of view, the proposed energy
function can be well applied to local voltage stability
analysis with the assumption of uniform R/X ratios.
Numerical results in the next section show that the
maximum loadability can be corrected to a considerable
extent by reflecting the transfer conductances with

uniform R/X ratio.

IV. Numerical Result

The proposed static energy function has been applied
to voltage stability analysis and tested for the 6-bus,
9-bus sample systems and New England 39-bus system
with the use of various R/X ratios.

The purpose of this study is to show that the
proposed energy function improves the reliability of the
proximity index by reflecting the transfer conductances
when the energy margin is adopted as the proximity
index to indicate the proximity to the collapse point. The
energy margin is defined to be

Emargin=E( xsep)_E( xuep) (20
where Xsp - Stable Equilibrium Point
Xuep - Unstable Equilibrium Point



The load level index A is defined to indicate the ratio
of the present load to the base-case load, so that the
present loads and present generations can be denoted by

Pri=A Pryp
QLi=A QLiO (1 = 1, 2. AR N) (21)
Psi=4 P

Voltage stability analysis has been performed to
determine the proximity to the collapse point by using
the time-consuming CPflow (Continuation Power flow)
technique. With the continuous increase of the load level
A, the CP flow algorithm searches a stable solution and
unstable solutions. With the use of the CP flow results,
we examine the nose curves at weak points and the
energy margin by the proposed energy function. With the
use of R/X ratios, the effects of transfer conductances
are examined with the discussion of the application of the

energy margin to practical system operation.

El-Abiad 4-Gen 6-Bus System [7]

First, the P-V nose curves are examined for load
buses in case of K=0, i.e. pure resistive case. The results
are shown in Fig. 3, from which we can find the

maximum load level and the weakest bus.

Fig. 3 P-V nose curves at load buses with K=0.0

Since Bus 5 is the week bus, we intensively
investigate the P-V nose curves at Bus 5 with various
R/X ratios(K=0.0, 0.05, 0.15, 0.3) as given in Fig. 4.

6
Load Lavel (A}

Fig. 4 P-V nose curves at Bus 5
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With the increase of load level , the energy margin is
plotted in Fig. 5, where the R/X ratio is also changed
from 0.0 to 0.3.

Fig. 5 Energy margin curves

New England 10-Gen 39-Bus System

By wusing similar procedures as given above, the
following results are obtained for the New England
39-Bus system. With the comparison of Fig. 6 to Fig. 9,
one can easily find that the proposed energy function can
well reflect the effects of line resistances to correct the
load margin to a considerable extent.
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Fig. 8 P-V nose curves at Bus 6
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Energy Margin

Amx = A=7 @ Elgin (22)
where is the quadratic constant

With the above observations, the authors would like to

strongly recommend to use the energy margin as the

index of the voltage stability margin.

VI. Conclusions

Load Laveft)

Fig. 9 Energy margin curves

In the above results, it should be noted that the P-V
nose curves have strange shapes at low load level with
relatively small A. This is because there exist multi
unstable solutions for the highly loaded system and each
of them may provide a different P-V curve for the range
of A < 1.09. However, the lower parts of P-V curves

for the range of relatively small A have little meaning to
determine the proximity to the collapse point. Fig. 9 also
shows unusual trend in the energy margin for the range

of A < 1.09, which can be interpreted in the same way.

Comparisons of the P-V Nose Curve and Energy
Margin Methods

® Both of the P-V nose curve and the energy margin
have irregular behaviors for the lightly loaded range(See
Fig.4, Fig6, Fig7, Fig. 8 and Fig.9). Consequently, both
curves are available for the heavily loaded range to
estimate the proximity to the collapse point.

® Fig. 5 and Fig. 9 show that the proposed energy
function well reflects the effects of transfer conductances.
Examining the curves of energy margin, one can find
that the conventional energy function approach, which
cannot reflect the transfer conductances, may result in
considerable errors in the calculation of voltage stability
margin.

® The energy margin is conventionally considered to
be a most reliable index but has limited applications due
to its crucial drawback of reflecting the effects of
transfer conductances. However, the proposed energy
function can solve the problem not completely but to the

applicable level in the practical point of view.

@ Energy margin provides a unified voltage stability
index in contrast to the P-V curves (Each P-V curve at

each bus may provide a different index).

@® The curve of energy margin behaves very nice well
fitted to a quadratic curve in the heavily loaded range.
Therefore, it can be used to estimate the maximum

loadability by using the approximated relation as follows:
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This paper has shown that a well-defined energy
function can be developed to reflect the transfer
conductances for multi-machine power systems under an
assumption that all transmission lines have uniform R/X
ratios. The energy function is derived by introducing a
pure reactive equivalent system for the given system. In
this study, a static energy function reflecting transfer
conductances is also derived as well as the transient
energy function. The proposed static energy function is
applied to voltage stability analysis and tested for various
sample systems. The test results show that the accuracy
of voltage stability analysis can be considerably improved
by reflecting transfer conductances into the energy
function.

The method of energy margin provides a unified
voltage stability index while the method of P-V curve
always involves the problem of selecting the weakest
bus. In this respect, the energy margin method is
strongly recommendable as the voltage stability index.
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Appendix

i- iven f Time-Derivati f
Eunction
The semi-negativeness of the time derivative of the
proposed energy function will be shown by using the
chain rule for the partial derivatives. For the proposed
energy function (13), the partial derivatives in (14) can be
evaluated as follows:

S5 = 2{ViVi(L+K"B;sind;) - (P —KQE

daAdag etddte duzigts S8 A S7iAlaY J1de) i
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+(PE—-KQ&) =—-Diw;i—M;w;

i=12 -, m (AD)

2B — S}V Vi1 +K)Bysin by} — (P —KQE)
+(PE-KQ2)=0 (i = m+*1, m+2, -+, N) (A2

: 2+QB

“g‘g—i =~jg{Vj(l+K“)Bijcosﬁij}_ (KPGVi Qz)

® QP

$AEPREAD o et me2, -, N AD)
d;t,i =0 i=1,2 - m (A4)
3—5 =Mo (i=12 -, m (A5)

Here, it is noted that the last step in (A.1) is obtained
by using the swing equation (9), and that the conditions

of the real/reactive power balances at each bus make
(A2) and (A3) zero. For the generator buses, can be
replaced bysinceis the phase angle of the internal induced
voltage for generator i, and Eq.(A4) comes from the

assumption that

the generator internal voltage be

constant. By substituting the (A1) (AD5) into (14), one
can easily show the following semi-negativeness of the

time-derivative.

dt

dE _ dE dwi |, GE dVa+@ dg;
i= a(l), dt 3V, dt 30, dt

- —zDia)? < 0014)
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