Computerized Tomographic Study on the Paranasal Sinusitis

Sun-Young Choi, Sug-Young Lim, Kwang-Joon Koh

Department of Oral and Maxillofacial Radiology, School of Dentistry, and Institute of Oral Bio Science, Chonbuk National University

Objectives: The purpose of this study is to evaluate the computed tomographic (CT) images of the paranasal sinusitis (PNS). Materials and Methods: The author examined the extent and recurring patterns of the paranasal sinusitis and some important anatomic landmarks. The author analyzed PNS images retrospectively in 500 patients who visited Chonbuk National University Hospital between January 1996 and December 1997. Results: The most frequently affected sinus was maxillary sinus (82.9%), followed by anterior ethmoid sinus (67.9%), posterior ethmoid sinus (48.9%), frontal sinus (42.0%) and sphenoid sinus (41.4%). The characteristic features of CT images of the sinusitis were sinus opacification (22.4%), mucoperiosteal thickening (34.3%), and polyposis (2.0%). Sinonasal inflammatory diseases were categorized into 5 patterns according to Babbel’s classification. They were 1) infundibular (13.0%), 2) ostiomeatal unit (67.4%), 3) sphenoid sinus (13.0%), 4) sphenoidal recess (9.6%) and 5) unclassifiable patterns (18.0%). The incidences of contact between sinus and optic nerve were as follows: the incidences of contact with posterior ethmoid sinus, sphenoid sinus, both posterior sinuses were 11.4%, 66.8%, 6.3%, respectively. The incidences of contact between sphenoid sinus and maxillary nerve, vidian nerve, internal carotid artery were 74.5%, 79.2%, 45.1%, respectively. The incidences of pneumatization of the posterior ethmoid sinus were as follows: normal 70.6% and overriding type 29.4%. The incidences of sphenoid sinus pneumatization were as follows: normal 56.9%, rudimentary 12.5%, pterygoid recess 22.7%, anterior clinoid recess 2.7%, and both pterygoid and anterior clinoid recess type 5.2%. Conclusions: The inflammatory sinonasal diseases were classified into five patterns using the CT of PNS, which was proven to be an excellent imaging modality providing detailed information about mucosal abnormality, pathologic patterns, and the proximity of the important structures to the posterior paranasal sinuses. This result will aid in the interpretation of CT of PNS functionally and systemically. (J Korean Oral Maxillofac Radiol 1999:29:459-476)

Key words: paranasal sinusitis, computed tomograph
는 점형동이 후비낭으로부터 점형굴에서 발생하지만 ⑴.

부비동은 머리의 무게 감소, 소리의 공명 등의 기능 이외에도 비도(nasal pathay)의 일차적 기능인 가습, 가온, 흡입공기로부터의 이물질 제거, 섬모점막의 정화작용(mucociliary clearance)을 수행한다. 부비동이 생리적 기능을 수행하기 위해서는 동공의 개통, 섬모조구의 기능, 분비물의 성질이 중요한 요소이다 ⑵.

최근에는 부비동구-비도 단위(ostiomeatal unit)의 폐쇄가 부비동염 발생의 주요 원인으로 작용한다는 개념이 지배적이다 ⑶. 부비동구-비도 단위는 상악동공, 사골두부와 반월엽골을 거쳐 증비도를 통하는 좁은 통로를 통칭하는 것으로, 상악동, 전악골동 및 전두동의 정화작용을 수행한다. 특히 전사골부위가 주목되고 있으며 ⑷, 부비동구-비도 단위의 일부 구간에서 두 점막층이 접촉하는 곳은 섬모점막의 정화작용이 국부적으로 손상을 일으키기 쉽고, 분비물의 저류와 감염의 유발을 매우 높게 한다. 점막의 비정상적 변화, 섬모운동의 비정상적 기능은 점막하부층과 기질 내 침투를 거쳐 점막변형, 폐렴형성 등으로 이어져 동공이 폐쇄되고 화농성 점막형성 등의 반복적 감염으로 인해 발생할 수 있는 패혈증과 같은 이환의 증상을 부비동염의 정도보다 부위에 더욱 연관이 있다는 주장이 받아들여지고 있으므로 이에 대한 방사선학적 고찰도 필요하다.

최근의, ⑸, ⑹, ⑺는 상악동엽에 관한 방사선학적 연구를 통하여 점막변화와 골벽 변화의 유형을 구분하였으며, 치사 원인을 규명하기 위하여 상악동صط와 치아의 관계에 대하여 검토하였고, 환자의 주요 진단환황질로 비교한 바 있다. 골벽변화의 형태적 분류에서 충혈과 조직의 생성증에 의한 퇴행과정으로 인해 골벽이 부분적으로 약해지고 불명료해짐을 관찰하였고, 만성 염증의 경우 골절화와 피질골의 두께가 증가하는 것에 주목하였다. Worth는 상악동엽의 염증황질에 대하여 방사선학적 검사를 실시한 때에는 어떠한 사진상이든지 반드시 모든 부비동을 포함해야 하며 특히 사골두를 주의를 기울여 관찰하여야 한다고 보고하였다. Yoshiura 등 ⑻는 전산화단층촬영을 이용한 상악동엽에 관한 연구에서 점막변화의 유형과 골벽두께의 변화를 분류하고, 기타 부비
동과 비강의 침범 여부 및 상악동의 전체적 크기 감소 등에 대하여 보고한 바 있다.

Silver등26)은 상악동의 혼탁상과 관련하여 만성 상악동염과 악성 종양의 전산화단층사진상에 대한 비교 연구를 통해 상악동염의 경우 상악동의 크기가 감소되고, 골변두기 증가되는 소견을 보였고 간혹 비강측벽과 안와저벽에서 골침식 (erosion)의 소견을 보인 반면, 악성 종양의 경우에 있어서는 상악동의 크기가 증가되고 골벽이 약아지며 폐쇄되는 소견을 보이면서 모든 증례에서 골벽이 약아짐을 관찰하였다 하였다. 특히 측두하벽의 변화는 종양에 대하여 특이적인 관계를 보이고 종양의 재발과도 높은 상관성을 보인다고 하였다.

Unger등27)은 비부동적관에 대한 전산화단층 방사선학적 연구에서, 매우 많은 골부위의 경우에는 인접 연조직과 밀도의 평균에 의하여, 혹은 좁은 창폭(window width)설정으로 인하여 골침식의 소견으로 오인될 수 있다고 하였으며, 조직의 밀도차로 양성과 악성 병소를 감별하는 것은 신뢰할 수 없다고 하였다. 또한 조영증강상은 부가적 정보를 제공하기도 하지만 그 자체만으로 염증징상과 악성 종양을 감별하는 것은 어렵다고 하였다.

기능적 부동내시경수술과 관련된 전산화단층사진상에 관한 연구로는 Zinreich28), Mafee29), Yousem등30) 등의 보고가 있다. McAlister등31)는 일반방사선사진과 관상주사 전산화단층사진상을 이용하여 재발성 부동염을 비교, 평가하였는데 특히 전사골두부의 진단질환이 비부동염의 제발에 있어서 중요하다는 결론을 얻었으며 그 인지도에 있어서 전산화단층사진상의 우월성에 대하여 논하였다. Panje와 Anad32)는 순전 전산화단층사진상에서 비부동염의 이환 정도를 구분하고 이에 관련하여 수술의 범위를 정한 분류법을 제안한 바 있다. 또한 Babbel등33)는 이러한 기능적 이해를 바탕으로 부동염환자군의 전산화단층사진상을 검토하여 심장모양의 정화작용경로를 반영한 분류법을 제안하고 그 각각의 특징을 보고한 바 있다.

본 연구의 목적은 부동염환자의 전산화단층사진상을 대상으로 각각의 부동염병의 이환상태와 이환범위를 평가하고, Babbel의 분류법을 적용시킴으로써 기능적 해석을 하고자 하였다. 또한 후방부동염과 인접 해부학적 구조동양의 점측빈도를 검토함으로써 부동염의 수술 및 진단시 도움이 되도록 하였다.

Ⅱ. 연구 재료 및 방법

1. 연구 재료

본 연구는 1996년 1월부터 1997년 12월까지 전북대학교병원에 내원하여, 전산화단층촬영 장치 Somatom Hi-Q(Siemens, Germany)로 관절압 133kVp, 관절류 225mA, 노출시간 2sec의 조건으로 촬영한 500명의 부동전산화단층사진상 이용하였다. 영상은 폴중심 연산장(bone algorithm window)을 사용하였고 창폭은 2000, 창중심(window center)은 -150으로 설정하였다. 관상주사는 경구에 수각의 면으로 전두동까지는 5mm두께의 연속단층을 얻었고, 후방부동-비도 단위에서부터 접합동의 최후방까지 3mm두께의 연속단층을 얻었다. 횡단주사는 경구에서 평행한 면으로 전두동의 최상방부터 상악동의 기저부까지 5mm두께의 연속단층을 얻었다. 부동염환자의 경우 조영증강상을 배제하였다.

2. 연구방법

2.1. 부동의 상태 유형

Type I. 정상
Type II. 점막비후
Type III. 폐렴형성
Type IV. 혈탁
Type V. 기타

부동염 내에 전혀 연조직 밀도가 관찰되지 않고 공기로만 채워져 있을 때 Type I으로 분류하였다.

461
2.2. Babbel의 분류법에 따른 부비동염의 유형
 Type I. 사골두형 (Infundibular type)
 Type II. 부비동구-비도단위형
 (Ostiomeatal unit type)
 Type III. 접사합형
 (Sphenethmoidal recess type)
 Type IV. 비부비동질립증
 (Sinonasal polyposis)
 Type V. 산발형
 (Sporadic or unclassifiable type)

부비동염의 분류는 Babbel의 분류법을 이용하였으며 Type I, II, III의 경우는 가장 우세하다고 하여 복합적으로 기록하였고 Type IV, V는 부가적인 경우로 좌우를 구분하지 않고 단일화로 평가하였다.

Type I, II, III는 폐쇄군으로서 Type I은 사골두의 폐쇄로 인한 동측의 상막동맥은, 형성이므로 기존의 동측의 전두동맥, 상막동맥, 전사골동맥의 일부 혹은 전세가 억제되어 나타나는 경우가 해당된다. Type III는 접사합요부전이 폐쇄되기로 접근이 혹은 후사골동맥이 억제된 경우이다.

Type IV는 평가형으로 역시 기존의 비강과 부비강 전반에 걸쳐 나타나고 다양한 부비동 폐쇄소견과 동반되는 경우이며, Type V는 접이형, 접이형, 부비동구-비도단위 또는 접사합요의 폐쇄를 동반하지 않는 경미한 접이형이거나 부비강 후부에 해당된다. 술 후 변화상은 Babbel분류법에서는 Type V로 구분하였으나 본 연구에서는 각각의 유형분류에 포함시켰다.

2.3. 후방 부비동과 인접 해부학적 구조와의 접촉빈도

후사골동과 접촉이 상막신경, vidian nerve, 내경동맥, 사신경과 접촉하는 빈도에 대하여 검사하였다. 또한 후방 부비동과 인접하는 해부학적 구조 사이에 없는 피질골만 존재하는 경우에 한하여 접촉한다고 표시하였다.

2.4. 후방 부비동의 함기화 정도

후사골동의 함기화는 봉소(air cell)들이 사골 미로(ethmoid labyrinth)의 통상적 후방경계 내에 국한되었을 경우를 정상군으로, 접촉동쪽으로 후방확장되였을 경우를 확장군으로 구분하였다. 접촉동측의 함기화는 털리가(tertiary recess(sella turcica)를 넘지 않은 경우는 미발육(rudimentary type)으로 하였으며, 털리가에 이르는 vidian canal과 maxillary nerve foramen의 외기방새를 통하는 선내에 있는 경우는 정상으로 취급하였고, 그 기준 선보다 더 외기방새된 경우를 육자합형(pterygoid recess type)으로, 전두골기
(anterior clinoid process) 부분에 함기화가 보일 때는 그 정도에 상관없이 전두골기함형 (anterior clinoid recess type)으로 구분하였다.

III. 연구성적

1. 연구대상의 분포 (Table 1)

연구대상은 남자 302명(60.4%), 여자 198명(39.6%)이었으며, 연령분포는 4세에서 85세까지로 평균 36.0세였다. 전산화단층사진에서 정상소견을 보인 경우가 45명(9.0%), 염증소견을 보인 경우가 438명(87.6%), 기타절환자로 17명(3.4%)이었다. 수술경험자는 평균 23명(4.6%), 양측이 37명(7.4%)이었으며 모두 재발된 경우에는 염증활성자군에 포함시켰다. 기타절환으로는 편평세포암 12명, 악성 흉색증 1명, 뇌수체신종 1명, 다형성신종 1명, 형질세포증 1명, 미분화암증 1명 등 17명은 모두 평가 대상에서 제외하였다.

2. 각 부비동의 이환상태 (Table 2)

이환상태는 상막동(82.9%), 전사골동(67.9%), 후사골동(48.9%), 전두동(42.0%), 접촉동(41.1%) 순이었다. 이환상태의 분류중에서 전방에서는 접촉과함의 가장 높았으며(34.2%), 상막동(27.5%), 전사골동(25.1%) 순이었다. 풀림은
Table 1. Age and Sex Distribution of Subjects

<table>
<thead>
<tr>
<th>Age group</th>
<th>Male (%)</th>
<th>Female (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>8(1.65)</td>
<td>5(1.03)</td>
<td>13(2.69)</td>
</tr>
<tr>
<td>10-19</td>
<td>74(15.32)</td>
<td>40(8.28)</td>
<td>114(23.60)</td>
</tr>
<tr>
<td>20-29</td>
<td>56(11.59)</td>
<td>32(6.62)</td>
<td>88(18.21)</td>
</tr>
<tr>
<td>30-39</td>
<td>52(10.76)</td>
<td>30(6.21)</td>
<td>82(16.97)</td>
</tr>
<tr>
<td>40-49</td>
<td>46(9.52)</td>
<td>31(6.41)</td>
<td>77(15.94)</td>
</tr>
<tr>
<td>50-59</td>
<td>33(6.83)</td>
<td>37(7.66)</td>
<td>70(14.49)</td>
</tr>
<tr>
<td>60-69</td>
<td>12(2.48)</td>
<td>12(2.48)</td>
<td>24(4.96)</td>
</tr>
<tr>
<td>70-79</td>
<td>10(2.07)</td>
<td>4(0.82)</td>
<td>14(2.89)</td>
</tr>
<tr>
<td>80-89</td>
<td>1(0.20)</td>
<td>1(0.20)</td>
<td>2(0.40)</td>
</tr>
<tr>
<td>Total</td>
<td>291(60.24)</td>
<td>192(39.76)</td>
<td>483(100.0)</td>
</tr>
</tbody>
</table>

Table 2. Appearance of Paranasal Sinusitis on Computed Tomograms

<table>
<thead>
<tr>
<th></th>
<th>Frontal sinus</th>
<th>Anterior ethmoid sinus</th>
<th>Maxillary sinus</th>
<th>Posterior ethmoid sinus</th>
<th>Sphenoid sinus</th>
<th>Subtotal (%) Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
</tr>
<tr>
<td>Normal</td>
<td>221</td>
<td>238</td>
<td>151</td>
<td>156</td>
<td>71</td>
<td>66</td>
</tr>
<tr>
<td>Mucosal thickening</td>
<td>106</td>
<td>98</td>
<td>202</td>
<td>215</td>
<td>235</td>
<td>221</td>
</tr>
<tr>
<td>Polyposis</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>11</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>Total obliteration</td>
<td>153</td>
<td>143</td>
<td>118</td>
<td>100</td>
<td>139</td>
<td>168</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 3. Incidence of Major Patterns of Inflammatory Sinonasal Diseases

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Incidence of major patterns (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lt</td>
</tr>
<tr>
<td>Normal</td>
<td>83(16.6)</td>
</tr>
<tr>
<td>Type I</td>
<td>55(11.0)</td>
</tr>
<tr>
<td>Type II</td>
<td>157(31.4)</td>
</tr>
<tr>
<td>Type III</td>
<td>3(0.6)</td>
</tr>
<tr>
<td>Type I, III</td>
<td>5(1.0)</td>
</tr>
<tr>
<td>Type II, III</td>
<td>180(36.0)</td>
</tr>
<tr>
<td>Type IV</td>
<td>48(9.6)</td>
</tr>
<tr>
<td>Type V</td>
<td>90(18.0)</td>
</tr>
</tbody>
</table>
상악동(3.9%)에서 가장 많이 관찰되었다.

한편 폴립이 비강에 단독으로 나타난 경우는 122명(24.4%)이었다.

기타절환으로는 상악동의 경우가 점액지류낭
16예, 습후낭 9예, 파쇄적 낭 1예, 점액낭 1예로
가장 많았으며, 전두동에서는 골증 2예, 점액지
류낭 1예, 전사골동에서는 골증과 점액낭이 각각
1예씩이었다.

3. 배출경로에 따른 부비동염의 양상별 빈도
 (Table 3)
 Type I은 좌측 60예(12.0%), 우측 70예
(14.0%), Type II는 좌측 337예(67.4%), 우측
337예(67.4%), Type III는 좌측 188예(37.6%),
우측 202예(40.4%)의 빈도를 보였다. Type IV
은 48명(9.6%)에서, Type V는 90명(18.0%)에
서 나타났다.

4. 인접 해부학적 구조와 후방 부비동간의 접
 축빈도 (Table 4)
 사신경의 경우 11.4%에서 후사골동과 접촉, 66.8%
는 접형동과 접촉, 그리고 두 부비동과 모
두 접촉하는 경우는 6.3%이었다. 상악신경,
vidian 신경, 내경동맥은 접형동과 각각 74.5%,
79.2%, 45.1%의 접촉빈도를 보였다. 모든 경우
예외 뒤측간의 유의한 차이는 없었다
(P > 0.05).

Table 4. Incidence of Contact Between Posterior Sinuses and Important Anatomical Structures

<table>
<thead>
<tr>
<th></th>
<th>Optic nerve</th>
<th>Maxillary nerve</th>
<th>Vidian canal</th>
<th>Internal carotid artery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
</tr>
<tr>
<td>non-contact</td>
<td>76</td>
<td>74</td>
<td>127</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>(15.7)</td>
<td>(15.3)</td>
<td>(26.3)</td>
<td>(24.8)</td>
</tr>
<tr>
<td>posterior ethmoid</td>
<td>59</td>
<td>51</td>
<td>105</td>
<td>96</td>
</tr>
<tr>
<td>sinus contact</td>
<td>(12.2)</td>
<td>(10.6)</td>
<td>(21.7)</td>
<td>(19.9)</td>
</tr>
<tr>
<td>sphenoid sinus</td>
<td>315</td>
<td>330</td>
<td>356</td>
<td>363</td>
</tr>
<tr>
<td>contact</td>
<td>(65.2)</td>
<td>(68.3)</td>
<td>(73.7)</td>
<td>(75.2)</td>
</tr>
<tr>
<td>posterior ethmoid</td>
<td>33</td>
<td>28</td>
<td>378</td>
<td>387</td>
</tr>
<tr>
<td>and sphenoid sinus</td>
<td>(6.8)</td>
<td>(5.8)</td>
<td>(80.1)</td>
<td>(80.4)</td>
</tr>
<tr>
<td>contact</td>
<td></td>
<td></td>
<td>(46.4)</td>
<td>(43.7)</td>
</tr>
</tbody>
</table>

Table 5. Degree of Pneumatization of Posterior Paranasal Sinuses

<table>
<thead>
<tr>
<th></th>
<th>Degree of pneumatization</th>
<th>Lt</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior ethmoid</td>
<td>normal</td>
<td>350(72.5)</td>
<td>332(68.7)</td>
</tr>
<tr>
<td>sinus</td>
<td>overriding</td>
<td>133(27.5)</td>
<td>151(31.3)</td>
</tr>
<tr>
<td></td>
<td>rudimentary</td>
<td>62(12.8)</td>
<td>59(12.2)</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>279(57.8)</td>
<td>271(56.1)</td>
</tr>
<tr>
<td>Sphenoid sinus</td>
<td>pterygoid recess</td>
<td>105(21.7)</td>
<td>114(23.6)</td>
</tr>
<tr>
<td></td>
<td>anterior clinoid recess</td>
<td>15(3.1)</td>
<td>11(2.3)</td>
</tr>
<tr>
<td></td>
<td>pterygoid and anterior</td>
<td>22(4.6)</td>
<td>28(5.8)</td>
</tr>
<tr>
<td></td>
<td>clinoid recess</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

464
5. 후방 부비동의 합기화 정도 (Table 5)
부비동의 합기화는 등장이 70.6%, 후방확장형이 29.4%였고, 접형동의 경우 미발육형 이 12.5%, 익들함형이 22.7%, 전상돌기함형이 2.7%이었으며 익들함형과 전상돌기함형이 혼합하는 경우는 5.2%이었다. 모든 경우에 있어서 좌우측의 유의한 차이는 없었다 (P > 0.05).

IV. 충혈 및 고안

부비동염의 진단과 치료시에는 비강과 부비 동의 정상 해부학적 구조와 병변세리기전을 이해 하여야 하며 특히 혈소부위 및 점막침모의 정화 작용 (muco-ciliary clearance)과 연관되어 평가해야 한다. 부비동염은 감기의 포함한 상기도감염, 외상 및 알레르기 등의 비생 원인들이 가중 혼합하고 범부비동염의 형태나 국소적 형태로 이환될 수 있다.

부비동염이 발생되는 임상증상은 두통, 안면통, 후안통, 비루, 후비루, 비폐쇄, 구취, 만성체계, 인후염 등이며 임상검사사에는 부비동에 인접한 피부에 발적과 부종을 동반하고 출현시 미만성의 암호를 호소한다[4].

부비동염의 진단시 시행되는 다양한 검사법 들 가운데 혼히 시행되는 전방비경법은 부비동질환과 관련되어 보일 수 있는 비강벽벽의 변화가, 즉 미만성의 환반, 국소화된 부종, 풍부한 혈행성 변화 등을 관찰할 수 있으며 축혈거제사용후에는 증상도 부족에서 환부성 점막물질을 확인할 수 있고 비인두경사상에는 후방각 으로 환부성 점막분비물의 배출을 확인할 수 있다. 일반방사 선진상에서는 부비동 혈 mạch, 정 상반, 골벽과 피의양상에 대한 정보를 얻을 수 있다.

McNeitt[28]는 상아절진단법과 방사선학적 소견을 비교연구하여 방사선학적 검사는 83%의 정확도를 보이는 유용한 진단법이라고 보고한 바 있다. 또한 Axelsson과 Jensen[29]는 방사선학적 검사의 신뢰도를 높이 평가함과 동시에 부비동염
이 의심될 때에는 Waters’ view를 기본으로 활
영할 것을 주장하였다.

때때로 변화상을 명백히 보이기 이전에 질환
이 더 진행될 수 있으며 전사골동이나 미세구조를 보기에 한계가 있으므로 종종이 부위의 병변은 전, 후비
경 검사나 일반방사선사진만으로 충분한 평가가
될 수 없다.

한편 비내시경술은 사골동내 병변 정도를 결
정할 수 없고 중비도가 축소된 경우에는 질병의
식이 어려우며 사골포 (ethmoid bulla), 후사골
동, 점막염과 같은 도달하기 힘든 공간의 존재를
식별하기 힘들다는 단점도 있지만, 비강벽의 상
태를 보다 잘 관찰할 수 있으며 공간을 개별적으
로 확인할 수 있고 비측벽의 해부학적 구조를 잘
관찰할 수 있는 용안적 평가가 가능하고 조직
생검까지 없을 수 있다는 큰 장점이 있다. 진산화
단층사진은 내시경으로는 접근하기 힘든 부위의
해부학적 구조 및 변이 그리고 병변의 진행 확산
정도 등을 체계적이며 정확히 보여준다는 장점이
있다. 따라서 부비동의 관찰시에는 이 두 가지를
병용하는 것이 가장 바람직하다고 생각된다.

Axelsson과 Chidekel[30]는 급성 상악동염의
방사선학적 소견과 임상증상 및 박테리아 상환성
에 관한 연구를 통하여, 급성이나 황도 상막내를
 거의 채우는 혼탁상과 공기-액체수준 (air-fluid
t level)의 높이가 높았으며 이는 환부성 비배출물
의 높고 상환이 있는 것으로 표시하였다. 그러
나 방사선학적 소견의 정도와 환자의 증상심도간
의 특이한 상관이 없는 것으로 보고하였다.

만성 부비동염의 진행적인 방사선학적 소견
으로는 부비동 골벽의 비후, 골편벽 비후 및 부비
동이나 비강의 용중 등이 있고, 공기-액체수준이
나 정막조영층이 있는 경우에는 만성 부비동염
에 급성 임상증 변화가 동반되었음을 나타냈다.
연조직중심의 진산화단층사진에서 부비동 혈
막의 경우 부비동 내에 쌓여 있는 물질의 정맥성 내지
화성성 정도에 따라 그 음영강도가 다양하게 나
타난다.
본 연구에서는 끌목차 비후가 34.3%, 혼탁상을 보인 경우가 22.4%에 해당하였다.

모든 부비동의 배출구는 비강으로부터의 발육기시부와 관련된다. 전두穹의 경우 전두부환을 통해 전두와로 이루어지거나 직접 전방사골두를 통해 이루어지며 때로는 전사골두로 배출하여 사골두나 사골포를 통하는 경우도 있다. 이는 발생과정에 의해 결정되는 것으로 전두동은 증상의 심부의 전방부분에 전두와 또는 전두동으로의 사골증전이라고 불리우는 함몰부로부터 기시되어 전두골함 전체가 전두골로 상방확장되는 경우, 전두골함의 피가 상방확장되는 경우, 사골두나 또는 아주 드물게 사골포로부터 상방확장되는 경우가 있다. 첫 번째와 두 번째의 경우, 전두동의 배출로는 사골두, 반월골, 사골봉소와 무관하게 이루어진다. 전두와 체정가상방확장되는 경우는 전두등극(frontal ostium)을 통하여, 일부가 상방확장되는 경우는 전두비관을 통하여 이루어진다. 때때로 후자의 경우 전두비관을 경유하여 사골두 상방에 개구되기도 한다. 이렇게 전두와로부터 발생기원을 갖는 경우는 증상으로 직접 배출하며, 세 번째의 경우는 전두비관이 존재하지만 배출은 사골두를 통하여 이루어지는데 전체의 약 50%정도가 이에 해당되며 사골두가 배출구 역할을 하여 전두동으로부터 사골두증전과 상악동으로 배출된다.]

Messerklinger는 전두와에서의 재한의 결과로써 전두동내로 다소의 역류가 있음을 확인하였으나 이는 염증이환의 소지가 충분히 될 수 있음을 시사한다고 하였다.

Wallace등은 전두동 배출경로와 부비동구-비도단위 혈관과의 관계에 대한 연구에서 완전히 독립된 전두동 배출로를 갖는 사람은 전자골두염이나 양상동염이 있다더라도 종종 전두동에 염증이 발생되지 않아 전두동질환을 동반하지 않은 부비동구-비도단위 혈관이 72%의 높은 비도로 조사되었음을 보고하였다. 한편 정등의 전두비관의 역동적 개통성 평가를 위한 연구에서는 전두동염이 있는 예의 83.7%가 부비동구-비도단위에 병변을 동반하였다.

사골동의 배출구 역시 매우 다양한 개설(diverticulae)로부터 기원하므로 사골포의 상하방, 중두의 어느부위, 전두골함, 상비도, 상비갈개 상하방 등과같이 매우 다양하다. 대개 전사골동은 사골두로 배출로 가지며 종사골동은 사골포나 그 상하방으로 이루어지고, 후사골동은 상비도를 배출로 삼는다. 사골동은 모든 부비동 가운데 가장 작어서 직경 1-2mm정도이며 특히 전사골동의 것이 후사골동보다 작아서 전사골동내 점막의 발생빈도가 높은 것과 관련이 있다.

사골동질환이 다른 부비동질환 발생에 미치는 영향에 대하여 주목할 필요가 있다. 전사골동의 경우는 만성폐쇄에 이르기까지는 직점 위치적 조건을 갖추고 있다. 즉, 대부분의 흡입된 잔유물은 중비갑개와 하비갑개의 전방방단부와 전방공비도에 축적이 되고 이는 전사골동의 배출상에 가장 큰 영향을 초래하게 된다. Zinnerich는 만성부비동염환자의 전산화단층사진상에 이용한 연구에서 전사골동에서 가장 높은 빈도의 염증성이 보임을 확인함으로써 전사골동 부분이 부비동염질환의 처음 발생부위이며 전두동과 상악동으로의 파급 시험점검에 역할하였다. Proctor는 사골동이 부비동염의 발생에 가장 중요하게 작용한다고 하였으며 주요 부비동에 대해 실험된 치료 실험의 가장 훌륭한 원인으로 사골동 병소가 잼존하는 것을 지적하였다. 특히 전통적 의학과 수술을 시행한 후에 사골동병소가 잼존하기 쉽다고 하였다.

본 연구에서는 상악동이 82.9%, 전사골동이 67.9%로 나타났으며 이는 만성으로 진행된 기간이 길어진 때에서 연유된 것으로 추정된다.

상악동의 경우 동공이 내측벽의 최상방부위에 4mm직경으로 위치하며 비강으로 직접 배출되기보다는 5mm길이로 상내벽 후방하여 비강에 이르는 사골두구를 통해 반월공을 거쳐 비강으로 배출된다. 또한 점형동의 배출구는 점형동까지보다 1.5cm정도 상방에 위치한다. 이러한 동공의 위치
는 상악동과 접합동내의 배출과정이 직접적지에
서 섭모운동에 의해서만 이루어질 수 있을음을 시
사한다.

부비동. 특히 부비동구-비도달위를 검사하는
때 전산화단층사진의 역할로는 이 부위의 정확한
해부학 정보를 제공하여 전두동, 구상돌기, 사
골두부, 사골포, 중비도, 후사골봉소, 접합부, 접
합동 등을 잘 볼 수 있을뿐만 아니라만 아니라29
만성 부
비동염의 성행률이 될 수 있는 해부학적 변이,
외상, 종양 등을 파악할 수 있으며 치료 방침 및
계획을 결정하는 데 도움을 주고 순 후 지속적인
증상이 있는 경우 치료실패의 원인을 찾을 수 있
다는데 있다.

본 연구에서 이용한 Babbel의 분류법은 질병
의 이환정도 및 상태를 참고로 하여 치료법을 제
안하고 있어 더욱 의의가 있다. 폐쇄형인 사골두
형, 부비동구-비도달위형, 접합부형은 각각
의 폐쇄지점을 개통시키도록 하였으며, 치료방에
있어서 전반적 병소의 접근을 요하는 풀림형성형
등은 따로 분류하고하였다. 또한 예후를 고려
하여 수술시 좋은 효과를 얻을 수 있는 사골두
형과 부비동구-비도달형은 상용수술군으로, 수술
시 접근이 허들어 결과가 좋지 않은 접합부형
과 진환자체의 특성상 수술후에도 재발이 잘 되
는 비비도달플립증형은 복합수술군으로 분류하
였다29.

사골두형은 주로 접막비후, 폴림과 관련된
거나 Haller cell과 같은 해부학적 변이의 존재나
상악동의 미발육과도 연관되어 있을 수 있다. 부비
동구-비도달위형은 접막비후, 갑개의 비대, 폴림
이나 신생물과 같이 비도를 줄이거나 폴림시키는
구조와의 관련성, 중비갑뼈소(concha bullosa), 증
중갑뼈의 만성부종 이상, 비증적 변이 등과 같은
해부학적 변이와의 관련성은 더 많은 연구가
이뤄져야 할 것으로 사료된다. 해부학적 변이
와 이들의 임상적 의의에 대한 연구들은 주로 전
산화단층사진을 이용하였으며 Maffee30, Bogler30, Havas31, Yousem30의 보고가
있고 변이의 존재 여부보다는 그 크기 및 위치적
요인, 밀접도와 더욱 상관관계가 있는 것으로 보
고하였다.

접합부형의 경우에는 내시경이 바로 도달
할 수 없는 속부위기 때문에 전산화단층사진없이
 더욱 유용하게 쓰일 수 있다. 후사골육의 침범없이
이 접합형만이 고립되어 이환된 경우는 이 분류
에 포함되었으나, 후사골동만 이환된 경우에는 상
비도를 통해 직접 배출될 수 있는 상황을 고려하
여 제외하였다.

비부비도달플립증형의 원인은 아직까지 충분히
규명되는 모양이었으나, 과민성 비염, 천식, 감
염, 남성 성유증(cystic fibrosis), 아스피린 내성
과 관련이 있는 것으로 보고되고 있다. 비강과 부
비도달의 폴립은 부종성, 과증적 골절막(muco-
periosteum)이 측착된 형태로, 만성 비비도달의
골절막 증식과는 점면분비선이 적고, 혈관증 이
상, 기질내 떨림성증분 등에서 차이가 있다. 폴립
의 성장은 소세포형(hypocellular nature)으로
인한 세포간 액체의 축적 때문으로 생각되고 전
산화단층사진에서 액체밀도를 보이는 것과 관련
이 있다30-31.

비부비도달플립증형의 전산화단층사진상은 크
게 두 가지로 분류되는 데 좀 더 전형적인 것은 폴
립양 구조가 부비동의 혼탁, 사골두의 확장 소
견을 함께 보이는 것이며, 다른 하나는 개개의 부
비동내에 폴립이 존재하고 mass effect에 의하여
사골골굴 및 비증식의 흡침해지거나 부풀어 오
르는 형이다. Drutman등32은 비부비도달플립증
환자를 대상으로 임상 양상과 전산화단층사진소
견을 비교한 바 있으며, 상기 소견이외에도 공
기-액체수준도 다수 관찰되었음을 보고한 바
있다. 또한 Liang등30은 비부비도달플립증의 또다른
 전산화단층사진상의 특징으로 비증적기관이 끝
이 끝된 뒤로 몽족한 모양(truncation)을 보고한 바
있으며 이는 접막장염에 의한 축적의 폴림형성으
로 인한 기계적 압력으로 야기된 패혈혈관이기
으로 보고하였다.

이 질환은 집중적인 치료에도 불구하고 여전
히 재발성향이 강하다. 따라서 알레르기와 선천
성 과민에 대한 검토를 요하며, 증상을 경감시키고 감염이나 기도폐쇄 등의 합병증 발생을 저하시키도록 하는데 치료의 목적이 있다. 항히스터민제와 충혈제가 일시적으로 증상을 완화시키며 대체로 이러한 환자에게 aspirin은 피하도록 한다. 초기 치료의 선택은 투약으로, 도입부에는 corticosteroid와 항생제를 전신으로 투여하고 유지기간에는 비강내에 steroid를 적용시킨다. 수술적 접근은 반복적 steroid의 투약에서도 실패한 경우나, 항생제에 무반응인 경염성 합병증이 있는 경우에 한하여 실시한다.

기타유형 중에는 경미한 점막비후의 경우를 포함하였는데 점막비후의 정상치에 대하여서는 여전히 논란이 계속되고 있다. 전산화단층촬영을 이용하여 증상군과 무증상군에 대하여 점막비후 소견과의 연관성에 대한 연구도 Bolger 등은 무증상군의 41.7%에서 점막이상 소견을 관찰하였음을 보고한 바 있다. 그러나 정상적인 부비동 점막은 일관된 규칙적 대비 내장의 공기비공续며, 약 하기 때문에 일반방사선사진, 전산화단층사진, 통상적 자기공명영상에서는 섞여가기 하여 짧으나 헷갈리며 이러한 영상에서는 부비동의 측벽과 정상적인 부비동공기 상관없이 경우에 향하여 정상으로 간주하는 것이 타당하고 조영증강 자기공명영상에 의한 경우에 한하여 관찰할 수 있다는 주장이 있다. Rakowitz 등은 뇌 자기공명영상의 이용하여 부비동의 점막비후가 가지는 유의성에 대하여 연구한 바 있는데 사골동의 경우 무증상군의 63%에서 1~2mm정도의 점막비후를 보였으며 이러한 경미한 점막비후는 정상적 변이로 간주할 수 있고 생리적 비순환(nasal cycle)기능과 관련이 있다 하였다. 또한 사골동을 제외한 부비동에서는 4mm이상의 점막비후를 보인 경우 비정상소견으로 보았다. 천진 등은 뇌 자기공명영상에서 부비동점막의 정상치에 대한 연구에서 부비동점막은 부비동염 없이도 관찰되는 소견이며 95%의 신체구간에서 6.5mm가지 관찰되었고 보고한 바 있다. 정상 성인의 경우 주기적으로 순환하는 비강점막의 채색변화가 일어나는데 이는 비중격을 중심으로 비강을 이분하여 한 쪽이 기능을 할 때 다른 쪽은 휴식을 취하 는 것으로 기능은 하는 쪽에서는 부비동을 배출함으로써 점막층이 약아지고 휴식을 취하는 쪽에서는 부비동을 향후어 부비동이 지펴지는 동시 에 체류공급을 위한 닫막 형성을으로 점막층이 응혈조건을 보이게 되어 점막층이 두꺼워진다. 각 준환기는 50분에서 6시간으로 매우 다양하며, 감염, 비중격, 비강저와 축벽, 비늘관의 점막 등에서 보이며 부비동 중에서는 유일하게 사골동만이 포함된다.

본 연구에서는 각 부비동을 평가할 때는 완전히 광기로만 채워진 상태만을 정상으로 간주했으나 Babbel의 분류에는 고립된 경미한 점막비후를 보이면서 특정부위의 패색을 보이지 않는 군은 V군으로 취급하였다. 향후 점막비후에 대해서는 임상 소견과 함께 여러 영상을 동시에 평가해봄으로써 영상의 한계를 규명함과 동시에 정상소견의 범위를 정해보려는 노력이 필요할 것으로 사료된다.

후방 부비동과 내경동맥, 시신경, 상악신경, vidian 신경과의 관계에 대하여 주의 깊은 관찰이 요구되어지고 이는 주변골절이 뿌리이 아니라 부비동의 합기화와 관련되어 부비동내로 주행하는 경우 등 수술시 위험요소로 작용될 수 있기 때문이다. 특히 부비동내 경막지점이 접촉부일 경우에는 더욱 위험하다. 본 연구에서는 후방부비동과 해부학적 구조간의 접촉여부를 조사함에 있어서 주변골 관계의 가능성을 보인 부분들이 관찰되었지만 전산화단층사진의 해상력의 한계를 고려하여 조사항목에서는 배제하였다.

시신경과 후방 부비동과의 해부학적 변이는 점행성 내부로 주행하는 시신경, 점행동맥의 만입을 일으키는 시신경, 시신경을 둘러싼 주변골을 열개. 전장돌기의 합기화등이 있을 수 있으며 이들은 후방 부비동 수술시에 시신경 손상을 일으킬 수 있는 요소이다. 조영제의 연구에서 시신경에 의한 점행성 만인이 없는 경우는 66%, 시신경에 의한 점행성 만인이 있는 경우는 30%, 시
신경이 접형동 내부로 주행하는 경우는 3%, 접형동과 후사골동의 경계부를 따라 주행하는 경우는 1%이었다.

접형동은 내경동맥, 시신경, vidian nerve와 근본적으로 연관이 있다. 이 구조들은 접형동 발생이전에 이미 존재하여 부비동의 발육시 골벽에 불규칙성을 유발시킨다. 함지막이 심한 경우에는 많은 피질골판단으로 경계를 이룬다. 특히 전상돌기의 함지막은 수술 중 시신경 손상 가능성이 대한 중요한 지표이다.

Pandolfo는 임상학적으로 관찰된(territorial canal)의 방사선학적 소견에 관한 연구에서 접형동과의 근접도를 강조하였으며 모든 조사대상에서 접형동과 타임조각간의 거리가 5mm 이내였다고 하였다. 또한 일부말이 거의 접형동내에 위치하는 동내추행판(endosinus canal)의 형태를 보이는 경우도 13%나 되었다고 하였다. 또한 7.1%에서는 임상학적 최전방부가 후사골동과 접촉하였음을 보고하였다. 염증 및 중증의 vidian nerve 침범시에는 비강 심부에 연관동을 유발하는 등의 염상증상을 보일 수 있다.

본 연구에서는 각각의 혈관 및 신경구조와 후부비도중에 높은 접촉빈도를 확인할 수 있었으나, 각각의 주행경로와 부비도중의 관계에 대한 관찰과 기존분류가 미흡하였고, 특히 후사골동과의 관계에 대하여 소홀하여 충분한 검토가 이루어지지 못하였다.

치성 상악동염은 부비동의 특정으로 비교적 상악동과 및 상악동내로 국한되는 것으로 간주되어왔으나, Yoshiura의 전산화단층사진을 이용한 상악동염에 관한 연구에서 연구대상의 39%에서 비치성, 48%가 치성, 16%가 혼합형으로 조사되어 치료에 내한하여 상악동염 소견을 보이는 환자의 상당수가 치성인 것으로 나타났다. 향후 치료에 내한된 환자들에 대하여도 치성과 비치성의 감별에 그치지 않고 치성 기원의 것이 범부비동염으로 진행된 경우에 있어서의 적절한 평가를 위해서는 부비동 전산화 단층사진상의 이용이 요구되고 이 때 부비동을 기능적 단위로 파악하고 설모질막의 정화작용에 대한 개념을 이해함으로써 좀 더 정확한 진단과 치료방향설정에 도움을 줄 수 있을 것으로 사료된다.

V. 결론

본 연구는 1996년 1월부터 1997년 12월까지 전북대학교병원에 내원하여 촬영된 500명의 부비동 전산화단층사진상 대상으로 각각의 부비동의 이환상태 및 이환범위를 검토하고 Babbel의 분류법에 기초하여 기능적, 체계적 해석을 도모하고자 하였으며 후방 부비동과 인접 해부학적 구조간의 접촉빈도를 검토하여 다음과 같은 결과를 얻었다.

1. 부비동염의 이환빈도는 상악동(82.9%)이 가장 호발하였으며, 전사골동(67.9%), 후사골동(48.9%), 전두동(42.0%), 접형동(41.1%) 순이었다.

2. 이환상태는 접막비후형이 가장 많았으며 (34.3%), 혼합상(22.4%), 풀립(2.0%)이 관찰되었다. 풀립이 비강에 단독적으로 나타난 경우는 122명(24.4%)였다.

3. 부비동염의 유형별 분류는 부비동구-비도단위형이 67.4%로 가장 높은 비도를 보였으며 접막염형이 39.0%, 사골두동형이 13.0%, 비도통합형이 9.6%, 산발형이 18.0%였다.

4. 후방 부비동과 인접 해부학적 구조간의 접촉빈도는 시신경의 경우 후사골동과 접촉하는 경우가 11.4%, 접형동과 접촉하는 경우가 66.8%, 그리고 두 부비동과 모두 접촉하는 경우가 6.3%였다. 상악신경, 임상신경, 내정동맥의 경우는 각각 접형동과 74.5%, 79.2%, 45.1%의 접촉빈도를 보였다.

5. 후사골동의 함게화의 정상이 경우가 70.6%, 후방확장된 경우가 29.4%였으며, 접형동의 경우 비발육형이 12.5%, 임상골동행이 22.7%, 전상돌기함형이 2.7%, 외골동행이 469.
과 전상돌기함유형이 공존하는 경우가 5.2% 였다.

부비동 전산화단층사진상은 부비동염환자의 진단 및 치료시에 점막이상, 병리생태학적 분류, 그리고 인질 해부학적 구조들과의 근접도에 관한 정보 등을 제공해주는 탁월한 영상으로 섬모점막 정화작용에 근거한 분류를 적용함으로써 기능적 해석이 가능하였다.

참고문헌

8. Penttilä MA, Rautiainen MEP, Pukander JS et al. Endoscopic versus Caldwell-Luc approach in chronic maxillary sinusitis :
20. Silver AJ, Baredes S, Bello JA et al. The

Address : Prof. Kwang-Joon Koh, Department of Oral & Maxillofacial Radiology, School of Dentistry, 634-18, Keum-Am Dong, Duk-Jin Gu, Chon-Ju, South Korea
Tel : (0652) 250-2023 Fax : (0652) 250-2081
E-mail : radkoh@moak.chonbuk.ac.kr
Fig. 1. Infundibular (Rt) and ostiomeatal unit (Lt) pattern are shown. Mucosal thickening within the right infundibulum has led to right maxillary sinusitis. Right ethmoid sinus is spared as right middle meatus remains patent. Opacification of the left ostiomeatal unit has led to sinusitis within the left ethmoid and maxillary sinus.

Fig. 2. Sphenoid and ethmoidal pattern and ostiomeatal pattern on both sides are demonstrated. Axial scan(a) shows opacification of both sphenoid and ethmoidal recesses and mucosal thickening of the ethmoid sinuses, sphenoid sinuses and middle meatuses. Coronal scan(b) shows obliteration of both infundibulums and involvement of both ethmoid, maxillary sinuses and middle nasal meatuses. Posterior image through sphenoid sinuses(c) shows mucosal thickening on both sphenoid sinuses.

Fig. 3. Sinonasal polyposis pattern which includes prominent polypoid masses are seen diffusely within nasal vault and paranasal sinuses.

Fig. 4. An example of the sporadic pattern is shown. An isolated mucous retention cyst is shown on the floor of the right maxillary sinus.

Fig. 5. An air-fluid level, which is an example of the sporadic pattern, is demonstrated.

Fig. 6. Coronal CT image shows extensive pneumatization of both sphenoid sinuses to the anterior clinoid processes and pterygoid processes, and their relationships to the optic nerves and internal carotid arteries.
사진부도

Fig 3

Fig 4

Fig 5

Fig 6