Adsorption Characteristics of the Heavy Metals, Cd(II) and Pb(II) Ions, on the Si-Immobilized Ulva pertusa

실리카고정 구멍갈파래에 대한 중금속 Cd(II), Pb(II)이온의 흡착 특성

  • Park, Kwang-Ha (Department of Industrial Chemistry, Kangnung National University) ;
  • Park, Mi-A (Department of Industrial Chemistry, Kangnung National University) ;
  • Kim, Young-Ha (Environmetal Science Research Institute, Kangnung National University) ;
  • Choi, Bong-Jong (Department of Environmetal Engineering, Kwan dong University)
  • 박광하 (강릉대학교 공과대학 공업화학과) ;
  • 박미아 (강릉대학교 공과대학 공업화학과) ;
  • 김영하 (강릉대학교 환경과학연구소) ;
  • 최봉종 (관동대학교 환경공학과)
  • Received : 1998.12.28
  • Published : 1999.04.25

Abstract

Adsorption characteristics of heavy metal ions, Cd(II) and Pb(II), on eastcoast-living algae, ulva pertusa, has been studied in our experiment. The Maximum adsorption amount of Cd(II) and Pb(II) ions on 1 g of the ulva pertusa were 2.3 mg, 3.1 mg in alkaline and 2.0 mg, 2.8 mg in acidic solution. However 3.4 mg, 7.3 mg in alkaline and 3.1 mg, 6.5 mg in acidic solution were shown on the Si-immobilized ulva pertusa in the same condition. Thus, Si-immobilized ulva pertusa adsorbs more amount of heavy metals, Cd(II), Pb(II), than the ulva pertusa, and more effective absorbent in alkaline. Furthermore, more amounts of Pb(II) ion were absorbed compare to Cd(II) ion in our work. Recovery ratio of Cd(II) and Pb(II) ions on the ulva pertusa were 55.0~61.0%, 59.7~66.8% respectively and 87.6~97.5%, 83.5~99.3% on the Si-immobilized ulva pertusa.

본 실험에서는 동해안산 해조류인 구멍갈파래에 대한 중금속 Cd(II), Pb(II)이온의 흡착 특성에 대해 연구하였다. 구멍갈파래 1 g에 대한 Cd(II) 및 Pb(II)이온의 최대흡착량은 알카리성에서 2.3 mg, 3.1 mg, 산성용액속에서 2.0 mg, 2.8 mg으로 나타났다. Si-고정구멍갈파래는 알카리성에서 3.4 mg, 7.3 mg, 산성용액 속에서 3.1 mg, 6.5 mg으로 나타났다. 따라서 Si로 고정된 구멍갈파래가 더 많은 중금속 Cd(II), Pb(II) 이온을 흡착하였으며, 산성보다는 알카리성에서 흡착량이 더 크게 나타났다. 또한 Pb(II)이온의 흡착량이 Cd(II)이온보다 더 많게 나타났다. Cd(II) 및 Pb(II)이온의 회수율은 구멍갈파래의 경우 55.0~61.0%, 59.7~66.8%로 나타났고, Si-고정구멍갈파래는 87.6~97.5%, 83.5~99.3%로 나타났다. 따라서 구멍 갈파래보다 Si-고정구멍갈파래가 Cd(II), Pb(II) 이온 모두 회수율이 더 높게 나타났다.

Keywords

References

  1. Plant Physiol. v.76 J. George
  2. Phycologia v.29 C. Boyen;B. Kloareg;M. Polne-Fuller;A. Gilbor
  3. Plant Cell Physiol. v.28 no.8 M. Okada;M. Ohtomi;K. Nakayama
  4. Biotechnology and Bioengineering v.34 J. Yin;W. Harvey
  5. Biol. Chem. v.261 no.30 J. C. Steffens;F. H. Donald;B. G. Williams
  6. Environ. Sci. & Tech. v.14 H. A. Elliott;C. Huang
  7. Biotech. and Bioeng. v.33 N. Kuyucak;B. Volesky
  8. Appl. Microbiol Biotechnol v.24 A. Nakajima;T. Sakaguchi
  9. Environ. Sci. & Tech. v.26 H. D. Ke;G. D. Rayson
  10. J. Fisheries Research board of Canada v.29 no.9 R. eisler;G. E. Zaroogian;R. J. Hennekey
  11. J. Bacteriology v.143 no.1 R. J. Doyle;T. H. Matthews;U. N. Streips
  12. Solvent Extraction and ion Exchange v.12 no.4 J. R. Lujan;D. W. Darnall;P. C. Stark
  13. Environ. Sci. Technol. v.20 D. W. Darnall;B. Greeene;M. T. Henzl
  14. Environ. Sci. Tech. v.15 R. H. Crist;K. O. Norman
  15. J. App. Phy. v.1 N. J. Robinson
  16. Marine Biology v.115 J. Pavicic;B. Raspor;D. Martincic
  17. Wat. Res. v.22 no.7 H. B. Xue;L. Sigg
  18. J. Kor. Environ. Sci. Soci. v.6 no.15 M. G. Lee;J. H. Suh;S. K. Kam
  19. J. of the Korean Enviro. Scie. Soci. v.6 no.1 Kab-Hwan Ahn;Young-Kook Shin;Kuen-Hack Suh
  20. Plant Cell Physiol. v.27 no.7 M. Fujita;T. Kawanishi
  21. Plant Physiol v.76 G. J. Wagner
  22. WRRI Report No. 210 D. W. Darnall
  23. Biotechnol. Bioeng. v.23 M. T. Sezod;B. Volesky
  24. J. Appl. Micorbiol. Biotechnol. v.16 A. Nakajima;T. Horikoshi;T. Sakaguchi
  25. Environ. Sci. Technol. v.15 R. H. Crist;K. Oherholser;N. Shank;M. Nguyen
  26. London: Royal Society of Chemistry no.61 Trace Metal Remove from Aquous Solution D. W. Darnall;B. Greene;M. Nosea;R. A. McPherson;M. Henzl;M. D. Alexander;R. Thomson(ed.)
  27. Biosorbents and Biosorption Recovery of Heavy Metals G. W. Bedell;D. W. Darnall;B. Volesky(ed.)
  28. Korean J. Environ. Biol. v.15 no.2 K. K. Hong;K. I. Sung