vloferlo) & 71&e] HEFolrt At Hrsoizte] wtet AYAH LS FUAYIZ] AT I g A Hel 2ds5
& 4o g 3t Aotk 28U 71&9) syntax9]Fe] ABA olgw R nAME Aol APy Ads) E4E F4shd
A ge] Add diE SAAg A A4S golrle YE FWolth oad ¥4& HEy) st oeld FE7Y
(altruistic locking: ALY A7t AHE AL8E thg vlold 2 AAE a7skd &8 o e AHEe] 1 AAg 2ag ¢
AEE oj2] A dig 23E HATLRA AT IIADE Fol7] AZ AN AE Aotk #3Y oty 2
lextended altruistic locking' XAL)ZIM & ALE #3]9 &3 FHclA /e Fa7IHean ALle] 2RBHo2 4w &
BEA 1RE ANLE Aol drhe FEE B it Aot & wRdNE $4 AR A% WA F
A W7|8% 43t SHAY AL XALY 354 AEE BTk B4 @8 AR A% @AY 3
714 W183E HaSEs 2oz d BAY Aold AEE polx W, Awztel FF NS Y & Yk A=
+ BAY olety FE71EA AFAWAY AF 4 7199 2DL(two-way donation locking) & A<tatgitt 7ol A4 3
B E fa 2 Al BFME A5E £ AAF dASD. 2odel 9% 45H7) 3 Pr)A#e] Zo)s} 5]y,
golstel 48l A 2DLS 2PLET} A Ael&st Adjel BT d)7jAR Hold $58 ARE el

Two-Way Donation Locking for Transaction Management
in Distributed Database Systems

Hae-Kyung Rhee'- Ung-Mo Kim''

ABSTRACT

Database correctness is guaranteed by standard transaction scheduling schemes like two-phase locking for the
context of concurrent execution environment in which short-lived ones are normally mixed with long-lived ones.
Traditional syntax-oriented serializability notions are considered to be not enough to handle in particular various types
of transaction in terms of duration of execution. To deal with this situation, altruistic locking has attempted to reduce
delay effect associated with lock release moment by use of the idea of donation. An improved form of altruism has also
been deployed in extended altruistic locking in a way that scope of data to be early released is enlarged to include even
data initially not intended to be donated. In this paper, we first of all investigated limitations inherent in both altruistic
schemes from the perspective of alleviating starvation occasions for transactions in particular of short-lived nature. The
idea of two-way donation locking(2DL) has then been experimented to see the effect of more than single donation in
distributed database systems. Simulation experiments shows that 2DL outperforms the conventional two-phase locking in
terms of the degree of concurrency and average transaction waiting time under the circumstances that the size of
long-transaction is in between 5 and 9.

-+
o o2l

fig
o

L AYlelx Yo WE o g A T4
DA ERY SR A8 0 AREFHE ws
119999 109 119, AAER 11999 119 129

o o

e

3448 St=RZENEIET =F R Mo H123(39.12)

1. Introduction

In case database correctness is guaranteed by
standard transaction scheduling schemes like fwo-
phase locking(2PL)[1] for the context of concurrent
execution environment in which short-lived ones are
normally mixed with long-lived ones, degree of con-
currency might be hampered by selfishness asso—
ciated with lock retention. This sort of reluctance
for early release of locks is essentially due to their
discipline. Lazy release in turn could aggravate fate
of misfortune for long-lived ones in that they are more
vulnerable to get involved in deadlock situations.
This could the other way around aggravate the fate
of short-lived ones as well in a way that they
suffer from starvation or livelock affected by long-
lived ones.

As long as long transactions and short trans-
actions live together, we could have to live up with this
kind of dilemma. To reduce the degree of livelock,
the idea of altruism has been suggested in the literature.
Altruistic lockingl2], AL for short, is basically an
extension to 2PL in the sense that several transactions
may hold locks on an object simultaneously under
certain conditions. Such conditions are signaled by
an operation donate. Like yet another primitive unlock,
donate is used to inform the scheduler that further
access to a certain data item is no longer required
by a transaction entity of that donation. The basic
philosophy behind AL is to allow long lived trans-
actions to release their locks early, once it has
determined a set of data to which the locks protect
will no longer be accessed. In this respect, effect of
donate is actually to increase the degree. In order to
allow more freedom, an entity of donation is let
continue to acquire new locks. This implies that donate
and lock operations need not be strictly two-phase.

The idea of donating could further be exploited to
pursue an enhanced degree of concurrency. Extended
altruistic lockingl2), XAL for short, attempted to
expand the scope of donation in a way that data to be
early disengaged is augmented by extra data originally

not conceived to be rendered.

2. Related Work

2.1 Altruistic Locking

The basic idea of AL is to allow long transactions
to release their locks early, once it is determined
that the data which the locks protect will no longer
be accessed. Unlike other early-released protocols,
the AL guarantees serializable executions and places
no restrictions on the way data must be accessed.
Unlike other early-release approaches, the AL strategy
guarantees serializable executions and places no
restrictions on the way data must be accessed.

AL 1is like ZPL except for the concept of wakes.
If transactions do not make use of the Donate op-
eration, altruistic scheduling reduces to ZPL since no
transactions will create wakes. However, when do-
nations are made and transactions create wakes, an
altruistic scheduler can allow a transaction to run
within a wake, provided it remains completely within
the wake.

2.2 Extended Altruistic Locking

While the donation of wake is rigid in AL in
terms of fixedness of it size, a dynamic way of
forming a wake could be devised given that seri-
alizability is never violated. This was realized in
XAL by simply letting data originally not intended
to bestowed to be dynamically included in a wake
predefined. The rule is that wake expansion comes
true only after a short transaction has already
accessed data in its predefined wake list. So, the
presumption made for XAL is that a short trans-
action still restlessly wishes to access data of its
wake-dependent long transaction even after it has
done with data in its wake list. The assumption
could be called data-in-wake-list-first/other-data-later
access fashion. XAL therefore performs inevitably
badly if others-first wake-later access paradigm is

in fact to be observed. Example 1 shows this.

Example 1(Delay Effect Caused by Donation
Extension) : Suppose that T; attempts to access
data items, A, B, C and D, in an orderly manner.
Note that data items, E, F, G, and H shall never
be accessed by 77 at all. Presume that 7 has
already locked and successfully donated A, B
and C T; now is supposed in the stage of
accessing D. Suppose also that there are three
more transactions concurrently in execution
along with 7): T, wishing for B and E, T3
wishing for E and F, and 7, wishing for F and
H(Figure 1).

[__—___—:,] : Data item previously used and donated by T,

: : Data item currently used by T,

:] : Data item which is yet to be used by T,
. : Data item which shall never be used by T,

(Figure 1) Four Transactions, T1 through T4, Competing
for Same Data Donated

If we apply XAL for this situation, 7> could
in some circumstances fortunately be allowed to
access both B and E without experiencing any
delay.

In case 7 initially requests B first rather
than E, T: is able to access not only B but E
as well, since 77 is fully in the wake of 7. T»
therefore succeeds to commit. 75 then could
acquire E released by 7b. Ty could thereafter
acquire F released by Ts.

In case, however, 7> initially requests E first
rather than B, T can certainly acquire E but it
fails for B because wake relationship cannot
honor E as a member of the wake list. Once
this sort of wake dependency is detected, 77 can
be allowed to access B only after it is finally

SHSB0AM 72§ 2B FEHA 718 et 3449

released by 7;. 7> in this case is therefore
blocked. T3 must then be blocked for E to be
released by T2. T as well must be blocked for
F to be released by 73 forging a chain of
blockage.

End of Example 1.

To resolve this sort of chained delay, others-first
wake-later approach could be made viable in a way
of including others, not honored before, to a wake
list. This enhancement is one of substances, made in
our proposed scheme, which could be considered as
backward donation, compared to XAL, which is based
on forward donation. XAL can be viewed as uni-
donation scheme in that it deals with donation
principle involving only one single long transaction.
One other major substance of our proposed scheme
is to let more than one long transaction donate while
serializability is preserved. The notion of multiple
serializability is thus developed in our scheme. Qur
solution, multiple-donation scheme, allows donation
from more than one long transaction but for the
sake of presentation simplicity, degree of donation is

limited to two in this paper.

3. Transaction Processing Model

To describe wake expansion rule in detail, simpli~
fications were made mainly with regard to trans-
action management principle.

1(Donation Privilege) : Only long-lived transac-
tions are privileged to use donate operation.

2(Commit Policy) : A long-lived transaction even-~
tually commits.

3(Deadlock Handling) : If a transaction happens
to fall into deadlock situation, that transaction will be
eliminated by using a certain deadlock timeout scheme.

In this paper, the multiplicity is rendered to the
case of two to measure the effect of donation variety.
Two-way donation altruistic locking protocol, 2DL
for short, can be pseudo-coded as follows(Algorithm

M50 ot=EEMZIE =2 Med M12=(99.12)

Wake Expansion).

3.1 Transaction Processing Model

TM receives transactions from clients and passes
them SCH queue(Figure 2). TM could receive a
message informing abortion from SCH or an ac-
knowledgement informing completion of a requested
operation from DM. DM analyzes an operation from
SCH to determine which data item the operation is
intended to access, and then sends the operation to
the disk where the requested data item is stored
The server in each disk executes operations in its own
FIFO queue one at a time. Whenever an operation is
completed at the server, it sends to TM the message
informing that the requested operation has been com-

pleted successfully.

ervew I
T
™ [scn [P om
Network I
Transaction 1 Transaction k

Client 1 ‘ Client k

(Figure 2) Transaction Processing Model

3.2 Operation Instance of 2DL

In case donated data items are used under XAL,
it is allowed to request data items which are
donated by only one transaction. Under ZDL, In
contrast, short-lived transactions are treated to be
given more freedom in accessing donated data items
by eliminating the single-donation constraint. Short—
lived transactions can access data items donated by
two different long lived transactions. In Example 2
shows this.

Example 2(Allowing Proceeding for Short-Lived

Transaction with Multiple Concurrent Long-Lived

Ones) : Suppose that T, a long transaction, attempts
to access data items A, B, C, D and E in an
orderly manner. Note that data items F, G, H,
I and J shall never be accessed by 7; at all.
Presume that 77 has already locked and
thereafter donated A and B. 77 now is supposed
in the stage of accessing C. Suppose also that
there are two more transactions concurrently in
execution along with 7;: 7> wishing for J, I and
B, and T3 wishing for J and I in an orderly

manner(Figure 3).

(Al 8] c]o]e RCETIC T I]

Legend-

: Data item previously used and donated by T,

: Data item currently used by T,

: Data item which is yet to be used by T,

: Data item which shall never be used by T,
: Data item which will be used by T,

1

(Figure 3) Execution of T1 with Two More Concurrent
Transactions

If we apply XAL for these transactions, lock
request for B by 7> would be rejected due to
donation extension. 7> unfortunately cannot be
included in the wake of 7;. While 7> experiences
delay, 73 would not be permitted to access J
and I because they were still locked by 7.

In case 2DL is adopted rather than XAL, T>
could fortunately be allowed to access B without
any delay. The scheduler checks whether 77 will
later access J and 1. The scheduler then includes
J and I into the wake of 7;, since we presumed
that 77 will not request those data items. When
Ts attempts to request J and I, 73 is as well
allowed to continue to acquire locks without
delay because data item J and I have already
been donated by 7: All of data items that

accessed by T3 could in turn be included into

the wake of 7;. If there are many transactions
like T3 the scheduler has a burden to maintain
enlarged wakes. This sort of deficiency would
fortunately not incur a substantial burden to the
system because the access time of short trans-
actions usually do not take too long.

End of Example 2.

2DL also permits short-lived transactions request
data items which have been donated by two
different long-lived transactions. A way to conduct
a two-way donation is shown, in Example 3, with
two separate long transactions and a single short

transaction.

Example 3(Allowing Proceeding of Short Trans-
action with Two Concurrent Long Ones) : Suppose
that 7, a long transaction, attempts to access
data items, A, B, C, D and E, in an orderly
manner. Presume that 77 has already locked and
successfully donated A and B. T; now is supposed
in the stage of accessing C. Suppose also that
there are two more concwrrent transactions in
execution along with 73: T3, long, wishing for
data items, F, G, H, I and J, in an orderly manner
and T3, short, wishing for B, G and K similarly.
Presume that 7> has already locked and suc-
cessfully donated F and G. T2 now is supposed

in the stage of accessing H(Figure 4).

Data item previously used and donated by T,and T,

D ¢ Data item currently used by T,or T,

Data item which shall never be used by T, or T,

IE : Data item which is yet to be used by T, or T,

(Figure 4) Execution of T3 with Two Concurrent
Long-Lived Transactions

FASAUAM HEHZIEIE 2T T V1R SS9 3451

If we apply XAL for these transactions, a
lock request for B by T3 would be allowed to be
granted but a lock request G would not because
(G has already been donated by another long-
lived transaction. Only after 7> commits, G can
be tossed to Ts.

In case 2ZDL is adopted rather than XAL, T3
could fortunately be allowed to access without
any delay. This is made possible by simply
including the wake of T: into the wake of 7.

End of Example 3.

4. Two-Way Donation Locking

Short-lived transactions are treated to be given
more freedom in accessing donated data items by
eliminating the single-donation constraint under ZDL.
2DL permits short-lived transactions request data
items which have been donated by two different long-

lived transactions.

Algorithm(Wake Expansion Rule of 2DL)
Input: LT1; LT2; ST
/* ST:short trans;
LT1, LT2long trans */
BEGIN
FOREACH LockRequest
IF(LockRequest.5T.data = Lock)
THEN
/* Locks being requested by ST already granted to long
trans other than LT1 and LT2 */
Reply:=ScheduleWait(LockRequest);
ELSE IF(LockRequest.ST.data = Donated)
THEN
/* Locks being requested by ST donated by long trans
other than LT1 and LT2 +/
FOREACHELTI1 OR LT2)
IF(ST.wake = LT1) THEN
/* Donation conducted by LT1? */
IF(ST.data € LTl.marking-set) THEN
/* Data being requested by ST to be later accessed by
LT1 ? %/
Reply:=ScheduleWait(LockRequest)
ELSE
Reply:=ScheduleDonated(LockRequest)
ENDIF
ELSE
IF(ST.data € LT2.marking-set) THEN
/* Data being requested by ST to be later accessed by

3452 St=TEXNCIET =2 MeH H12=(99.12)

LT2 ? %/
Reply = ScheduleWait(LockRequest)
ELSE
Reply:=ScheduleDonated(LockRequest)
ENDIF
ENDIF
ENDFOR
ELSE
Reply := ScheduleLock(LockRequest)
ENDIF
IF(Reply = Abort) THEN
/* Lock request of ST aborted #/
Abort Transaction(Transactionid);
Send(Abort);
Return();
ENDIF
ENDFOR
END

5. Performance Evaluation

In this section, we experimented the performance
behavior of 2DL. Performance comparison is mace
against ZPL under various workloads. Major metrics
chosen are transaction throughput and average trans-
action waiting time. A simulation model has first of
all been established.

5.1 Simulation Model

To cultivate the model in detail, a number of
assumptions have been brought in.

1(Reliable System Resources) : Client machines
as well as the server are perfect in the sense that
they are always operable.

2(Read-Once Policy) : A transaction does not read
a data item again after a transaction has already
read or written the same data item.

3(Fake Restart) : Whenever a transaction experiences
a restart, it is replaced by a new, independent
transaction.

4(Number of Long Transactions) : At most one
fong lived transaction may be active at any time.

5(Commit Policy) : Long-lived transactions always
commit.

6(Resource Service Policy) : There are two resource
type in our model. One is CPU and the other is input/

output devices(I/O).

5.2 Simulation Parameters

The simulation input parameters used, as follows,
are classified into two categories : those of which
values are fixed throughout simulation and those of
which values vary<Table 1>.

® Number of data items in database(db_size)

e Number of CPUs(num_cpus)

o Number of disks(num_disks)

® Mean size of short transactions(short_tran_size)

® Mean size of long transactions(long_tran_size)

® Mean time for creating a transaction
(tran_creation_time)

® Mean time for deadlock time out(timeout)

¢ Simulation length(sim_leng)

(Table 1) Parameters Setting for Simulation

Parameters Values

db_size 1
num_cpus 2
num_disks 4
2
4

short_tran_size
long_tran_size
tran_creation_time 5 units
timeout 30, 50
sim_leng

Values for parameters were chosen by reflecting
real world computing practices. Database size matters if
it affects the degree of conflict. If db_size is much
larger than short_tran_size and long_tran_size, conflicts
rarely occur. To see performance tradeoff between ZDL
and 2PL, average transaction length represented by
number of operation in transaction were treated to vary.
The shortest one is assumed to access 2 percent of the
entire database, while it is 80 percent for the longest one.

In case a transaction is exposed to a substantial
delay, even exceeding a certain timeout, once it has
been blocked, it is judged to be involved in deadlock
situations. Deadlock resolution shall then be followed.

5.3 Simulation Results and Their Interpretations

Our simulation experiments were focused on the

effects of sensitive parameters in the performance
indices to measure their performance behaviors. We
now discuss the results of simulation experiments
performed for the three different replication control
schemes : 2PL, XAL, and 2DL. Overall behaviors have
been revealed that as the simulation length gets longer,
in terms of throughput ZPL and ZDL perform similarly.

531 Effect of Multiprogramming Level

The major force behind prevailness of 2ZDL mainly
comes from capitalizing advantage from maintaining
two different transaction wakes. Performance gain of
2DL against 2PL is about 155 per cent in terms of
average waiting time(Figure 6). ZPL however outper-
forms XAL and ZDL with 105 per cent of performance
at transaction throughput(Figure 5). This is because
both XAL and ZDL have a certain overheads to
reserve data objects to be accessed.

We can observe that the waiting time curve of
2Z2DL tends to be flat as the simulation length is
getting longer. 2DL performs best in terms of average
waiting time owing to two-way donation which con-
tributes to give transactions more chance to use the

objects than one-way donation.

———— e - R

i

Throughput (Size of Long Transaction>=6,time_out>30)
1008 - - 2PL e XAL - 2L
i 2 e

‘.06 -

: 0.04 r

10 Y P U
100 300 500 700 900 1100 1300 1500
Simulation time

(Figure 5) Throughput

! Average waiting time(Size of Long
Transaction>=6 time_out>30) \

(- 2PL e XAL 2L

100 300 500 700 900 1100 1300 1500
Simulation time

ZASZ0A HEHBEIE RIT FEA 718 s 3453

Z2DL and 2PL eventually perform similarly in terms
of throughput, at simulation time 1500. It seems that
the performance between two schemes appear to be
about the same, however the average waiting time
of 2DL exhibits slightly better behavior than ZPL.
ZDL outperforms the other schemes due mainly
to enhanced degree of freedom given to ZDL in
accessing donated data by extending to multiple

donation.

5.3.2 Effect of Transaction Size

This experiment is used to investigate the effect
of the size of transaction on the performance of con-
currency control schemes, as the degree of donations
varies.

Overall simulation result shows that 2DL performs
best in terms of throughput and its average waiting
time since as the size of transaction gets longer,
two-way donation which contributes to give trans-
actions more chance to use the objects than one-
way donation. We can observe that the throughput
curves of ZDL inclines rapidly down from simulation
time 300(Figure 7). The throughput curve of 2DL tends

to be flat as the simulation length is getting longer.

et S C e ee—————————

1

Throughput (Size of Long Transaction>= 6,ts>30,Max Length of
Transaction:10,Min Length of Transaction:2)

1005 ¢
0.04
003
0.02

——— T

I
0 ¢ #--d— =k 2 b A4 s b el a oy —)

i 100 300 500 700 900 1100 1300 1500 |
Simulation length i

L PR

(Figure 7) Throughput with Larger Transactions

2DL and 2PL eventually perform similarly in terms
of average waiting time, at simulation time 700(Figure 8).
It seems that the performance between two schemes
appear to be about the same, however the average
waiting time of ZPL exhibits slightly better behavior
than ZDL. As the transaction size gets longer, 2DL

outperforms the other schemes due mainly to enhanced

3454 StRFEXEED] =2X Hed M12=(99.12)

degree of freedom given to 2DL in accessing donated
data by extending to multiple donation.

Average waiting time(Size of Long Transaction>= 6,
50,Max Length of T ion:10,Min Length of Transaction:2)

25

"~ NSRS T

100 300 500 700 900 1100 1300 1500
Simulation length

(Figure 8) Average Waiting Time with Larger
Transactions

6. Conclusions

The performances of ZDL, XAL, and 2PL have
been evaluated through simulation approach under
various workloads in order to probe their perfor-
mance tradeoffs. The simulation results indicate that
2DL is capable of providing a moderate performance
across a wide range of workloads. ZDL leads to its
superior performance in the property of average
waiting time in most cases. We have also observed
that XAL exhibits the worst performance among the
three with respect to an average waiting time, due
to wake expansion overhead.

2DL is considered to be a practical solution to
take in real world environments where long-lived
transactions naturally coexist with short-lived ones.
Although liveness duration might not be a serious
issue in the arena of standard on-line transaction
processing, in which transactions are normally expected
to finish shortly, it certainly matters in circum-—
stances where a number of long-lived ones are
supposed to access a substantial number of data. In
traditional standard transaction scheduling schemes,
such as two-phase locking, the degree of concurrency
might be hampered by selfishness associated with
lock retention in which short-lived ones are normally
mixed with long-lived ones. Lazy release in turn
could aggravate the fate of long-lived ones in that
they are more vulnerable to get involved in deadlock

situations. This could the other way around con-
tribute to exacerbate the fate of short-lived ones as
well in a way that they suffer from starvation or
livelock affected by long-lived ones.

References

[11 P. A. Bemstein, V. Hadzilacos and N. Goodman,
“Concurrency Control and Recovery in Database
Systems,” Addison-Wesley, Massachusetts, US.A., 1987.

[2] K. Salem, H. Garcia-Molina and J. Shands,
“Altruistic Locking,” ACM Transactions on Database
Systems, Vol.19, No.1, pp.117-169, March 1994.

[3] K. P, Eswaran, J. N. Gray, R. A. Lorie, and L
L. Traiger, The notion of consistency and predicate
locks in a database system, ACM Commun.,
Vol.19, pp.624-633, November 1976.

[4] H. Bartley, C. Jensen and W. Oxley, “Scheme
User's Guide and Language Reference Manual,”
Texas Instruments, Texas, U.S.A., 1988.

(5] R. Agrawal, M. J. Carey and M. Linvy, “Con-
currency Control Performance Modeling : Alternative
and Implications,” ACM Transactions on Database
Systems, Vol.12, No.4, pp.609-654, December 1987.

[6] A. Law, and W. Kelton, Simulation Modeling &
Analysis, Second Edition, McGraw-Hill, 1991.

[7] P. Welch, The Statistical Analysis of Simulation
Results, Computer Performance Modeling Handbook,
Academic Press, pp.267-329, 1983.

[8] A. Pritsker, Introduction to Simulation and SLAM II,
Third Edition, Systems Publishing Corporation, 1986.

[9] J. Lee, and S. Son, Performance of Concurrency
Control Algorithms for Real-Time Database Systems,
Performance of Concurrency Control Mechanisms
in Centralized Database Systems, Prentice Hall,
pp.429-460, 1996.

[10] S. C. Moon and G. G. Belford, Performance Mea-
surement of Concurrency Control Methods in Dis-
tributed Database Management Systems, Int. Conf.
On Modeling Techniques and Tools for Perfor-
mance Analysis, Sophia Antipolis, France, pp.279-
296, 19%5.

ol & &
e-mail : rheehk@dove kyungin-c.ackr
19799 sAdgte AAA A
4
198513 University of Hlinois
(Urbana-Champaign)
Aaksha Al
19969 ~ 8 A Avadsdn A7AAAFEZHE whalay
1988 ~1989d T HAIFTAAE NS AA AL A
A
19923 ~#Al Az E Hentol g gy
Rl
Aol gkl AAz, Ftdlolgwe]s, o FH
B o

[ES

B
N

fac)

o]Ej o

=M B HehZEIE RIS FEA 712 SS9 3455

2e=

e-mail : umkim@yurim.skku.ac.kr

19813 doddistw 8t At

1986\ Old Dominion University
HAbsta AAl

199013 Northwestern University
AAbekag wkal

19973 ~1998A University of California, Irvine 2AFs}a}

e

p

1919 ~ & =AR A =81 AYR U
19903 ~8A AaFistn A A D AFe R
i

B Eof : toletrtold, Webdlo|eto]2, AR A&
DB, ERA AT

