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Fault-Tolerant Design of Array Systems
Using Multichip Modules

Sungsoo Kim'

ABSTRACT

This paper addresses some design issues for establishing the optimal number of spare units in array systems
manufactured using fault-tolerant multichip modules(MCM's) for massively parallel computing{MPC). We propose a new
quantitative approach to an optimal cost-effective MCM system design under yield and reliability constraints. In the
proposed approach, we analyze the effect of residual redundancy on operational reliability of fault-tolerant MCM's. In
particular, the issues of imperfect support circuitry, chip assembly yield and array topology are investigated. Extensive
parametric results for the analysis are provided to show that our scheme can be applied to design arrays using MCM's

for MPC applications more efficiently, subject to yield and reliability constraints.

1. Introduction

MCM'’s consist of complex and dense VLSI devices
mounted into packages that allow little physical access
to internal nodes. An MCM can be viewed either as a
board by its manufacturer, or as a complex system by
its user. MCM's provide significant technical and

potential economic advantages for high density
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interconnection and fast VLSI devices. The complexity
and costs associated with testing and diagnosis are
two of the major obstacles to their extensive use.
Unfortunately, today's MCM's are so complex that
test methods with 100% fault coverage may not be a
vailable [1]. MCM's offer a cost-effective implemen-
tation alternative for MPC systems.

In a multiprocessor, an MCM naturally supports a
more powerful computing unit with a plurality of
microprocessors. The benefits of improved performance

at node level (in terms of power consumption and



reliability) may have a significant impact at system
level in a multinode MPC system. It is also a very
realistic alternative as computing node for application
to large numerically intensive problem solving. If
processor packaging density could be increased then,
the number of processor boards and, thereby, production
costs for massively parallel computers could be
significantly reduced [1].

However MCM's are faced with many problems.
Consider yield and reliability for example. One of the
keys to economic viability of MCM's is the achievement
of high manufacturing yields. Yield losses must be
kept very low compared to costs for MCM to remain
economically competitive. Even with today’s high
degree of simulation, test and design aids, systems
with millions of gates can have undetected faults
which must be repaired [2]. Fault tolerance has been
an essential architectural attribute for achieving high
reliability in many critical applications of MPC
systems due to the increasing number of possible
faulty components [3].

In a massively parallel computer with hundreds (or
thousands) of processors, the system must have
extensive fault-tolerant features to provide service in
spite of faults, and system maintenance. It is widely
accepted, that it is impossible to rework MCM's in the
field. The motivation for introducing fault-tolerance
(mainly through redundancy) into these architectures
is three—fold : reducing costs through yield enhancement,
ensuring on-time delivery and performance improvement
(like operational reliability and computational availability).

Since not only defect tolerance before assembly for
MCM's is required but also known-good-dies are not
universally available, previous methods as [4,5] are
not applicable to MCM's and a different cost-effective
design of MCM'’s has to be adopted to solve these
underlying problems. The usage of some form of
redundancy has been recently proposed for various

" MCM designs for MPC [1,6]. The basic principle of
the proposed approaches is to provide some form of
redundancy in the system to improve the first-pass—
yield of a MPC MCM, i.e. redundant (spare) chips are
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incorporated into the substrate. One of the first issues
with respect to redundancy is to determine how many
spares should be included (optimal redundancy).
However, the issue of optimal redundancy has not
been considered in previous schemes for MCM designs.
An optimal cost-effective design is very important for
manufacturing fault-tolerant MCM's at competitive
costs compared with other approaches [7].

The target system described in this paper, is a
two-dimensional array of chips with spare rows and
columns for faulty chip replacement. Figure 1 shows
the structure of a two-dimensional array of chips in
an MCM. Fault tolerance in a processor array is
achieved by using a combination of reconfiguration
and spare allocation [8,9]. Reconfiguration is defined
as the process of restructuring a faulty system such
that the target system can be realized and any
faults/defects are eliminated from the system.
However, implementation of a particular reconfiguration
strategy depends on factors, such as type of circuit
under manufacturing, expected reliability, and func-
tionality of the system. In the analytical models
considered in this paper, the same redundancy can be
used for both vyield enhancement and performance
improvements. Our analysis points out the possible
weakness of the common assumptions of fault-free
support circuitry and a perfect assembly yield on an
MCM system.

Bare Chips

Interconnection i

Substrate

Wafer

(Fig. 1) Example of the structure of a two-dimensional
array in an MCM
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The goal of this paper is to propose efficient
quantitative optimal cost-effective design strategies
for fault-tolerant arrays in MCM's to maximize cost
and delivery benefits. The proposed model takes into
account the MCM yield, operational MCM reliability,
chip assembly vield, support circuitry failure and array
topology to calculate the optimal number of spares for
redundancy in a particular system. This paper is
organized as follows. In Section 2, we provide the
preliminaries which include the modeling assumptions
and a brief review of previous work. In Section 3,
optimal cost-effective design strategies for fault-
tolerant MCM's are discussed. In Section 4, the parametric
analysis of the models is presented. Discussion and
conclusions are given in Section 5.

2. Review and Preliminaries

For MPC design, time-to-market of MCM's has
become crucial. A late design is often obsolete, as cost
in a system is of ever increasing concern. While the
addition of redundant chips to modules is not practical
for all applications, it can be a realistic alternative to
extensive chip test or rework [10]. Chip redundancy
may be viable for applications in which either space
limitation for additional chips is not a major issue, or
a large number of identical chips are required. Further-
more, many modules do not require all spare chips to
be switched-in during reconfiguration at production—
time. This means that the remaining spares can be
used for in-service reconfiguration, thus improving
reliability and reducing the operating costs [1].

A simple approach to compute the probable first-
pass-yield of fault-tolerant MCM’s is to use the
probability density function (ie., pdf) of a binomial
distribution [1, 11]. This method is effective in calculating
the vield of a redundant system if no intermediate
tests are employed. A limitation of this method is that
it can not model intermediate tests. In [6], we have
proposed analytical models employing intermediate
tests for computing the probable first-pass-yield of
fault-tolerant MCM's. In [12], an approach for modeling

the economics of manufacturing and test strategies for
non—fault-tolerant MCM's at a higher system level,
has been presented. The limitation of this method is
that both the support circuitry and the assembly were
assumed to be perfect. In this paper, we propose three
general design strategies to determine the optimal
number of spare units for a particular MCM system.
This means that our schemes can be applied to all
vield models at chip level for fault-tolerant MCM's.
For a system in which k out of n identical,
non-repairable units must be operational at a time, the
well-known approach for reliability computation also
employs the pdf of a binomial distribution [10]. This
method is effective in calculating the operational
reliability of a redundant system provided the support
circuitry is fault-free, ie. only processors can fail.
However, a limitation of this method is that it can not
incorporate the failure probability of the support
circuitry into the reliability expressions-an extremely
important aspect in the reliability evaluation of a
fault-tolerant system [13). In this paper, we emphasize
the effect of failures in the support circuitry on system
reliability and yield, leading to a more realistic and

accurate analysis.

Primary Module
{non~fault-tolerant MCM}

— Inputs
1 orimary chip 1 Loy

] orimary chip 2

Fauit

Detegtion

primary chip k
and Output

Reconfigration
—_— spare chip 1

Gircuitry

i

J—— spare chip 2 {Subst-ate)

L— spare chip N-k

Spare Module

!

(Fig. 2) A fault-tolerant MCM system

In this paper, we model a fault-tolerant MCM
system for MPC as a meodified standby sparing system.
The model which we will use for the analysis of
fault-tolerant MCM systems, is depicted in Figure 2.



Let N be the number of chips on an MCM and k be
the quorum of the required working (fault free) chips.
The quorum is the minimum number of required
working chips to configure an operational MCM system.
In standby sparing [3], one module is operational, while
one or more modules are in a standby mode, ie,
spares are employed. Unlike a standby sparing system,
our model uses a modified standby sparing in which k
chips (ie., the quorum of the required working (fault-
free) chips) are operational and one or more (at most
N-k) chips are in a standby (spare) mode. Various
fault detection schemes can be used to determine
when a fault occurs in a chip, and fault location can be
used to determine exactly which chip, if any, is faulty
[3,14,15]. If a fault is detected and located, the faulty
chip is removed from on-line {(active) operation, and
replaced with one of the remaining fault-free spares
through the on-circuit reconfiguration circuitry.
Reconfiguration can be viewed conceptually as a
switching operation, usually implemented through the
connectivity of the substrate of the MCM.

As in [1], the following assumptions have been
made regarding the yield analysis of our model at
production-time : (1) The support circuitry is fault-free.
(2) Failure independence is assumed in the chips. (3)
Multiple faults are detected and located sequentially,
ie. one after another. (4) After mounting chips, no
rework process is employed. (5) The MCM system for
MPC is assembled using equally-like chips. This
assumption is based on the fact that a closer examina—
tion of High Massively Parallel Computer boards usually
reveals a regular array of individually packaged,
identical chips.

The following assumptions have been made
regarding the operational reliability analysis in our
model : (1) Unlike most published models, we assume
that the support circuitry is not always fault-free
during operation, as in [5, 13]. However, note that we
assume that the support circuitry is fault-free at
production-time, as in [1]. This assumption is based
on the fact that larger silicon areas devoted to the
support circuitry, increase the hardcore nature and
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their criticality during operation. (2) Unlike most
published models, we assume that several chips can
fail simultaneously from a common-cause failure
which can occur during operation, as in [16]. However,
note that failure independence is assumed in the chips
at production-time, as in [1]. (3) Repair of faulty chips
in the system has not been taken into account
(following the common assumption). This assumption
is based on the fact that it is very difficult if not
impossible to rework MCM'’s once they are delivered
to the user. (4) Software or operating system faults
are not modeled. (5) Only permanent faults are taken
into account, thus assuming that the chips will
automatically recover from transient faults.

If a die is fault-free, we assume that it is a good
die; otherwise, it is assumed to be a bad die. As in [1],
we also assume that the known-good-die confidence
level (i.e., the probability that a die is fully functional
over the specifications and a temperature range) is as
follows : Y. = g - y», where q. is the quality of an
unpackaged chip, and yp is the die burn-in yield.

Latent defects (usually not screened by a testing
procedure) at module level can cause MCM's to fail
while installed in a system. Latent defects are physical
imperfections that do not affect a circuit functionally,
but they may degrade into a faulty condition at a later
time. This class of defects is of particular concern
because it can result in unexpected failures during
operation. Some test methods may cause thermal
overstress [12]. For example, thin film surfaces can be
sensitive to damage during probing. Also, larger
silicon areas devoted to the support circuitry increase
the hardcore nature and the criticality of these circuits
during operation. As a result, the general assumption
of fault-free status for the support circuitry might not
be fully valid for MCM's. For evaluating the effects of
support circuitry failures on an MCM, we introduce
one metric, namely the support circuitry probability of
failure, as follows - Sft) = Cft) +(1-Ys -Y:), where
Ci(t) is the probability of overstress in the support
circuitry, Ys is the substrate yield, and Y; is the
interconnections yield. Note that S(t) is the same as
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C(t) if both the substrate and the interconnections are
assumed to have perfect yields.

As Markov models to predict large and closed form
fault-tolerant systems introduce a computational
complexity problem due to the large state spaces [11],
we will use a combinatorial model to find the reliability
and evaluate an optimal redundancy level under some
reliability constraints for a particular MCM system.
Unlike a previous approach [10], our model incorporates
the support circuitry probability of failure into the
reliability expression to investigate its effect on the
system reliability during operation. This aspect will be

dealt in more detail in the next section.

3. Cost-Effective Design Strategies

In this section, three strategies are discussed for
designing MCM's [17, 18]. These strategies are sub-
stantially different as they try to optimize different
figures of merit.

The residual redundancy which can be used for
operational reliability improvement, is defined as the
redundancy left unused after successfully reconfiguring
and eliminating manufacturing defects [5]. Thus, the
residual redundancy of a fault-tolerant MCM denoted
by s* (ie., the number of fault-free spares left unused
after fabrication) is given by

$=N—k= | e (tr-r—LELLY | )

100

where Ng is the number of fault-free chips on a
fault-tolerant MCM, LL is the percentage of damaged
chips (i.e., the level of first-pass-loss) on an MCM,
and LR is the percentage of spare chips (i.e., the level

of redundancy) on an MCM.
From (1),

100(N - N,) _ 100(k- LR—1005%)
N T k(100+LR) 2)

LL=100-Y, =

LR 1OON k) _ 10001005 +k-LL) _ 100[100;g +k(lOO—Ya)J
Tk k(100-LL) k-Y, 3

where the chip assembly yield Y, is the percentage
that a chip has not been damaged during the assembly
process.

There are two types of yield : functional yield and
parametric yield. Functional yield refers to the
successful probability for the MCM to perform the
basic functions at completion of manufacturing and is
affected by test coverage, process-induced damages,
and repairability. Parametric yield refers to the
probability of the functional MCM to meet specific
performance objectives, such as described in [19]. In
this paper, we assume that parametric yield loss is not
of primary importance and we consider functional
yield only. Apart from optimizing the yield, consider-
ations for an array topology have played a vital role in
choosing the appropriate level of redundancy : for
example 25% and 12.5% represent a spare row or
column for 4X5 and 8X9 two-dimensional array
layout of chips, thus conserving the regularity inherent
in MPC modules [1].

Reliability is very sensitive to imperfect support
circuitry. For short missions requiring an extremely
high reliability, system failure (if it occurs) is likely to
be caused by the support circuitry rather than a
depletion of spares. N Modular redundancy (NMR) is
better suited for such applications. Standby sparing is
better for long missions in which failure is likely to be
caused by depletion of spares [3]. Standby sparing can
bring a system back to a full operational capability
after the occurrence of a fault, but it requires a
momentary disruption in performance while reconfig-
uration is performed. The total number of chips on an
MCM for conserving the regularity inherent in MPC
modules with the minimum number of spares varies
depending upon an array topology (e.g., with spare
rows, spare columns, or spare rows and columns).

3.1 An Optimal Design Strategy for Yield (DFY)

In this case, we assume that the operational reliability
constraint (ie., R{t)) for an MCM is unknown. The
following procedure finds the optimal number of spare
chips (denoted by s,°) for MPC MCM's, assuming that



the target Y (denoted by Y:) and k are given, where
Yum is the probable first-pass—yield of a fault-tolerant
MCM. The algorithm Design-For-Yield(Y, k, s,°)
starts by using a yield expression to compute the
minimal number of chips on an MCM (denoted by
Npm), and then calculates by s,” using Np.

Algorithm 1 : Design-For-Yield (Y, k, s,°)

[Step 1] Find Ny under a yield constraint Y; using a
suitable yield expression for a redundant system
(as in [1,6]). It is assumed that assembly has
a perfect vield.

[Step 2] Compute the optimal number of spares s,”
using the following expressions.

(a) Case 1.1 (denoted by NCAT, ie. with No Consider-
ations for an Array Topology) : If we do not
consider an array topology, then by (2)

S=N—k= [ Ny Dm LL }

100
1 NLQWOHLL) Ly N200+Y)

=] 100 k=] 100 k| @
where since Ny, is minimal, N is minimal if Y,
is given.

(b) Case 1.2 (denoted by CAT, ie. with Consider-
ations for an Array Topology) : If we consider
an array topology, s,’ = Ns—k, where, N; = min{
k = in, ktj'n, k+i-ntjng = N, ne is the
number of chips in a row, n. is the number of
chips in a column, { = 0,1,2, - andj = 01,2, .
N can be computed by using equation (4).
Using the above expression, Ns (ie. the total
number of chips on an MCM for conserving the
regularity inherent in MPC modules) with the
minimum number of spare rows(, columns, or

rows and columns), can be obtained efficiently.

We can compute a simple upper bound on the
running time of the algorithm Design-For-Yield(Y,
k s,°) as follows. The first step is O{Nn—k+1) time, and
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N—Fk
n,+n.

the second step is O(3- [ 1 ) time. Thus, the

running time is at most O(N,,+1+3- [ é\f;ﬁc } —&.

32 An Optimal Design Strategy for Reliability (DFR)

In this case, we assume that the MCM yield
constraint (i.e., Y is unknown. The following procedure
finds the optimal number of spare chips (denoted by
s/”) for MPC MCM'’s, assuming that the target Fgs(t)
(denoted by Ru(t)), k, R{t), S(t) and the time t are
given, where RJt) is the reliability of a chip and
Rys(t) is the operational system reliability incorpo-
rating S{t). The algorithm Design-For-Reliability(R{(t),
k, R{t), S(t), t, s°) starts by using the operational
reliability expression to compute the minimal residual
redundancy s of a fault-tolerant MCM. Then it
calculates the minimal percentage of spare chips LR
by using s°, and finds s’ by using LR.

Algorithm 2 : Design-For-Reliability(R{t), k, R{t),
Sf( t), t, Sro)

[Step 1] Find the minimal s° under a reliability con-
straint R«{t) using the following expression.

s& k .
R ()= Rf(t)Z( . }{1"Sf(t)}{1‘Rc(f)}]‘
im0\’ (5)

Note that s® is determined in terms of Rd(t),
S/(t), k. This expression can be explained as
follows. When the system goes into operation,
at most sg chips are in a standby (spare)
mode to improve its operational reliability by
handling only operational faults. In expression
(5) we incorporate the effect of failures in the
support circuitry on system reliability by
employing the term {I-S{t)}.

[Step 21 Compute the minimal LR using equation (3)

in which s* is minimal.

[Step 31 Compute the optimal number of spares s.°
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using the following expressions.

(a) Case 2.1 (denoted by NCAT) :If we do not

consider an array topology,

S=N—k= | %-k] )
where N is minimal if LR is minimal.

(b) Case 2.2 (denoted by CAT) : If we consider an
array topology, s;° = Ny—k, where N=minf{k+i-
nn, k+j-ne, k+i-n+j-n.t =N, n, is the number of
chips in a row, n. is the number of chips in a
column, i = 0,1,2:and j = 0,12~. N can be
computedby using equation (6).

We can compute a simple upper bound on the
running time of the algorithm Design-For-
Reliability(R{(t), k, R{t), S(t), t, s’)as follows. The
first step costsO(s*+1)time, the second step costs O(1) time,

and the third step costs O(3- % } ) time. Thus,
o .  _N—k
the running time is at most 0(s+2+3-[ - P.

3.3 An Optimal Design Strategy for Yield and Reliability
(DFYR)

If the reliability constraint R.(¢) is not available, this
is the same scenario as the DFY Strategy; if the yield
constraint Y; is not available, this corresponds to the
DFR Strategy. The following four procedures subject
to S{t) and Y, find the optimal number of spare chips
(denoted by s°) for MPC MCM'’s, assuming that Y,
R{(t), k, R{t) and t are given.

Case 3.1 : The support circuitry probability of failure
S(t) is the only unknown.

Algorithm 3.1 : Design—For-Yield-And-Reliability 1
(Y, Rdt), k, RAt), S(t), t, si’)

[Step 1] Compute s,° by using Algorithm 1 : Design-
For-YieldY, k, s,°).

[Step 2] If the support circuitry is fault-free (e, S(t)
= 0), compute s,° by using Algorithm 2 :
Design-For-Reliability(R,(t), k, R{t), S(t),
t, Sro).

[Step 3] Compute “si° (i.e. a lower bound of %) as

follows.

2 sp’=s), if 5,0 = 57

5°=s4°=5,", otherwise. 7

Case 3.2 : The chip assembly yield Y, is the only

unknown.

Algorithm 3.2 : Design-For-Yield-And-ReliabilityX(Y,,
R(Y), k, RLE), SO, ¢, s1”)

[Step1] If the assembly has a perfect vield (ie,
Y,=100%), compute s,” by using Algorithm
1 : Design-For-Yield(Y, k, s,°).

[Step 2] If the assembly has a perfect yield (e,
Yo=1009%), compute s’ by using Algorithm
2 . Design-For-Reliability(R(t), k, R{t), S(t),
t, s°).

[Step 3] Compute s, by using equation (7).

Case 3.3 : Both S{t) and Y, are unknown.

Algorithm 3.3 : Design-For-Yield-And-Reliability3
(Yy, BAt), k, RLY), S(1), ¢, si°)

[Step1] If the assembly has a perfect yield (e,
Y,=100%), compute s,” by using Algorithm
1 : Design-For-Yield(Y:, k, s,°).

[Step 2] If the support circuitry is fault—free and the
assembly has a perfect yield (ie., S{t)=0 and
Y.=100%), compute s° by using Algorithm
2 : Design-For-Reliability(R(t), k, R{t),
S(t), t, s°).

[Step 3] Compute si,’” by using equation (7).



Case 3.4 : Both S{t) and Y, are known.

Algorithm 3.4 : Design-For-Yield- And- Reliability4
(Y., R{t), k, R{t), S(t), t, )

[Step 1] Compute s,” by using Algorithm 1 . Design-
For-Yield(Y:, k, s,°).

[Step 2] Compute s° by using Algorithm 2 : Design-
For-Reliability(R{(t), k, R{t), S(t), t, s°).

[Step 3] Compute the optimal number of spares s° as

follows.

=5/ if s’ =g’

s? = 5,°, otherwise. 8

Note that s° for the MPC MCM system can be
determined only provided both S{¢) and Y. are also
known. Otherwise, only si’ can be computed under the

given assumptions.
4, Parametric Analysis

In this section, we will study the effect of the above
three design strategies for cost-effectiveness and
on-time delivery of fault-tolerant MCM's for MPC. In
particular, the issues of imperfect support circuitry,
chip assembly yield and array topology are investigated.

Typical values for die quality and burn-in yield
depend on the complexity of the chip itself. In this
analysis, we use a known-good-die confidence level in
the range of 922% < Y. < 97.0%, i.e., the same range
as assumed in [1, 6]. For simplicity, it is also assumed
that the chips in operation follow an exponential
failure law with a same constant failure rate (given by
A). To assure that MCM systems meet the highest
quality and reliability objectives and yet remain
competitively priced, the data used in the following
illustrations are : Y; =099, R{(t)=0.999, R/(t)==¢*®
=0.999, and A= 769x10* [failures/hour] = 6.74 X107
[failures/year] (i.e. the same value of as in [20]) where
ti = 13000 [hours] = 1484 [years] for satisfying both
R{(t)=0.999 and RA{t:;)=0.999.
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In Figure 3, we show the effects of chip assembly
yvield and array topology on an optimal redundancy
under the DFY Strategy assuming Y-~922% for
systems requiring 16, 32 and 64 working dies. In
Figures 4 and 5, we show the impact of chip assembly
vield and array topology on an optimal redundancy
under the DFY Strategy assuming different
known-good-die confidence levels for a system
requiring 16 and 64 working dies, respectively. As
expected, all examples demonstrate that for a given k
the required number of spares decreases as the chip
assembly vield (and/or the known-good-die confidence
level) is (are) increased. Figure 6 demonstrates the
residual redundancy effect on operational MCM
reliability under the DFY Strategy by assuming a
perfect assembly yield and different support circuitry
probabilities of failure for systems requiring 16, 32 and
64 working dies. This figure shows that the larger the
number of spares (and/or the smaller the support
circuitry probability of failure), the higher the operational
reliability of the system; however the most pronounced
improvement occurs by providing only one spare.

In Figure 7, we show the effects of chip assembly
yield and array topology on an optimal redundancy
under the DFR Strategy by assuming Y~922% for
systems requiring 16, 32 and 64 working dies. In
Figures 8 and 9, we show the impacts of chip
assembly yield and array topology on an optimal
redundancy under the DFR Strategy for different
known-good-die confidence levels in systems
requiring 16 and 64 working dies, respectively. In
Figures 7, 8 and 9, it is assumed that S{t)=001. As
expected, the known-good-die confidence level in
these Figures shows no effect on the optimal
redundancy under the DFR Strategy, whereas the
number of spares also decreases as the chip assembly
yield is increased. Figure 10 demonstrates the effect of
chip redundancy on MCM vyield under the DFR
Strategy for a perfect assembly yield and different
known-good-die confidence levels in systems
requiring 16, 32 and 64 working dies. This figure

shows that the larger the number of spares (and/or
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the larger the known-good-die confidence level), the
higher the probable first-pass-yield of an MCM.

In Figure 11, we show the effects of chip assembly
yield and array topology on the optimal redundancy
under the DFYR Strategy assuming Y=922% for
systems requiring 16, 32 and 64 working dies. In
Figures 12 and 13, we show the impact of chip
assembly yield and array topology on the optimal
redundancy under the DFYR Strategy assuming
different known-good-die confidence levels for a
system requiring 16 and 64 working dies, respectively.
In Figures 11, 12 and 13, it is also assumed that
S{ti)=001. As expected, all examples clearly
demonstrate that the number of required spares
decreases, as the chip assembly yield (and/or the
known-good-die confidence level) is (are) increased.

By comparing Figures 3, 7 and 11, we note that the
DFY Strategy may provide a better figure of merit
than other strategies in a practical scenario, provided
the chip assembly yield is below a certain value. For
high values of chip assembly yield, the DFR Strategy

is better. These observations are based on the fact

that if the reliability constraint Ry(t) is not available,
the DFYR Strategy provides the same scenario as the
DFY Strategy; if the yield constraint Y, is not
available, the DFYR Strategy corresponds to the DFR
Strategy. From the analysis of the results, it is also
shown that although an idealistic assumption with
certain possible limitations (such as fault-free support
circuitry, a perfect assembly yield and no array
topology considerations) in the literature [1,6,12] can

(Table 1> Comparison between the proposed optimal
design strategies

Design MCM Yield | MCM Reliability | Chip Assembly

Strategy Constraint Y, | Constraint R{t) Yield
DFY strategy known unknown good for low
values
DFR strategy | unknown known good for high

values

good for middle
values

DFYR strategy known known

simplify the theoretical analyses, the obtained results

may prove to be too optimistic and misleading for

MCM technology.

5. Discussion and Conclusions

It has been widely recognized that the supply of
known-good-die can only provide a partial solution to
the cost and delivery problems of MCM systems; in
order to solve the underlying manufacturing and
production problems, a different approach must be
adopted. The use of an extensive chip test or rework
processes may not be practical for all applications,
therefore an alternative solution is to add redundant
chips to modules. An optimal cost-effective design is
very important to manufacture fault-tolerant MCM's
at a competitive cost compared with alternative
technologies and approaches [1, 10].

This paper has proposed new optimal design
strategies for cost-effectiveness and on-time delivery
of fault-tolerant MCM'’s for MPC. The objective is to
minimize the number of spare units in a system, while
improving the yield and reliability of MCM's.
Comparison between the proposed design strategies is
shown in Table 1.

It may be noted that in today's MCM technology,
although the general assumptions of an ideal support
circuit, perfect assembly vyield and no system
considerations, can simplify the analysis, the results so
obtained are not realistic. In addition, the analysis of
the effect of residual redundancy on operational
reliability of fault-tolerant MCM's has been presented.
Our method allows an accelerated search for the
optimal number of spares as predicted by the
analytical models, thereby achieving significant time
gains for establishing an optimal level of redundancy.
Also, this technique enables to predict accurate field
service via reliability modeling as well as managing
the system yield. From analyzing the results, we note
that the number of required spares decreases, as the
chip assembly yield (and/or the known-good-die

confidence level) is (are) increased. We also note that



the larger the number of spares (and/or the smaller
the support circuitry probability of failure), the higher
the operational reliability of the system. Extensive
parametric analysis results have shown that our
approach can be applied to the designs for yield and
reliability of MCM systems for MPC more efficiently
than previously. In addition, our method can be easily
implemented as an automatic tool for establishing the
optimal redundancy of fault-tolerant MCM's for MPC.
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