Ag 첨가가 7050 A 합금의 기계적 성질에 미치는 영향

고려대학교 공과대학 금속공학과
＊한국과학기술연구원 재료연구부

Effect of Ag Addition on the Mechanical Properties
of 7050 Al Alloy

S．H．Kwak，Y．H．Chung＊，S．I．Kwun，K．K．Cho and M．C．Shin＊
Dept．of Metallurgical Engineering，Korea University，Seoul 136－701，Korea
＊Mater．Sci．\＆Tec．Div，Korea Institute of Science and Technology，Seoul 136－791，Korea

Abstract

The effects of Ag addition on the microstructures and mechanical properties of 7050 Al alloy were investigated．Various homogenizing and aging treatments were carried out to analyze the controversial effects of Ag in 7050 Al alloy． Transmission electron microscopy（TEM）was used for microstructural analysis．The hardening precipitates $\left(\boldsymbol{\eta}^{\prime}\right)$ become finer with Ag addition．It suggests that Ag promotes easier nucleation of $\boldsymbol{\eta}^{\prime}$ ．

The strength of overaged Ag bearing alloys are higher than that of Ag free alloy． Hardening precipitates $\left(\boldsymbol{\eta}^{\prime}\right)$ in Ag bearing alloys are smaller than that of Ag free alloys， because the growth rate of η^{\prime} during overaging stage is lower in Ag bearing alloys．

Key words ： 7050 Al alloy．Ag addition， $\boldsymbol{\eta}^{\prime}$ precipitate，Under aging，Over aging

1．서 론

Al 합금은 비강도가 높고 내산화성과 내부식성 이 우수하여 항공기 및 기계 구조용 소재로 많이 이용되고 있다．톡히 Al 7050 합금은 석출경화형 합금으로 경화 석출물 $\boldsymbol{\eta}^{\prime}$ 을 미세하고 균일하게 분 포시킴으로써 높은 강도를 얻을 수 있다．기존 7075 Al 합금의 입자 미세화 원소인 Cr 을 Zr 으로 대체하여 소입 민감도를 개량한 7050 Al 합금은 $\mathrm{T} 76, \mathrm{~T} 74, \mathrm{~T} 73$ 등 과시효 처리재가 실용적으로 사 용되고 있다 ${ }^{-3)}$ ．T73 열처리 소재는 응력부식균열 톡성이 가장 높은 반면에 강도가 낮고，T76 소재 는 내응력부식균열 특성이 다소 낮지만 강도와 박

리부식（exfoliation corrosion，EXCO）특성이 우수하 며， T 74 소재는 T 76 과 T 73 소재의 중간적인 재질 톡성을 보이고 있다．

이러한 7000 계 알루미늄 합금에 Ag 를 첨가하면 η^{\prime} 상의 석출 핵생성 촉진과 미세화에 효과가 있다 고 알려져 있다．${ }^{45}$ Polmear ${ }^{6}$ 는 7000 계 $\mathrm{Al}-5.8 \mathrm{Zn}$－ $2.4 \mathrm{Mg}-1.8 \mathrm{Cu}$ 합금에 $0.3 \mathrm{wt} . \% \mathrm{Ag}$ 를 첨가하여 미세 하고 균일한 경화 석출물을 얻었으며 강도가 향상 되었다고 보고하였다．반면에 Kusui 등근 분말야 금법으로 제조한 7000 계 $\mathrm{Al}-9.5 \mathrm{Zn}-3 \mathrm{Mg}-1.5 \mathrm{Cu}$ 합금 에 $0.1 \mathrm{wt} . \%$ 이상 Ag 를 첨가하면 강도 저하가 일어 난다고 보고하고 있다．
본 연구에서는 Ag 의 함량을 각각 $0.03,0.05$ ，
$0.08 \mathrm{wt} \%$ 첨가한 7050 합금을 만들어 7050 Al 합 금에서 Ag 가 η^{\prime} 상의 석출기구와 강도에 미치는 영향을 연구하였다.

2. 실험방법

$60 \times 60 \times 120 \mathrm{~mm}$ 크기의 Ag 를 함유한 7050 Al 합금 잉고트를 아르곤 가스 분위기하의 진공 유도 용해로에서 용해, 주조하였다. 제조한 합금 잉고트 의 화학조성은 Table 1 과 같다.

잉고트는 편석을 제거하기 위하여 $468^{\circ} \mathrm{C}$ 에서 48 시간 균질화 처리를 한 후 얼간압연하여 3 mm 두 께의 판재로 만들었다. 용체화 처리는 재결정조직 을 피하기 위하여 $2^{\circ} \mathrm{C} / \mathrm{min}$ 의 느린 속도로 $477^{\circ} \mathrm{C}$ 까 지 승온시켜 이 온도에서 1시간 유지한 후 퀜칭하 였다. 시효처리는 공기순환식 가열로로 하였으며, 72 시간의 상온시효와 $121^{\circ} \mathrm{C}$ 에서 6 시간의 1 단계 시 효를 거친 후, T 6 over와 T 76 은 각각 $163^{\circ} \mathrm{C}$ 에 5 시 간과 24 시간, 774 열처리는 $168^{\circ} \mathrm{C}$ 에서 18 시간을 시 효시키는 세 가지 조건으로 2 단계 시효처리를 실 시하였다. 한편 연구합금의 시효 경화 특성은 용 체화 처리 후 $150^{\circ} \mathrm{C}$ 에서 1 차 시효시간에 따른 것 과, $121^{\circ} \mathrm{C}$ 에서 6 시간 1 차 시효후 $163^{\circ} \mathrm{C}$ 에서 2 차 시 효시간에 따른 경도변화 곡선을 구하여 분석하였 다.

비커스 경도기로 시효시간에 따른 경화능의 경 향을 관찰하였으며, 경화 석출물 η^{\prime} 상의 거동은 투 과전자현미경으로 관찰하였다. 투과전자현미경 시 편은 $50 \sim 70 \mathrm{~mm}$ 정도로 기계적 연마한 후, 직경 3 mm

의 디스크로 펀치하여 $-30^{\circ} \mathrm{C}$ 의 30% 질산용액 중 에서 twin jet로 연마하여 관찰하였다.

3. 실험결과 및 고찰

3. 1 시효초기 단계에서의 Ag 의 역할

Fig. 1 은 열간 압연재를 $477^{\circ} \mathrm{C}$ 에서 용체화 처리 한 뒤 $150^{\circ} \mathrm{C}$ 에서 시효시간에 따른 각 합금의 미소 경도 변화를 나타낸 것이다. Ag 를 첨가하지 않은 합금에 비해 Ag 를 첨가한 모든 합금의 경우가 시 효초기(0.1 시간 시효)에 경도 상승 폭이 크게 나 타났다.

Fig. 2 는 용체화처리 후 $150^{\circ} \mathrm{C}$ 에서 0.1 시간 시효 처리한 것으로 시효초기 단계의 경화 석출물의 크 기분포를 비교하기 위해 관찰한 암시야상으로 zone axis가 [112]일 때 $2 / 3(220)$ 지점에서 관찰한

Fig. 1. Hardness changes with aging time in $\mathrm{Al}-\mathrm{Zn}-\mathrm{Mg}-\mathrm{Cu}-\mathrm{Zr}-(\mathrm{Ag})$ alloys aged at $150^{\circ} \mathrm{C}$.

Table 1. Chemical composition of $\mathrm{Al}-\mathrm{Zn}-\mathrm{Mg}-\mathrm{Cu}-\mathrm{Zr}-(\mathrm{Ag})$ alloys uesd in this investigation.

Alloy design	Chemical composition(wt.\%)					
	Zn	Mg	Cu	Zr	Ag	Al
$\mathrm{Al}-6.3 \mathrm{Zn}-2.3 \mathrm{Mg}-2.2 \mathrm{Cu}-0.12 \mathrm{Zr}$	6.16	2.39	2.23	0.08	-	bal.
$\mathrm{Al}-6.3 \mathrm{Zn}-2.3 \mathrm{Mg}-2.2 \mathrm{Cu}-0.12 \mathrm{Zr}-0.03 \mathrm{Ag}$	6.32	2.44	2.21	0.10	0.03	bal.
$\mathrm{Al}-6.3 \mathrm{Zn}-2.3 \mathrm{Mg}-2.2 \mathrm{Cu}-0.12 \mathrm{Zr}-0.05 \mathrm{Ag}$	6.28	2.39	2.17	0.08	0.05	bal.
$\mathrm{Al}-6.3 \mathrm{Zn}-2.3 \mathrm{Mg}-2.2 \mathrm{Cu}-0.12 \mathrm{Zr}-0.08 \mathrm{Ag}$	6.37	2.45	2.16	0.09	0.08	bal.

것이며， 9 만배로 촬영한 다음 5 배 확대하여 인화한 것이다．Fig．2（b）에 화살표로 표시된 edge－on된 $\boldsymbol{\eta}$ 상은 Ag 를 첨가하지 않은 합금（Fig．2（a））에서보 다 $0.03 \% \mathrm{Ag}$ 를 첨가한 합금에서 더 미세하게 분포 하고 있음이 비교된다．그 크기분포를 조사한 결과 를 Fig． 3 에 막대그래프로 도시하였다．η^{\prime} 상의 크기 분포는 9 만배로 조사한 TEM조직사진 필름을

Fig．2．TEM dark field images showing the distribution of η^{\prime} precipitates， zone axis ：［112］．
a） Ag free alloy aged at $150^{\circ} \mathrm{C}$ for 0.1 hrs ．
b）Ag bearing（ $0.03 \mathrm{wt} \%$ ）alloy aged at $150^{\circ} \mathrm{C}$ for 0.1 hrs ．

10 배 확대하여［111 1 ］방향으로 edge－on된 막대형 태의 석출물만 골라서 장축의 길이를 측정하였으 며，시편당 측정한 입자개수는 평균 500－1000개 정 도였다．크기 분포는 그림에서 볼 수 있듯이 Ag 를 첨가하지 않은 합금에는 경화 석출물의 크기가 5 mm 에서 10 nm 까지 넓은 범위에 분포하고 있으며，석 출물의 평균 크기가 6.4 nm 이었다．반면에 Ag 를 첨 가한 합금은 경화 석출물의 크기 분포 범위가 좁 아서 대부분 5 nm 에서 6 nm 크기범위에 집중되어 있 으며，경화 석출물의 평균 크기도 5.3 nm 로 작게 나 타났다．석출 초기에 Ag 첨가 합금에서 $\dot{\eta}$ 상의 크 기 분포 범위가 좁은 것은 $\boldsymbol{\eta}$ 상이 거의 동시에 핵 생성되었음을 의미하며．동시에 다량 핵생성이 되 었기 때문에 결과적으로 입자 크기도 작아진 것으 로 판단된다．이와 같은 결과는 Polmear의6） Ag 첨 가 효과 분석과 일치하며， Ag 는 시효 초기에 경화 석출물의 핵생성을 촉진하여 더 많은 석출물 생성 을 유발시키고 급격한 초기 경도 향상에 기여하고 있음을 의미한다．
시효 초기에 Ag 첨가에 의해 $\boldsymbol{\eta}^{\prime}$ 상의 석출 핵생성 이 촉진될 수 있는 두 가지 가능성은 Ag 첨가로 인해 공공농도가 증가됨으로써 핵생성이 촉진될 수 있다는 것 ${ }^{6}{ }^{88}$ 과 Ag 입자가 핵생성자리로 작용할

Fig．3．Size distribution of $\boldsymbol{\eta}$ ， precipitates in Ag free and Ag bearing 7050 Al alloys．（aged at $150^{\circ} \mathrm{C}$ for 0.1 hrs ）

수 있다는 것이다. 물론 이러한 추론에 대한 직접 적인 증거는 밝혀지지 않았고 본 연구에서도 관찰 하지 못했지만 Fig. 1,2 의 결과는 Ag 의 첨가가 시효 초기에 η^{\prime} 상의 석출 핵생성을 촉진시키고 있 다는 것을 시사해 주고 있다.

3. 2 최고경도 및 과시효 단계에서의 변화

한편 Fig. 1에서 보면, Ag 첨가 여부에 따른 최고 경도의 차이는 거의 없어 보인다. 그러나 2단 시효 처리한 Fig. 4 의 결과를 보면 최고 경도값은 Ag 를 첨가한 시료가 약간 높은 경향을 보이고 있다. 이 러한 결과들을 볼 매 최고 경도값은 Ag 첨가에 따 른 영향보다 열처리조건에 따른 영향을 더 많이 받았다고 판단된다.

Fig. 1 의 $150^{\circ} \mathrm{C}$ 시효경화 곡선에서 과시효단계 를 보면 Ag 첨가 합금은 경도 저하 속도가 느린 반면, Ag 를 첨가하지 않은 합금은 급격히 경도 저 하가 일어남이 비교된다. Fig. 4는 과시효 영역에 서의 시효시간에 따른 경도 변화를 실제 사용하는 T7X조건에서 비교한 시효경화 곡선이다. 전반적으 로 Ag 를 첨가한 합금이 Ag 를 첨가하지 않은 합금 보다 높은 경도를 보이고 있다. Ag 첨가에 따른 강 도 향상은 T6 over, T76, 및 T74 조건의 인장시험

Fig. 4. Hardness changes with aging time in $\mathrm{Al}-\mathrm{Zn}-\mathrm{Mg}-\mathrm{Cu}-\mathrm{Zr}-(\mathrm{Ag})$ alloys when aged at $163^{\circ} \mathrm{C}$ after 1 step aging at $121^{\circ} \mathrm{C}$ for 6 hrs .

으로도 확인되어 Fig. 5와 같이 Ag 함량이 높거나 과시효 정도가 클수록 강도 중가가 크게 나타났다.

Fig. 6 은 과시효조건에서의 η 상을 관찰한 조직 사진으로 zone axis가 [112]일 때 $2 / 3(220)$ 지점에서

Ag Contents(wt. \%)
Fig. 5. Effect of Ag content on the yield strength (a) and tensile strength(b) of 7050 Al alloys in various aging conditions.
T6 over : $121^{\circ} \mathrm{C} / 6 \mathrm{hrs} .+163^{\circ} \mathrm{C} / 5 \mathrm{hrs}$. $\mathrm{T} 76: 121^{\circ} \mathrm{C} / 6 \mathrm{hrs} .+163^{\circ} \mathrm{C} / 24 \mathrm{hrs}$. $\mathrm{T} 74: 121^{\circ} \mathrm{C} / 6 \mathrm{hrs} .+168^{\circ} \mathrm{C} / 18 \mathrm{hrs}$.

Fig．6．Dark field images showing the distribution of $\boldsymbol{\eta}, \boldsymbol{\eta}$ and Al 3 Zr precipitates and selected area diffraction pattern（zone axis ：［112］）．
（a）Ag free alloy aged at $150^{\circ} \mathrm{C}$ for 24 hrs ．
（b）Ag bearing（ $0.03 \mathrm{wt} . \%$ ）alloy aged at $150^{\circ} \mathrm{C}$ for 24 hrs ．
（c）Ag free alloy aged to T74 condition
（d）Ag bearing（ $0.08 \mathrm{wt} . \%$ ）alloy aged to T 74 condition
（e）Indexing of the pattern shown in（c）and（d），zone axis ：［112］

관찰한 것이다. η 상에는 여러 가지 종류가 있으며 대표적으로 11 가지종류의 η 상이 보고되고 있는데 $\eta_{(1 \sim 11)}$ 로 표기한다 $\left.{ }^{9} 12\right)$ Fig. 6에서 관찰한 $2 / 3(220)$ 지점에는 주로 $(20.0) \boldsymbol{\eta}^{\prime},(20.0) \boldsymbol{\eta}_{2}$ 및 $(00.4) \boldsymbol{\eta}_{\boldsymbol{\prime}}$ 상의 회 절점들이 밀집해 있기 때문에 동시에 회절된다. 따 라서 Fig.6에서 관찰되는 석출물에는 위에서 언급 한 석출물들이 공존할 것으로 판단되며, 본 논문에 서는 이 석출물들을 총칭하여 η^{\prime} 이라 표기하였다. $1 / 2(220)$ 지점의 회절점은 구헝의 AbZr 에 의한 것 인데 이 석출물의 회절점도 η^{\prime} 상들의 회절점과 매 우 인접해 있기 때문에 동시에 회절되어 나타난다. 이러한 석출물들의 종류들을 (e)에 도식적으로 나 타내었다. (a)와 (b)는 $150^{\circ} \mathrm{C}$ 에서 24 시간 열처리하 여 과시효 초기조건에서의 경화 석출물을 관찰한 암시야상으로 Ag 가 첨가되지 않은 합금과 $0.03 \% \mathrm{Ag}$ 가 첨가된 합금의 경우이다. 조직관찰과 분석의 어려움에도 불구하고 과시효 초기단계의 시료에서 석출물 분포를 조사한 것은 과시효 단계 로 넘어가면서 강화 기여도가 높은 10 mm 이하 크기 의 석출물 분포와 성장에 Ag 첨가가 미치는 영향 을 비교하기 위한 목적이었다.

Fig. 7은 Fig. 6(a)와 (b)의 전자현미경 조직을 10 배 확대한 후, [lll$\overline{1}]$]방향으로 edge-on된 $\boldsymbol{\eta}$ 상의 석출물 길이를 측정하여 그 크기 분포를 조사한

Fig. 7. Size distribution of η^{\prime} precipitates in Ag free and Ag bearing 7050 Al alloys. (aged at $150^{\circ} \mathrm{C}$ for 24 hrs .)

결과이다. Ag 를 첨가하지 않은 합금은 대략 10 mm 크기를 중심으로 정규분포를 이루고 있으며, Ag 를 첨가한 합금은 대략 7 mm 크기를 중심으로 정규분 포를 이루고 있다. 즉, Ag 첨가로 경화 석출물의 평 균크기만 작아졌을 뿐 경화 석출물의 분포양상은 큰 차이가 없다. Ag 를 첨가하지 않은 합금은 η^{\prime} 상 의 평균크기가 10 mm 정도로 크고, 강화 기여도가 높 은 10 mm 이하 크기의 석출물 분율이 60% 수준으 로 낮아져 강도저하가 급격히 일어난 반면에 Ag 를 첨가한 합금은 η^{\prime} 의 크기가 작아서 평균 $6 \sim 7$ mm 수준이고, 강화 기여도가 높은 10 mm 이하 크기의 석출물 분율도 90% 이상을 차지하여 아직도 높은 강도를 보이고 있다. 즉 7050 Al 합금에서 Ag 첨 가로 과시효 조건에서도 높은 강도가 유지된 것은 석출물 성장속도가 느려진데 따른 결과이다. 이와 같이 Ag 첨가로 석출물 성장이 느려진 것은 시효 초기에 석출물 핵생성이 촉진되면서 기지에 고용 된 경화원소가 빠르게 고갈되어 이후의 석출물 성 장이 느려진데 따른 결과로 추측되나 이 부분은 더 깊은 연구가 필요하다.

Fig. 6 의 (c)와 (d)는 석출물의 크기분포에 대한 Ag 첨가의 효과를 보다 가시적으로 명확하게 관찰 하기 위하여 높은 온도에서 충분히 과시효한 후에 관찰한 결과이다. 두 합금의 열처리 조건과 Ag 함 량은 그림 5 의 인장시험결과에서 가장 큰 항복강 도와 인장강도의 차이를 보이는 T74열처리 조건과 Ag 가 첨가되지 않은 합금과 $0.08 \% \mathrm{Ag}$ 첨가 합금을 선택하였다. 위에서 언급한 바와 같이 막대형태의 η^{\prime} 상들과 구형의 $\mathrm{Al3Zr}$ 석출물이 동시에 관찰된다. 한편, 막대형태의 η^{\prime} 및 η 석출물의 방향을 자세 히 관찰해 보면 대부분이[111$]$ 1 방향을 유지하고 있으나 [11 $1 \overline{1}]$ 방향에서 $5 \sim 10{ }^{\circ}$ 정도 기울어진 석출 물들도 관찰된다. 이러한 막대형태의 석출물은 기 존에 보고된 $\boldsymbol{\eta}_{(1 \sim 11)}$ 석출물의 일종일 것으로 판단 되며 자세한 분석은 본 연구에서는 조사하지 않았 다. Fig. (c)와 (d)에서[11 1 1] 방향으로 놓인 막대 형태의 η 석출물들의 크기를 비교해 보면 Ag 가 첨가 된 합금이 첨가되지 않은 합금에 비해 미세하다는 것을

확연히 알 수 있다．또한 Ag 첨가의 효과는（c）와 （d）의 좌측 상단의 회절패턴에서도 나타났다．그 림에서 볼 수 있둣이 Ag 가 첨가되지 않은（c）의 경우， $2 / 3(220)$ 위치에서 방향성 석출물에 의한 streak은 거의 나타나지 않는 반면에， $0.08 \% \mathrm{Ag}$ 가 첨가된（d）의 경우에서는 방향성 석출물에 의한 streak이 뚜렷이 보이고 있다．즉，이것은 Ag 가 첨 가되지 않은 합금이 첨가된 합금에 비해 석출상의 크기가 더 커지면서 석출 초기에 보였던 형상의 방향성을 많이 잃었다는 것을 의미하며，이러한 결과는 Ag 가 석출물의 성장속도를 느리게 하는데 영향을 주었다는 것을 보여주는 것이다．

4．결 론

7050 Al 합금에 Ag 를 첨가하면 시효초기에 경 도가 급격히 높아지는데 이것은 Ag 첨가로 경화 석출물인 η^{\prime} 상의 석출 핵생성이 촉진되면서 강화 에 기여하는 미세 석출물의 분포빈도가 높아진 것 에 기인 것으로 판단된다．한편，과시효조건에서 Ag 첨가 합금은 첨가되지 않은 합금에 비해 η^{\prime} 상 의 평균크기가 작아졌으며，이에 따라 Ag 첨가합금 이 과시효 단계까지 높은 강도를 유지한 것으로 판단된다．

참고문헌

1）K．H．Rendigs ：Aluminum Structures Used
in Aerospace，ICAA 5 Conference，July 1－5， 1996，Grenoble，France（1996）
2）W．H．Hunt，Jr ：Aluminum alloy product having improved combinations of strength， toughness and corrosion resistance，European Patent Application，EP 0377779 Al，Alcoa， （1990）
3）K．Ural ：J．of Mater．Sci．Lett．， 13 （1994） 383

4）I．J．Polmear ：JMM， 89 （1960） 193
5）K．Hono，N．Sano，S．S．Babu，R．Okano and T．Sakurai ：Acta Metall， 41 （1993） 829
6）1．J．Polmear ：J．of Metals，June（1968） 44
7）J．Kusui，K．Fuii，K．Yokoe，T．Yokote，K． Osamura，O．Kubota and H．Okuda ：Mater． Sci．Forum，217－222（1996） 1823
8）L．F．Mondolfo ：Metallurgical Reviews， 153 （1971） 95
9）J．Gionnes and C．J．Simensen ：Acta Metall， 18 （1970） 881
10）H．Loffler，I Kovacs and J．Lendvai ：J．of Mater．Sci， 18 （1983） 2215
11）남효학，이재영，박중근 ：대한금속학회지， 26 （1988） 134
12）J．K．Park and A．J．Ardell ：Metall．Trans．A， 15A（1984） 1531

