반응성 마그네트론 스퍼터링법으로 제조한 T－AI－V－N 박막의 미세조직 및 부착특성에 관한 연구

손ㅇㅇㅇ 운•이 영 기
한국자원연구소 혈용연구부
＊위덕대학교 반도체공학과

The microstructure and adhesive characteristics of Ti－Al－V－N films prepared by reactive magnetron sputtering

Yong－Un Sohn，Young－Ki Lee＊
Minerals \＆Materials Division，Korea Institute of Geology，Mining \＆Materials（KIGAM）．Daejeon 305－350，Korea
＊Department of Semiconductor Engineering．Ui－Duk University．Kyongju 780－713，Korea

Abstract

The quaternary $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ films have been grown on glass substrates by reactive dc and rf magnetron sputter deposition from a Ti－6AI－4V target in mixed Ar－ N_{2} discharges．The Ti－Al－V－N films were investigated by means of X －ray diffraction（XRD）．electron probe microanalysis（EPMA）and scratch tester．Both XRD and EPMA results indicated that the $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ films were of single B 1 NaCl phase having columnar structure with the（111）preferred orientation．Scratch tester results showed that the adhesion strength of $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ films which treated with substrate heating and vacuum annealing was superior to that of as－deposited film．The good adhesion strength was also achieved in the double－layer structure of $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N} / \mathrm{Ti}-\mathrm{Al}-$ V／Glass

Key Words ：Ti－Al－V－N film，glass substrate，dc \＆rf magnetron sputter，adhesion strength，double－layer structure

1．서 론

각종 절삭공구．금형，기계부품 둥의 수명향상율 위한 수단으로 종래에는 경도와 내마모성 둥을 겸 비한 TiN이 표면 코팅재로서 주로 이용되어 왔으 4．최근에는 표면 코팅재의 기능성을 더욱 향상시 키기 위하여 TiN올 토대로 한（Ti，AI）$N^{1-4)}$ ． $(\mathrm{Ti} 2 \mathrm{Zr}) \mathrm{N}^{2}$ ．（ $\left.\mathrm{Ti} \mathrm{AL}, \mathrm{V}\right) \mathrm{N}^{5}$ ）둥의 질화물과（ $\left.\mathrm{Ti}, \mathrm{V}\right) \mathrm{C}^{6}$ ． （TiZx）C）둥의 다성분계 탄화률 피막이 활발히 연

구되고 있다．이중에서 룩히（ Ti, Al ） N 과 （TiAlV）N 피막온 TiN과 비교하여 경도 부차ㄱㅕㅕ． 내마모성둥의 기계적 성질이 우수할 푼만 아니라 고온예서 피막 중의 Al 이 선백적으로 선화뒴으로 쎄 피막표면에 Al 산화물이 우선적으로 생성되어 피막 내부의 산화를 방지하는 고온 산화튝성의 제 료이므로，가공중 공구 마모가 심하고 열 발성이 큰 고경도 재료뷸 가공하는데 매우 휴直．적절한 코팅률질이다 ${ }^{8-10}$ ．그러나．이리한 무언ㄴㄴ 기계적•

화학적 성질올 가진 믈질이라고 할지라도 각중공 구의 내구성을 결정하는 중요한 인자인 코팅재/모 재간의 부착력(adhesion strength)을 중대시키는 방 안이 모색되지 않으면 간헐정으로 큰 열적. 기계적 옹력이 걸리는 경우에 그 접합부로부터 섭게 박리 되어 버린다. 따라서 코팅 충과의 부착령을 향상시 키는 공정이 요구되며, 또한 코팅재/모재간의 계면 툭성의 철저한 규명은 각종공구의 내구성 향상에 기여하는 부착력을 중대시키는데 선행되어야할 필 수 블가졀한 요소이다.

본 연구에서는 여러 가지 코팅조건에서 도출된 최적조건으로 Ti-Al-V-N계 질화물을 유리(glass) 상에 코팅한 후, dc 및 rf 마그네트론 스퍼터링 방 법에 따른 부착특성을 조사하였다. 그리고 코팅 후 진공열처리한 시료 및 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}$ 코팅층에 의한 2중 (double-layer)코팅 방법으로 제조한 시료의 부착 톡성을 각각 검토함으로써 초경칩이나 공구강에의 직접적인 옹용에 앞서 부착렴 향상을 위한 기초자 료로써 활용하고자 하였다.

2. 실험 방법

2-1. 시편준비

본 연구에서 사용한 기퐌은 유리(Coming 7056, $48 \times 28 \times 1 \mathrm{~mm})$ 불 사용하였으며, 먼저 표면 코팅 전 에 시편의 유기물 동의 제거톨 위하여 아세톤용액 예서 초음파 세척을 하였다. 이매 초음파 셰청ㅇㄴㄴ 5 분 동안 실시하였고, 세쳐이 끝난 기판은 고압의 알곤 가스로 건조시킨 후, 진공조 내에 시편올 장 입하였다.
$\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 계 질화률율 코팅하기 위하여 dc 및 rf 마그네트른 스퍼터링 장치률 사용하였으며. 코 팅을 위한 타갯트 쟤료로는 고강도 쟤료로 알려진 상용의 $\mathrm{Ti}-6 \% \mathrm{Al}-4 \% \mathrm{~V}$ 합금봉 $(75 \mathrm{~mm}$ ©) 을 사용하 였다. 그리고 반웅 가스는 99.9999% 이상의 고순도 알곤 및 질소가스이었으며. 알곤 및 질소가스의 분 압은 MFC와 vacuum needle valve 률 사용하여 제 어한 후. 주입하여 Ti-AI-V-N 박막을 코팅하였

다. 또한 코팅 후 열처리에 따콘 부찻 북성을 검토 하기 위하여 $5 \times 10^{-} \mathrm{mbar}$ 이하의 진공도블 유지할 수 있는 진공열처리로를 사용하였으며, 반옹로는 PID 온도조절기(S-type 열전대)률 사웅하여 실혐 온도률 $\pm 5^{\circ} \mathrm{C}$ 이내로 유지하였다. 그리고 반웅관은 $40 \mathrm{~mm} \times 600 \mathrm{~mm}$ 의 석영관을 사용하였고, 코팅층의 산 화방지률 위하여 티타늠 도가니 속에 시료틑 장입 한 후 진공 열처리를 실시하였다.

2-2. 분석

dc 및 rf 마그네트론 스퍼터링 방법으로 코티ㅇㅚㅚㄴ $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 박막의 두께축정은 α-step에 의해 측정 하였으며. 코팅 층의 표면및 단면 관찰은 광학현미 경(OM)과 주사전자현미경(SEM)을 사용하였다. 그리고 Ti-Al-V-N 박막의 조성분석은 EPMA를 이용하였으며, 여러 가지 코팅 조건에 따른 상분석 및 우선방위 조사는 X-선 희절장치(XRD)룰 사용 하였다. 이매 사용한 X-선의 타겟트는 CuKa (ג $=1.5406 \AA$)이었고, 가속전압 40 kV . 가속전류 30 mA 의 조건하에서 실험하였다. 또한 코팅재/모 재간의 부착 톡성은 박막에 직접 힘을 가하여 박 리시키는 가장 일반적으로 사용되고 있는 Scratch test 방법올 이용하였다. 이방법은 미소한 곡률반경 의 선단을 가진 다이아몬드 둥의 침(stylus)을 박 막표면에 수직으로 힘올 가하여 박막표면의 손삼 에 따른 부착력을 측정하는 방법으로. 침에 가헤지 는 하중 $(\mathrm{dL} / \mathrm{dt})$ 을 점차 중가시켜 거리를 변위 $(\mathrm{d} / \mathrm{dt})$ 시켜 박막에 손상이 일어날 뗘의 하중(g) 으로부터 부착력을 측정한다. 본 연구에서는 "CSEM REVETEST" Scratch Tester률 사용하였 으며, 시험조건은 다음과 같다.
diamond tip radius R : 02 mm
scratching sped $d x /$ dt $: 10 \mathrm{~mm} / \mathrm{min}$
bading rate $\mathrm{dL} / \mathrm{dt}: 100 \mathrm{~N} / \mathrm{min}$

3. 결과 및 고찳

Fig. 1욘 dc 및 rf 스패터팅 방법으로 유리 위여
$\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 계 질하뮬을 코팅한 시편들에 대한 X선 혀절분석 졉과률 나타넨 것으로 Fig. 1(a)는 dc 스퍼터링 방법을. 그리고 Fig. l(b)는 rf 스머터링 방법으로 각각 제조한 시편들의 X -선 희절분석 결 과이다. 이매 (a)는 dc 전력: $300 \mathrm{~W}(500 \mathrm{~V}-0.6 \mathrm{~A})$. $\mathrm{N}_{2} /\left(\mathrm{Ar}+\mathrm{N}_{2}\right)$ 가스 비: 0.122 , 촣 압력: $6 \times 10^{*}$ mbar 의 조건에서 180 분 동안 코팅된 시료를. 그 리고 (b)는 rf 전력 :200W. Ns/(Ar+N:) 가스 비: 0.122 , 총 압렵: $6 \times 10^{-3} \mathrm{mbar}, 180$ 분 동안 코 팅된 시편의 X-선 회절분석 졀과이다. 그립예서 와 같이 스퍼터링 방법에 무관하게 $\delta-\mathrm{TiN}$ 에 해당 되는 회절피크만이 관찰되었을 뿐 $\operatorname{AIN}, \mathrm{VN}$ 의 2 원계 질화물이나 $\mathrm{Ti}_{2} \mathrm{AlN}^{(1-12)}$. Ti3AIN 및 $\mathrm{Ti}, \mathrm{Al}_{2} \mathrm{~N}_{2}^{(2)}$ 등의 3 원계 질화물피크는 관찰되 지 않았다. 따라서 dc 및 rf 스퍼터링 방법

Fig. 1 X-ray diffraction patterns of Ti-Al-$\mathrm{V}-\mathrm{N}$ films coated by dc (a) and rf (b) magnetron sputtering on glass substrate for 180 min . The deposition conditions are de power $300 \mathrm{~W}(500 \mathrm{~V}-$ $0.6 \mathrm{~A})$, rf power 200 W , total pressure $6 \times 10^{-3} \mathrm{mbar}$, and nitrogen partial pressure[$\left.\mathrm{N}_{2} /\left(\mathrm{Ar}+\mathrm{N}_{2}\right)\right] 0.122$. respectively.

으로 코팅둰 Ti-Al-V-N 박막듈은 탄일상이라고 판다뇌ㅇㅕㅕ. 이는 본질정으로 foc 졀정구조의 δ-TWN 에 Al과 V 이 일종의 결함으로서 T 위치에 치환 고 용된 형태의 TiN구조라고 생각퇸다 ${ }^{25}$. 그리고 그 립에서와 같이 dc 및 rf 스퍼터링 방법으로 코팅 된 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 박막들은 뚜렷하 (111) 우선방위 (preferred orientation) 성장거동을 나타내었다. 또한 Fig. 1 의 내부 그림은 Ti-AI-V-N 박막으로부터 측 정된 (111)희절면과 TiN 의 (111)면올 상호 비표하 여 나타낸 것으로 그립에서와 같이 dc 및 ff 스퍼 터링 방법으로 코팅된 Ti-Al-V-N 박막의 (111)회 절피크는 거의 동일한 각도에서 검츨되었으나. TiN 과 비교하여 격자상수의 감소를 의미하는 고가

Fig. 2 SEM micrographs taken for the surface (a) and the fractured cross-section (b) of Ti-AI-V-N film coated by rf magnetron sputtering.

도쪽으로 이동하였다. 이로부터 계산된 Ti-Al-V-N 박막의 젹자상수 $20 ㄴ ㅡ ㄴ ~ 4223 A ㅇ ㅡ ㄹ ㅗ ~ \delta ~ T i N ㅇ ㅢ ~ ㄱ ㅕ ㄱ ㅈ ㅏ ㅅ ㅏ ㅇ ~$ 수(JCPDS No. $6-00^{\circ} 4.24 \AA$ 에 비하여 겨자상수가 감소하였는데, 이는 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 의 졀정구조가 fcc 결정구조의 $\delta-\mathrm{TiN}$ 의 변헝된 형톄이므로 $\mathrm{Ti}(1,47 \AA)$ 에 비하여 상대적으로 원자반경이 작은 $\mathrm{Al}(1,43 \AA)$ 과 $\mathrm{V}(1.32 \AA)$ 이 $T i$ 의 격자위치에 치환되었기 때문 이라 생각된다.
Fig. 2는 Fig. 1(b)시료의 표면과 단ㅁㄴㄴ을 EPMA 에 부촤된 SEM을 이용하여 관찰한 것으로 Ti-Al-V-N 박막의 표면(a)은 크래둥이 관찰되지 않는 평활한 형상을 나타내었으며, 파단 단면(b)은 치밀 한 주상정 조직(columnar structure)이었다. 이러한 주상정 조직은 본 연구에서 검토된 모든 시료에서 동일하게 관찰되었다. 이는 천이금속 질화물 코팅 박막에서 일반적으로 관찰되는 결과와 동일하다 ${ }^{13)}$. 그리고 Table 1온 EPMA로 Fig. 2(b)에 A, B로 표 시된 부분의 조성을 각각 분석한 졀과로서 $\mathrm{Ti}-\mathrm{Al}$ -$\mathrm{V}-\mathrm{N}$ 박막은 $\mathrm{N}-\mathrm{rich}$ 의 과당량 질화뮬이었으며, 조 성 또한 Ti-6Al-4V의 합금 타겟트 조성에 비하여 과량의 Al 과 V 이 코팅되었음을 알 수 있다. 이와 같은 타갯트 조성과 다른 박막의 성장은 타겟트률 구성하고 있는 각 원소의 스퍼터링율(sputtering yield) 의 상이에 따른 것으로 생각된다. Ne과 Ar 반응가스중에서의 각종원소의 스퍼터링율 을 축정한 Laegeid둥 ${ }^{14}$ 의 연구 결과에 의하면 TL

Table 1 The compositions of Ti-AI-V-N film determined by EPMA : the analysis were performed on two different areas in the film, as marked by "A" and "B" in Fig. 2

$(\mathrm{at} \%)$ position	A	B
Ti	33.1	32.3
Ai	6.3	6.5
V	5.3	52
N	55.3	56,0

Al V중애서 Ti 이 가장 낮온 스퍼터링욜율 보였다. Fig. 3 은 dc 스퍼터링 방법으로 Ti-Al-V-N계 질화 를율 코팅한 시편둘의 기파온도에 따른 acoustic emission과 하중과의 과계률 나타낸 것으로 Fg 3 (2) 는 상온에서. 그리고 Fig. 3(b)는 기표온도를 $450^{\circ} \mathrm{C}$ 로 유지시켜 Fig. 1과 동일한 조건애서 코팅하였 다. 그립에서와 같이 $450^{\circ} \mathrm{C}$ 의 기퐈온도에서 코 팅된 시료는 42 N 의 임계하중을 나타내었으나. 기 판을 가열하지 않은 시료는 34.5 N 의 임계하중을 나타내었다. 이러한 기판의 가열에 의한 부착렴 향 상의 주요한 요인은 기판상의 휘발성 불순물의 증 발에 따른 기푠의 세정(cleaning)효과에 기인된 것 으로 생각된다 ${ }^{(5)}$.

Fig. 4는 dc 및 ff 스퍼터림 방법으로 유리 우에 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 계 질화물을 코팅한 시편들에 마한 acoustic emission과 하중과의 관계를 나타낸 줏으 로, 그립에서와 같이 rf 스퍼터링 방법에 의한 코 팅층은 43.6 N 의 임계하중 이상에서부터 박리가 시 작되었는데 반하여 dc 스피터림 방법의 임계허중 은 34.5 N 이었다. 따라서 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 박막의 부착특

Fig. 3 Acoustic emission (AE) vs load (L) for TI-AI-V-N films coated by dc magnetron sputtering on glass substrate at room temperature (a) and $450^{\circ} \mathrm{C}$ (b); reapectively.

Fig. 4 Acoustic emission (AE) vs load (L) for Ti-Al-V-N films coated by dc (a) and $r f$ (b) magnetron sputtering on glass substrate. respectively.

성 항상윰 위혀서는 ff 스퍼터링 방법을 사용하는 것이 바람직하다고 생각된다.

일반적으로 가혹한 사용환경에서도 피막이 박리 되지 않는 뚸어난 공구들을 제조하기 위한 방안으 로 다층 구조가 제안되었다 ${ }^{16-18)}$. 예률 들어 TiN 과 모재간에 Ti 나 TiC 의 중간층을 형성시킨다거나. $\mathrm{Ti}-\mathrm{Al}-\mathrm{N}$ 층과 모재간에 Ti 나 $\mathrm{Ti}-\mathrm{Al}$ 의 중간층을 형 성시켜 부학뵥성을 향상시키는 방법과 Ti-Al-N 막은 바이어스(bias)전압읍 인가하여 이온 풀레이 팅(ion plating)방법으로 형성된 코팅충과, 바이어스 전압욜 인가하지 않은 상태에서 이은 프레이팅 방 법으로 형성된 코팅충으로 구성된 다충 구조률 이 루도륙 하는 방안이 모색되어 부착력이 높은 Ti Al-N피막율 형성시킬 수 있었다. 따라서 본 연구 에서는 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 충과 모재간에 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}$ 의 중간 충을 코팅시켜 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}$ 의 금속 중간충에 의한 부 차누ํ성의 향상 여부튤 조사하였다.

Fig. 5는 유리 위에 코팅된 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}$ 의 박막(a), $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 계 질화률박막 (b) 및 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N} / \mathrm{Tj}-$ Al-V 다층 구조(c)의 시료들에 대한 acoustic
emission과 하중과의 관계률 나타낸 것이다. 이때 $1.1 \mu \mathrm{~m}$ 의 $\mathrm{M}-\mathrm{Al}-\mathrm{V}$ 박막은 알곤 가스 중에서 If 전 력을 200 W 로 30 분 동안 코팅시켜 제조하였으며, $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 질화뮬박막은 Fig. 1(b)와 동일한 코팅 조건에서. 그리고 Ti-Al-V-N/Ti-Al-V 다층 구조 의 시료는 Fig. 5(a), (b)와 동일한 조건으로 $\mathrm{Ti}-$ $\mathrm{Al}-\mathrm{V}$ 박막을 코팅한 후 Ti-Al-V-N 박막을 연속 적으로 코팅시켜 제조하였다. 그립(a)에서와 같이 $\mathrm{TH}-\mathrm{Al}-\mathrm{V}$ 박막의 임계하중은 24.5 N 으로 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 층만을 코팅한 시료 (b)보다도 부착톡성이 불랑 하였으나. $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}$ 박막올 중간층으로 한 시료 (c)에서는 입계하중이 50.2 N 으로 부착톡성이 크게 항상되었다. 따라서 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N} / \mathrm{Ti}-\mathrm{Al}-\mathrm{V}$ 계의 다층

Fig. 5 Acoustic emission (AE) vs load (L) for various structural films coated by rf magnetron sputtering on glass substrate.
(a) $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}$
(b) $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$
(c) $\mathrm{TI}-\mathrm{Al}-\mathrm{V}-\mathrm{N} / \mathrm{Ti}-\mathrm{Al}-\mathrm{V}$

구조 역시 $\mathrm{TiN} / \mathrm{Ti}$ 계, $\mathrm{Ti}-\mathrm{Al}-\mathrm{N} / \mathrm{Ti}$ 계 및 $\mathrm{Ti}-\mathrm{Al}-$ $\mathrm{N} / \mathrm{Ti}-\mathrm{A}$ 계와 마찬가지로 부착력을 중대시킬 수 있 는 방안이라고 생각된다.
Fig. 6온 Fig. 5의 (b)와 (c) 시료들의 후속 열처 리에 따른 부착툑성읍 겁토한 것으로. 이때 열처리 는 $5 \times 10^{-6} \mathrm{mbar}$ 이하로 유지된 진공중에서 $500^{\circ} \mathrm{C}$, 120 분 동안 열처리률 하였다. 그립에서와 같이 $\mathrm{Ti}-$ $\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 박막만을 코팅시킨 시료는 진공 열처리에 의하여 43.6 N 에서 46.9 N 으로 부착도가 약간 중가하 였으며. $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N} / \mathrm{Ti}-\mathrm{Al}-\mathrm{V}$ 계의 다층 구조 역시 50.2 N 에서 55.7 N 으로 부차뷱성이 항상되었다.

4. 결 론

Ti-6Al-4V를 타겟트로 사용하여 dc 및 rf reactive magnetron sputtering 법으로 Ti-AI-V-N계 질화물을 유리 위에 코팅한 후, dc 및 rf 스퍼터링 방법에 의한 부차톡성과 아울러 코팅 후의 진공열 처리한 시료 및 Ti-AI-V 코팅층에 의한 2중

Fig. 6 Acoustic emission (AE) vs load (L) for monolithic $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ (a) and Ti-Al-V-N/Ti-Al-V double-layer fllms (b) annealed at $500^{\circ} \mathrm{C}$ for 120 min in vacuum ($5 \times 10^{-6} \mathrm{mbar}$).
(double-layer)코탕 방법으로 졔조한 시료의 부착 푹성을 각각 조사하여 다음과 갈은 졀른을 얼었다.

1) dc 및 rf 스퍼터링 방법으로 코팅된 Ti-Al-VN 박막은 Ti 의 젹자위치애 Al 과 V 이 치환된 δ TiN구조의 다일상이며. (111) 우선방위의 주상정 조직을 나타내었다.
2) $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 박막의 부착복성을 항상시키기 위해서는 dc 스퍼터링 방법보다는 rf 스퍼터링 방 법이 줗으며. 코팅온도 또한 상온보다는 기판을 가 열하여 코팅시키는 것이 효과적이다
3) Ti-Al-V의 타겟트로부터 rf 스퍼터링 방법에 의해 유리 위에 코팅퇸 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V} . \mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N}$ 및 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N} / \mathrm{Ti}-\mathrm{Al}-\mathrm{V}$ 의 박막들은 $\mathrm{Ti}-\mathrm{Al}-\mathrm{V}\langle\mathrm{Ti}-\mathrm{Al}-$ $\mathrm{V}-\mathrm{N}\langle\mathrm{Ti}-\mathrm{Al}-\mathrm{V}-\mathrm{N} / \mathrm{Ti}-\mathrm{Al}-\mathrm{V}$ 의 순으로 부착특성이 향상되며, 또한 후속진공열처리에 의해서도 부착특 성이 향상되었다.

감사의 글

본 연구는 산업자원부의 공업기반 기술개발 사 업 연구비로 수행되었음을 밦히며. 연구비 지원에 감사 드립니다.

참 고 문 헌

1) G. B. Marchwicka, L. K. Stepniewska and W. Posadowski, Thin Solid Films, 82 (1981) 313.
2) O. Knotek, W. Bosch and T. Leyendecker, J. Vac. Sci Technol. A 4 (1986) 2685.
3) W. D. M nz, J. Vac. Sai Technol. A 4 (1986) 2717.
4) H. A. Jehn, S. Hofmann V. E. R ckbom and W. D. M nz, J. Vac. Sai Technal. A 4 (1986) 2701.
5) O. Knotek, W. D. M mz and T. Leyendecker, J. Vac. Sci. Tectunol. A 5 (1987) 2173.
6) B. E. Jacobson, R.F. Bunshah and R. Nimmagadda, Thin Sclid Filma, 54 (1978) 107.
7) R. F. Burnhah R. Minmagadda, W. Dunford.
B. A. Movchan A. V. Demchishin and N. A. Chursanov. Thin Solid Films 54 (1978) 85.
8) S. Hofmann and H. A. Jehn, Surf. Interface Anal. 12 (1988) 329.
9) H. A. Jehn, S. Hofmann and W. D. M nz Metall. 42 (1988) 658.
10) T. Ikeda and H. Satoh Thin Solid Firms 195 (1991) 99.
11) W. Jeitschka H. Nowotny and F. Benesovsky. Monatsh. Chem., 94 (1963) 1198.
12) J. C. Schuster and J. Bauer, J. Solid State Chem. 53 (1984) 260.
13) J. Pelleg. L. Z. Zerin and S. Lunga, Thin Solid

Fims 197 (1991) 117.
14) N. Laegreid and G. K. Wehner, J. Appl Phys. 32 (1961) 365.
15) H. K. Pulker, Coatings on Glass (Elsevier. Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo, 4th edition, 1996) 56.
16) S. J. Bull and J. C. Doong. Surf. Coat Technol. 56 (1993) 257.
17) S. J. Bull P. R. Chakker, C. F. Ayers and D. S. Rickerby, Mater. Sci Eng. A 139 (1991) 71.
18) Y. I Chen anf J. C. Duh. Surf. Coat Technol. 46 (1991) 371.

