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Large Robust Designs
for Generalized Linear Model®
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Abstract

We consider a minimax approach to make a design robust to many types
of uncertainty arising in reality when dealing with non-normal linear models.
We try to build a design to protect against the worst case, i.e. to improve the
“efficiency” of the worst situation that can happen. In this paper, we especially
deal with the generalized linear model. It is a known fact that the generalized
linear model is a universal approach, an extension of the normal linear regres-
sion model to cover other distributions. Therefore, the optimal design for the
generalized linear model has very similar properties as the normal linear model
except that it has some special characteristics. Uncertainties regarding the un-
known parameters, link function, and the model structure are discussed. We
show that the suggested approach is proven to be highly efficient and useful in
practice. In the meantime, a computer algorithm is discussed and a conclusion
follows.
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1. Introduction

Optimal design theory has been proven very useful in developing both the theo-
retical and empirical foundations for statistical experimental design since the equiva-
lence theorem by Kiefer and Wolfowitz(1959). Among its many criteria, D-optimality
is the one many researchers have investigated, but it was under normal theory re-
gression model most of the time.

However, in reality, we confront difficulties when applying the optimal design the-
ory developed for linear model directly to the design problem such as non-norma.
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situations. In this paper we raise some issues that happen when D-optimality is
applied to the generalized linear model(GLM). Then we describe a minimax ap-
proach to make the design robust to the dependence on the unknown parameters,
the uncertainty of link function, and the choice of model structure. In Section 2, we
briefly introduce some basic terms for GLMs and how the standard algorithms for
D-optimal designs can be modified for GLMs. In Section 3, we take advantage of
the theorem by Atwood(1969) to develop a design robust to many circumstances.
We used a minimax approach over a set of possible scenarios to overcome the depen-
dency on the unknown prameters, link function and model structure. A computer
intensive algorithm is included. In Section 4, we provide several examples to imple-
ment our design criterion. It proves to be very efficient and powerful under these
situations. Conclusions and recommendations follow in Section 5.

2. Design for Generalized Linear Model

The generalized linear model is a unified statistical modeling technique suggested
by Nelder and Wedderburn(1972), an extension of the normal theory linear model
to the distributions such as the gamma, Poisson and binomial. The model has three
components according to McCullagh and Nelder(1989), which are as follows.

1) The random components: The components of N x 1 random vector y which
are assumed to share the same distribution from the exponential family. Its mean
is u and

Var(y) = a(¢)V(p)

where a(¢) is a scale factor which does not depend upon u.
2) The linear predictor: The linear model provides the linear predictor

n=fl(z)B

where 3 is p x 1 unknown vector and f7(z) is 1 x p row vector of known functions
of k explanatory variables.
3) The link function: This plays the role of linking the mean vector u and the
linear predictor g(u) = 1.

Note that for the normal distribution a(¢) = o2, V(1) = 1 and g(u) = u.
The mean and the variance are not related. This is not necessarily true for other
distributions. See McCullagh and Nelder(1989) for further details.

It can be shown that for GLMs with the above components specified, the Fisher
information matrix at a design point 2 is:

I(z,0) = w(n)f(2)f(z)
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where w(n) is defined as V~!(u)(du/dn)?. Thus I(z, B) depends on 7 via w(-), which
is a function of 7. This w(n7) will be called efficiency function following Fedorov(1972)
hereafter.

The design problem consists of selecting vectors z;,4 = 1,---, N from a design
space x such that the design defined by these N vectors is in some defined sense,
optimal. An exact design £y is a probability measure on the design space x subject
to the restriction that {x - N can take only integers. Removing the restriction that

&n - N is a multiple of N, we can define the normalized version of information matrix
M(&,n) as follows

MEm) = [1mdg(a), ¢es

where = is the set of continuous design measures on the design space x such ttat
J, @&(z) = 1. One design criterion called D-optimality tries to maximize the deter-
minant of this information matrix. But since the information matrix depends on
the value of unknown parameter vector 8 via w(n) in the case of generalized linear
model, it is sometimes called a locally D-optimal design. The equivalence theorem
for D-optimality says that

max w(n)f"(z)M(n,z)f(z)
should be equal to the value of p, which is the number of parameters in the model
when the D-optimality takes place. We shall denote w(n)fT(z)M(n,z)f(z) as
d.(z) and call it "pseudo” variance function. The design minimizing the maxi-
mum fT(z)M(n, z)f(z) only without w(n) in front would be called the G-optimal
design in "logit” scale.

Normally this locally D-optimal design for generalized linear model depends on
all three compenents specified above. Other than this annoying fact implementing
the usual D-optimal design algorithm to the generalized linear model is straightfor-
ward. But the main shortcoming of this approach in practice is that the coefficients
of the linear predictor must be known in advance in order to formulate an optimal
design. The presence of 4 in w(n) is the main cause of this dependency. This de-
pendency is unavoidable even if the model structure is fixed in advance. A natural
approach to this problem would then be to attach a prior distribution to the param-
eters. For example, optimal Bayesian designs for the logistic regression model are
pioneered by Chaloner and Larntz(1989). Nevertheless, many authors have sougat
analytical solutions in various generalized linear models. For example, Abdelbasti
and Plackett(1983), Ford, Titterington, and Kitsos(1989), Sitter(1992), and recently
Sebastiani and Settimi(1997) are the major papers to look at Ford, Torsney, and
Wu(1992) stated that there is still interest in constructing locally optimal designs.
Their primary reasons are as follows:
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1) They provide a useful reference point in studies of the performance of sequential
and other forms of design.

2) They are necessary for the construction of non-sequential designs based on ef-
ficiency and related criteria.

3) Where sequential designs can be carried out in batches, the design for batch
i + 1 might be locally optimal design based on §;, the estimate of  based on the
first i batches. In general, 6 is the unknown parameter of the nonlinear model.

To overcome the shortcomings of locally D-optimal design, we define a design
robust to the a priori misspecification of 1) values of unknown parameters, 2) link
function and 3) model structure in the next section. The requirement of partial
knowledge about the components of the GLMs makes such procedures most useful
for followup studies, where something is known about the components.

3. Robust Design

For the moment, we consider the case of model structure uncertainty only. Given
that the true model is unknown, we will consider a design to be robust to specifica-
tion of model f if £ is highly efficient for models likely to be encountered in practice.
More specifically we shall assume that the model f is an unknown element of some
known space of model function F. We will then attempt to characterize designs that
are efficient, in sense to be described, for all possible f € F. To do this we define
two efficiency measures of design £ with respect to £ for a specific model f.

Definition 1: D-efficiency :Ds(¢,&1) = (detM—'(&;)det M (£))V/7.
Definition 2: "pseudo” G-efficiency : G (¢, &) = maxzey d,(,£)/ maxzey dy(z,&1)-

Note that the efficiency in Definition 2 is not the genuine G-efficinecy and so
call it "pseudo” G-efficiency. The following theorem relating D and ”pseudo” G-
efficiency is from Atwood(1969).

Theorem 1. Let {p be the D-optimal design for f then for any design ¢,
Ds(&,¢ép) 2 G1(§,éD)

"pseudo” Gjy-efficiency provides the lower bound for the Dy-efficiency of a design
€ with respect to the D-optimal design §fD for each f € F. Therefore, it would be
sufficient to consider only ”pseudo” G-efficiency of a design £ with respect to ¢; for
each f € F. Loosely speaking, we will consider a design model-robust if its ” pseudo”
Gs-efficiency is high for every f € F. Thus no matter what the subsequent analysis



Large Robust Designs for Generalized Linear Model 293

indicates regarding the choices of f, the efficiency of the design will be relatively high.

Definition 3: The design £{* is model-robust if and only if

G G
max min Gy(, &) = min Gr(¢7, 7).

Similar definitions can follow regarding the misspecifications of unknown param-
eters and link functions.

Definition 4: The design £* is parameter-robust if and only if

max min Gs(¢,§5) = min G(¢", £p)-

Definition 5: The design £* is link-robust if and only if

max min Go(£, &) = minGy(¢", &),

But for the cases of Definitions 4 and 5, the number of parameters in the model,
P, does not change with g3 or link function, Definitions 4 and 5 can be simplified
further. For example, Definition 4 is equivalent to Definition 6.

Definition 6: The design £* is robust if and only if

N
T ey e (00 = pay A8

In most instances, analytic characterization of the misspecification of the compo-
nents is impossible, and numerical methods are required. The following algorithm,
which is a simple modification of the one by Fedorov(1972) can be used for com-
puter construction of nearly robust designs. We will show only the case of model
misspecification.

Algorithm

1. Specify non-singular starting design &, set ¢ = 0.
2. Compute c¢; such that

I?Eal‘;}.(Gf (gzrgf) = G-

3. Find z; = {z|z € x , and for some f € F the set of 2’s achieving the supremum
ci}.
4. Set o; =1/(i +5s), s>0.
5. Let
Eiv1 = (1 — as); + iy,
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be the new design measure (where &,, places measure one at point z;)
6. If the difference between two consecutive resulting ¢; is sufficiently small then
stop. Otherwise, set ¢ = ¢+ 1 and go to step 2.

Note that the sequence o; as specified above will not in general lead to mono-
tonically decreasing c;.

In the next section, we apply these types of robust designs to various examples of
the generalized linear model. Although the algorithm seems to converge in all cases
considered in the next section, it lacks a checking condition to verify that the design
is really robust. Nevertheless, this approach is heavily favored over other approaches
suggested by the first author, Kim(1993) in his construction of the error-robust de-

sign.

4. Examples

Example 1. As stated before, for normal distribution, w(n) is equal to 1.
Suppose we have two different models in consideration, F' = [f1, f2] where f{(x) =
(1,z) and f7(z) = (1,z,2?%). This classic problem is a common example referenced
in many literatures. For this type of model space, a model-robust design has the
following mass in the design space x = [~1, 1}

€(—1) =£(1) =0.3604, £(0) = 0.2792.

The same worst G-efficiency is obtained for both models, 0.838. In comparison, the
G-efficiency of the quadratic regression D-optimal design for f; is only 0.80.

Example 2. For binary data with logistic link, 7 = log{x/(1— i)} the efficiency
function w(n) turns out to be (1 — w), where p = exp(n)/{1 + exp(n)} or w(n) =
exp(n)/{1 + exp(n)}*>. We consider only simple design problems in design space
x = [~1,1] in forms of fT(z) = (1,z) and BT = (B, B1). The D-optimum design
is concentrated at two points, and we will therefore put equal weight at these two
points. See Silvey(1980) for further details on analytical solution with regard to
the relationship between ) and ;. The following design is found to be D-optimal
design for By =1 and B, = 1:

&(-1) =¢(1) = 1/2.

The values of 3 are taken for simplicity. This design is the same as the usual D-
optimal design for simple linear regression. Since the D-optimal designs depend on
the a priori specified values of 3, we notice the effect of the slope parameter 8; on
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the D-optimal design, as the value of 3; increases. The following is the D-optimum
design for Gy =1 and B; = 2

£(—1) = £(0.380) = 1/2.

Obviously, the resulting design is different from the one found above. There-
fore, we naturally ask ourselves what the parameter-robust design would be if
B = [6],5%,8%] where 5T = (1, 1), 8 = (1,2), and 8] = (1,3). Note that
§(—0.849) = £(0.179) = 1/2 is the D-optimum design for By = 1 and 8; = 3. The
computer algorithm found the following design to be the parameter-robust desiga:

£(1) = 0.269, £(—1) = 0.313, £(0) = 0.316, £(—0.758) = 0.101.

Note that unlike the design in Example 1, this does not allocate the mass sym-
metrically around the middle points. It spreads out the design points throughout
the design space taking into consideration of partial information about . This phe-
nomenon is quite useful for the analysis of checking the model’s adequacy at a later
stage. Silvey(1980) noted in his book that usual end point design &(£1) = 1/2
produces extremely low efficiency and thus it is not even worth trying to calculzte
the max-min design. But some partial information about 3 gives us a chance to
improve the efficiency greatly. The ”"pseudo” G-efficiency is as much as 0.825. Note
that the accompanying D-efficiency will be higher than this ”pseudo” G-efficiency.
Of course, there is another approach available, the Bayesian approach, which is to
put some prior distribution on the unknown parameters. The Bayesian approach
has many excellent features such as a condition to check the Bayesian D-optimality
of a given design, which is not provided by the robust design suggested here.

It still does give us many intuitive results and furthermore, it is far easier than
the Bayesian approach. A set of reasonable values of parameter vector is not dif-
ficult to get when this approach is underway as part of sequential or follow-up design.

Example 3. To compare with Example 1, we take two different forms of model
for binary data with logistic link. In other words, F = [fy, fa], where f{ = (1, ) and
fF = (1,z,2%) The values of beta are taken as By = 1,51 =1 and B3 = 1 without
loss of generality. The following two designs are D-optimum designs for each f in F
respectively:

€f1(_1) = gfl(]‘) = 1/2
€5 (—1) = £5,(-0.101) = &4, (1) = 1/3.

Note that unlike the normal theory quadratic regression design in Example 1,
D-optimum design for f; does not pick up the middle design point at 0. The middie
design point for quadratic logistic regression in this case does move away in negative
direction from 0. This might have been caused by the nonlinear relationship between
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mean and variance function of the binomial distribution. The following is found to
be the model-robust design for this case:

£(1) = 0.332, £(—1) = 0.380, £(0) = 0.287.

The worst ”pseudo” G-efficiency is as much as 0.8624. This value is higher than
that achieved in Example 1, which is very surpising. Before this experiment, it was
expected that the ”pseudo” efficiency would get lower than one of normal theory due
to the nonlinear relationship between the mean and variance of binomial distribution.

Example 4. When dealing with the binary data there is some uncertainty re-
garding the choice of the link function. The most popular choice would be, of course,
logistic link. But there is no other reason not to choose other ones such as probit
g(n) = ®!(u), where ® is the normal cumulative distribution function or comple-
mentary log-log link, g(u) = log{—log(1 ~ p)} for connecting the mean and linear
predictor models. Here, we consider a situation in which we have to choose between
the logistic and complementary log-log link. Like Example 2, we take only simple
forms of fT(z) = (1,z) and 87 = (B, B1).

The D-optimum design is concentrated at two points for both links and we will
therefore put equal weight at these two points. The following design turns out to be
D-optimal design for complementary log-log link in case of 8y = 1 and 8; = 1:

£(—1) = £(0.244) = 1/2.

The efficiency function w(n) turns out to take the form of {1 — u}/p-log?(1 — p)
or w(n) = exp{2n—exp(n)}/[1—exp{—exzp(n)}]. Although it is known that two links
have very common properties in most binary data analysis, the resulting designs are
not the same. The following design is found to be link-robust design which has three
points with unequal mass. The "pseudo” G-efficiency is as much as 0.847:

£(1) = 0.203, £(—1) = 0.419, £(0.240) = 0.378.

Of course, we can extend the example beyond the normal or binary distributions.
If we assume Poisson regression model, the possible links would be identity link for
simplicity or log link to preserve the natural characteristics of the non-negative ran-
dom variable. This kind of uncertainty surrounding the choice of link functions must
be carefully taken care of.
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5. Conclusions

In this paper we prosposed a robust design criterion similar to the one suggested
by Kim(1993) for the generalized linear regression. The GLM has very similar fea-
tures as the usual linear regression model except for the "pseudo” efficiency function
being attached to the model. It is not hard to implement the well-developed corn-
puter algorithms to this more broad line of models. Although it is relatively easy =0
implement, this does not mean that it is easy to apply the optimal design criteria
of linear model directly to the GLM since the design criteria depend on all three
components of the GLM. Therefore, we proposed the minimax one. Fortunately, it
has been very successful for each class of uncertainty we have dealt with. Although
we admit that it lacks the equivalence theorem, the computer algorithm we have
suggested has been successful in finding the nearly robust design. Other approaches
such as Léuter’s (1974) can be implemented and other examples can be demon-
strated to propose another design criteria. All these things need further research.
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