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Abstract

We consider a Bayesian forcasting method for the analysis of repeated sur-
veys. It is assumed that the parameters of the superpopulation model at each
time follow a stochastic model. We propose Bayesian prediction procedures
for the finite population total under multiprocess dynamic generalized linear
models. The multiprocess dynamic model offers a powerful framework for the
modelling and analysis of time series which are subject to a abrupt changes in
pattern. Some numerical studies are provided to illustrate the behavior of the
proposed predictors.
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1. Introduction

Often finite populations are subject to change in time. Repeated surveys carried
out at regular time interval have the time series information. In such surveys, one
has at one’s disposal not only the current data, but also data from similar past
experiments. Standard time series analysis methods have been applied to repeated
survey data. For example, Blight and Scott(1973) and Scott and Smith(1974) have
derived the estimates for the mean of a time dependent population using AR(1)
model under the assumption that all the parameters of the model are known. Re-
cently Rodrigues and Bolfarine(1987) considered the prediction of the population
total in a finite population using a Bayesian approach based on the Kalman Filter
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algorithm. Bolfarine(1988) replaced the normality assumption by the more general
exponential family of distributions.

In this paper, we adapt multiprocess dynamic generalized linear models in the
sense of Harrison and Stevens(1976) and Bolstad(1988) to finite population sampling
problem. In Section 2, we develop the Bayesian prediction procedures under the mul-
tiprocess dynamic generalized linear model for repeated surveys. Here the model
is only partially specified in terms of their first and second moments. In Section
3, specifically we devolop the Bayesian predictors under the multiprocess dynamic
normal superpopulation model as well as the multiprocess dynamic Poisson super-
population model, respectively. In Section 4, we investigate the the behavior of
proposed predictors via Monte Carlo simulation studies.

2. Bayesian Prediction under Multiprocess Dynamic Models
2.1 Multiprocess Dynamic Models in Repeated Survey

Consider a finite population U with units labeled 1, - - -, N. Let ; denote the value
of a single characteristic attached to the unit i. It is considered in the sequel that y;
follows an univariate exponential family of distributions with superparameter  and
a known scale parameter ¢. That is, f(y;(n, ¢) = exp[p(nt—a(n))+c(y, ¢)]. We select
a sample S of size n from the finite population to get information about the finite
population total T = "V 1Yi- Let D = {y;,i € S} denote the observed data from the
finite population. Then the quantity T' can be partitioned as T' = ;5 yi + Zz¢ s Vi
Thus' predicting T is equivalent to predicting 2 igs Yi- Since

E[Y_w|D] = (N — n)E[a(n)|D]
¢S

where a(n) = El[y;|n, ¢, the Bayesian predictor of T(cf. Ericson(1969)) is given by
Tp = E[T|D] = ng + (N — n)E[a(n)|D) (2.1)

where 7 is the sample mean. To generalize the above formulatlon to multiprocess dy-
namic models in repeated surveys, we replace y, T, D, 5, n and TB by yt, Ty, Dy, ne, 1
and TDt Here D; = {y:, D;—1} represents all the relevant information set available
at any time ¢.

A general Bayesian approach to the analysis of multiprocess dynamic generalized
linear models was given by Bolstad(1988). Since y; is assumed to have a sampling
distribution in the exponential faimily, the density of ¢ can be expressed as

f(yelme, ¢) = explde(neye, a(ne)) + (v, é¢)] (2.2)
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where 7); is the natural continuous parameter of the distribution, ¢; is a known scale
parameter. The mean and variance of y; are given by u; = E(y|n:, ¢¢) = a(m)
and Var(ye|ne, ¢:) = #;'d(n:), respectively. Following Bolstad(1988), we consider
the multiprocess dynamic generalized linear model for y; in the context of repeated
survey with the following components.

(i) Observation model :

f (e, dt) = explop(meys — a(me)) + c(ws, d1)],

9(mt) = M = F;6;. (2.3)
(ii) Evolution equation :
0r = Gibr-1 + wy (2.4)

where 6; is a n-dimensional state vector, F; is a known n-dimensional regression
vector, G; is a known, n x n evolution matrix, A\; = F/6, is a linear function of the
state vector, g(7) is a known, continuous and monotonic function mapping 7 to the
real line and w; is a n-vector of evolution errors whose distribution is specified by
zero mean and known variance-covariance matrix WtU ) which depend on the value of
the perturbation index random variable at that time. The perturbation distribution
at time ¢ is allowed to take on one of & possibilities conditional on the current value of
the perturbation index vairable. The perturbation index variables I; are a sequence
of independent multinomial trials with known prior probabilities P(I; = j) = 7rt(] )
forj=1,---,k.

2.2 Bayesian Prediction Procedures

Given initial prior information Dy at ¢ = 0, the information set available at any
time ¢ is simply D; = {y;, D:—1} where y; is observed value of the series at ¢t. Here
it is assumed that the initial prior for 6y is given as (6y|Dg) ~ (myg, Cp) irrespective
of possible models obtaining at any time where some prior moments mg and Cy are
known.

2.2.1 Evolution Step

In this step, evolving to time ¢, we find the prior distributions about 6; and X; at
both ¢ — 1 and ¢. For the estimation the initial conditions require that the first anc
second moments for posterior distribution of 6;_; given I;_; = ¢ and D;_; is known
at time ¢. This distribution is

(Br-1lTe1 =14, Dy_y) ~ (my, C)). (2.5)
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Also at time t we require the posterior probability of perturbation index variable,
Pt(i)l = P(I;-1 = i|Y;_1), and posterior probability are known. By using the posterior
distribution of 6;_; and evolution equation (2.4), we obtain the moments of §; given
I; 1 =4,1; = j and D;_;. Thus the mean vector and variance-covariance matrix are

at(z',j) = E6;(l;-1 =i,I; = j,Di1] = Gtmgi)l

Rgz’,j) =Varlby|l;-1 =i,I; = j, D14 = GtCt(i)lGQ + Wt(j),

respectively. Therefore the prior distribution for 6, given I, ; = i,I; = j and D;_;
is

6:i\,_y =i, I, = j, D) ~ (a9, R#9). (2.6)

By using the prior distribution (2.6) and the observation equation (2.3), we ob-
tain the joint distribution of 6; and A:. Since E[6:|l;-1 = i,I; = j,D:_;) and
V{0i|l;-1 = i, I; = j, D1_1] is given in prior distribution (2.6), we only need to calcu-
late E[}\tIIt——l = ’i,It = j, Dt—l], Var[)\tIIt_l = ’i,It = j, Dt~1] and CO’U[et,)\tlIt_l =
i,I; = j, Dy_1]. Thus the moments are

5 = Elnlley = i, I = §, Dy = Flaf)
and
@ =Var\lhoy =i, 1, = j,D,_1) = FLR®)F,
respectively. The covariance of §; and A; given ;1 =4, = j and D;_q is
Covlby, MiT,-y =i, I = 5, Dyq] = FIR{™),

Therefore the joint distribution of 6, and ); given I;_; = i,I; = j and D;_; is

(4.9) (.9) / p(i7)
0; . , a R; F{R;
[f\t o1 =1, 1 = 7, Dt—l] ~ ([f;i’j)] ) [Rgi’j)Ft tqgi’j) . (2.7)

By using the method of linear Bayes estimation, the moments of the conditional
distribution of 6; given \; , I;.1 = 4,I; = j and D,_, are directly obtained in (2.7).
Therefore the distribution of 6; given X\;, I;_; =¢,I; = j and D;_; is

(Oelre, Iy = i, &y = 5, D)
ig i i)y "1 ij i i i)\ "L ij
N [(ag ) 1+ REDF(D) " (= £09), (RED — R F g8y B RS J))].
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2.2.2 Updating Step

In this step we update the prior distribution of the parameter given the obser-
vation y;. Assume that the prlor distribution (n¢l;—1 = i,I; = j,D;_;) has the

conjugate prior distribution CP (rt w), (Z’J )- That is,

Fnelli1 =4, I = §, Dy_1) = exple(r{™, s&7) 4 ) — 56D g ().

The parameters r\"”) and s{*) are chosen to be consistent with the moments for
At in joint distribution (2.7). That is, E[g(n)|l;-1 = i, I; = j, Ds_1)] = ft(“) and
Varlg(n)|li-1 =4, I; = j,Di1)] = qt(w ). The relationship between the moments of
n: and the moments of ); is called the guide relationship by West, Harrison, and
Migon(1985).

Now the joint distribution of y; and 7; is

Fesmelli-1 = 4,1 = §, Dy 1)
= exple(ys, ¢1) + e, s8) + e (r8? + ) — (550 + pr)a(me))
and the marginal distribution of y; is
felle—1 =4, 1t = j, D4-1)
= exple(y, @) + c(ri?, s3V) = e(r) 4 gy, 55D + )],
Thus posterior distribution of 7; given D; is
f(uelle-1 =i, It = §, Dy)
= exple(r™” + ¢y, ) + g0) + m(r{) + pun) — (57 + p)almy)),

that is, the posterior distribution of 1, given I;_; = 1, I; = j and D; is the conjugate
CP( *(2,7) *(z,J)) where T*(Z’]) _ ,,.( J) + (,btyt and S*(z,]) (Z,J) + ¢ .

Now we find the moments of the posterior distribution of 6; by using the moments
of A:. Since

Ei\l;y =i, I; = j, Dy} = E[E(0i|\, L1 =i, I, = j, Dy)| ;-1 = i, I; = j, Dy)
and

Var(bs|I;-1 = i,I; = j, Dy]
= E[Var(OX, It-1 = i, I; = §,Dy_1)|Ii—1 = i, I; = j, Dy)
+Var|E(0A:, Ii—1 = i, It = j, Ds—1)| -1 =1, L, = j, Dy},
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we obtain the mean vector and variance-covariance matrix as
ij . . ij ij i (i i\j
mi*? = o1 =4, I, = 5, D) = af"? + R R(g)) (1% — f9)
and
Cc®) = Varl|ly =i 1, = j, D]
. . L1 R, .
R~ RERGM) T - @) g )RR
where f{) = Elg(n)|li-1 = 4,1, = j, Dy] and ¢ = Varlgm)|h1 = i, I, =
4, D¢]. Therefore when y; is observed, the posterior distribution of 6; given I;_; =
’l:,It =j and Dt 1s
(B:lIe1 = i, I = 5, D) ~ (m™, ), (2.8)

To complete the development of the recursive estimation, we need to determine
the posterior probabilities of the perturbation indices given the present observation.
This probability is called the posterior index probability. Using Bayes theorem, we
have

P& = P(l.y =i, I, = §|Dy)

~ pl) .0 exp(c(yt, 1) + C(l‘ti’j), Sgi’j)) - C(rgi'j) + ey, SEi’j) + é))
e P(y|Dy—1) ’

fori=1,---,kandj=1,--- , k. The quantity P(y;|D;-1 is a constant of normaliza-
tion such that 35, 5%, P/* = 1. Hence the P are all completely determined.

2.2.3 Collapsing Step

In moving to time t + 1, we need to collapse over possible models at time ¢ — 1.
By using the posterior index probabilities at time t, the posterior distribution of
(6:|I: = j, Dy) is represented as a k component mixtures of (6;|I;-1 =3, I; = j, D;).
Thus the posterior distribution is

k
45\~ (0,5 , .
FOL =5, Dy =3 (BN PED (01,1 =4, I, = 5, Dy), (2.9)
i=1
where th = '};l Pt@’j ). Also by using the method of approximation of mixture,

the mean vector and variance-covariance matrix are

’ k
. i G (i
ng) _ E[etllt =j, Dt] - Z (Pt( J)) Pt( 'J)mg %))

=1
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and

k
. iiw=1 (s id » . i )
Ct(J) = Var[0|I, = j, Dy] = Z (Pt( »J)) Pt( »J)[Ct( J) + (mt( J) mé]))(mg 4 _ mt(]) Y],

1=1

respectively.
2.2.4 Prediction Step

In this step, we predict the population total by using the posterior distribution
of n; given D;. Since Tp = ny + (N — n)E[a(n)|D), T; is predicted by

Tp, = nig, + (N: — ne)a(ny), (2.10)

where a(n;) = Ela(n:)|Dy] calculated from the posterior distribution of 7; and ¥, is
the mean of the sample S; of size n; selected at time t. Also at time t the posterior
variance of T; is

Var[Ty|D,] = (N; = ne)*Var(a(n,)|De] + (N; — ne) Efi(n;)/ 4| D). (2.11)

It is noted that prediction of T} depends on the posterior moments of the function
a(me) and d(me). Also these moments are easily and explicitly computed for most
exponential families and thus leading to explicit expressions for Tp,.

At this point, we are in the same position as we were when we started the
prediction procedure, so we are ready to repeat the prediction process when the
time index updated from ¢t — 1 to t.

3. Multiprocess Dynamic Superpopulation Models

3.1 Normal Superpopulation Model

We are considered that the finite population at each time was generated ac-
cording to a normal superpopulation model with known variances. More specifi-
cally, at time ¢, y;; is normal distributed with mean p; and variance Vi. That is,
Yit ~ N, Vi) with gy =, =1,--- N;,t =1,---, T. So for the observed sample,
Y is normal distributed, f(Gy|n:) ~ N(us, Vi/ny). Here a(m) = me = e, ¢ = ny/V,
and 7, = %yit /n: stands for the sample mean at time .

1S3
The dynamic model is obtained by g(n;) = 7; so that p, =7, = )\ = F]6;. We
work in terms of the y; notation. At time ¢ — 1 the dynamic model is completely
the posterior distribution of ;_y given I;_y =i and D;_1, that is,

(Oualfs =5, D) ~ 00
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Now the prediction procedures under the normal multiprocess dynamic superpopu-
lation model is follows:
(i) The joint distribution of y; and 6; given I;  =i,I; = j and D; — 1 is

L_y=i,I, =5,Ds_q| ~ t. ) 3.1
[ g 1 = 1o =5, Dy ([ 69 |7 gep, g6 (3.1)

4
where () = Gm{®,, R = g,c¥.¢, + WY, &) - Fla(™) and ¢ =
FRF,.
(ii) When observing ,, the posterior distribution of y; given f;_1 =14, l; = j and
Dt 1S

(uellm1 = i, I = §, Dy) ~ (£ &9, gz 09), (3.2)
fGd) (i) () (i.9) ) _ Gd) (@
where f}\"7 = f7 + W(yt — fi) and ¢ = ¢, — W/-n_, and the

posterior distribution of Bt given I, 1 =14,I; = j and D; is
Bul L1 = 1, I, = j, D;) ~ (m{, ¢), (3.3)
a4 /g ) /).
(i) The posterior distribution of u; given I; = j and D; is
(el I = 5, De) ~ ({9, g,
where f*(J) = Z(P(z)) 1P(”)f*(w) and q*(J) - Z(P(l)) IP(z])[ (7)o (f: G.5) _
f*(J ))( f*(”-") - ft* (3 )) ]. And the posterior dlstrlbutlon of 8; given I; = j and D; is

B.)I; = j, Dy) ~ (m?), ¢y, (34)

where m Z(P(Z)) IP(2 ) (Z’J) and C(J) Z(P(l)) P(”)[C(”) + (m(w)

m§”)(m§”> Py
(iv) The predictor of population total is

T, = mg,+ (N~ ne)Ela(n)|Dy]
= nggy + (N —me) f,

where f} = Z§=1(Pt(j ))‘l ft*(j ). The posterior variance of population total is

Var[TD,] = (N—mn)*Varla(m)|Ds] + (N; — ne) Ea(nt)/ 4| D)
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= (N:— )’ + (N — )V,
where ¢f = $5, PP (g9 + (79 - i1)(tD ~ £7)).
3.2 Poisson Superpopulation Model

In this case, the random quantity y;; associated with unit ¢ at time £ have the
Poisson distribution with superpopulation parameter m;,i = 1,---, T. Thus at time
t, Ui, the mean of the y values in the selected sample S;, follows the expnontial
sampling model with 7 = log(m), ¢: = n; and a(n) = exp(n), t = 1,---,7"
The dynamic model is obtained by g(n;) = n; so that n: = A\, = F/6; is given by
Ny = Ay = log(m;) = F}6; At time t—1 the dynamic model is completely the posterior
distribution of 6;_; given I;_; =4 and D,_1, that is,

(Ol =010 ~ (mi2, 0

Now the prediction procedures under the Poisson multiprocess dynamic superpop-
ulation model is follows:

(i) The joint distribution of u; and 6; given I;_; = 3, I; = 7 and D; — 1 is the
same as (3.1).

(i) The conjugate prior,CP(r:, s;), is log-gamma form for 7; = log(m;). Here
using the mode and curvature of (n¢[l;~1 = i,I; = j, D) for ft(i’j) and (qt(i’j))‘1
lead to rf’j) = (qt(i’j))“1 and s; = (qt(i’j))“ e 5. When observing 7, the posterior
distribution of 7, given I,_; = ¢,I; = j and D; is

(mellim1 =4, I, = §, Dy) ~ (ff 9, gt @),
where f7 () = log(r} ) /51 09)) () = 1/ @) px@d) = p, ) 4 1,7, and 5369 =
5:(9) + n,. Note that the posterior distribution of 8 given I,_1 = i, [, = j and Dy is
the same as (3.3).

(iii) The posterior distribution of 6; given I; = j and D, is the same as (3.4).
(iv) Since

28 = Bla(m)\l1 =i, I = j, Dy} = r; @) /5369
and
. . LN 92
¢ = Varla(ne)|l-1 =1, I = j, D) = r}0) /(s;0D)’,

we have | |
(a@(me)|Iy = 4, Dy) ~ (f:*(J)’qt**(J)L
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where f**(]) Z (P, l)) P(”)f**(“) and q**(y) — Z (P(Z)) P(z,J)[ **(z,])+(f**(z,])
FrO) () - f**(’ )] And so

(@m)IDy) ~ (£, ")

k . R k . . . .
where ff* = 3 PP g0 and gp* = > POlgr D 4 (779 — f)(f2*9) — £*Y). The
= ]=

predictor of population total is

Tp, = nd@y + (N — ne)Ela(n)| Dy
= mG + (N —ne) ff*.

The posterior variance of population total is

Var[li|D] = (Ny—mn)? Va?‘[a(nt)lDt]+(Nt—nt)E[a(nt)/¢tlDt]
= (Ne—ne)?q + (Ny —ne) f7*.

4. Simulation Studies

In order to illustrate the behavior of the proposed predictors, we consider the
following specific model for our simulation studies.

Yy = + Uty
e = -1+ By + Ope,
By = B+ 6p:

where the zero-mean, evolution errors du; and §3; uncorrelated. This model can be
rewritten in the form

v = F/0;+wv,
0 = G101 +wy,

where F; = (1 0],G; = [(1) }] = (ut, Be], wi = [6pt + 60:, 63, and v; and w; are

distributed with zero means.

The data from the normal superpopulation model is generated as follow. Staring
with 8y = 0.0, the 3; were generated with the errors §3; generated according to the
normal disribution with zero mean and variance 1. But in this data there exist a
slope change from ¢ = 20 to ¢ = 30. Next Staring with pp = 0.0, the u; were
generated with the errors éu; generated according to the normal disribution with
zero mean and variance 1. But in this data there exist a level change at time ¢ = 40.
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Next for each y; a population of size V; = 100 with the errors v; generated according
to the normal disribution with zero mean and variance 1 were generated. From this
population, a sample of size n; = 10 was selected at random, without replacement,
t=1,---,50. Figure 1 represents the performance of predictor th. We can see that
the sequences TD, follows very closely the sequence T; for the underlying change.
The data from the Poisson superpopulation model is generated as follow. Staring
with By = 0.0, the 8; were generated with the errors 3; generated according to the
normal disribution with zero mean and variance 1. But in this data there exist a slope
change from ¢ = 20 to ¢{ = 30. Next Staring with pp = 0.0, the u; were generated
with the errors du; generated according to the normal disribution with zero mean
and variance 1. But in this data there exist a level change at time ¢t = 40. Next for
each m; = e™ generated, a population of size N; = 100 was generated. From this
population, a sample of size n; = 10 was selected at random, without replacement,
t =1,---,50. Figure 2 represents the performance of predictor th. We can see that
the sequences flA"DL follows quite closely the sequence T; for the underlying change.
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Figure 1: Population Total(solid line) and Predictor(dotted line):
Normal Superpopulation Model
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Figure 2: Population Total(solid line) and Predictor(dotted line):
Poisson Superpopulation Model



