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Simultaneous Confidence Regions for Spatial
Autoregressive Spectral Densities !
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Abstract

For two-dimensional causal spatial autoregressive processes, we propose and
illustrate a method for determining asymptotic simultaneous confidence regions
using Yule-Walker, unbiased Yule-Walker and least squres estimators. The
spectral density for first-order spatial autoregressive model are looked at in more
detail. Finite sample properties based on simulation study are also presented.
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1. Introduction

The problem of searching for periodicities has played an important role in the de-
velopment of one dimensional time series analysis(see Chapter 6 of Priestley(1981),
Section 3.9 of Newton(1988), or Chapter 10 of Brockwell and Davis(1990), for re-
cent surveys). Much of the effort has been devoted to finding and estimating the
amplitude of pure sinusoids embedded in noise, and most methods have been based
primarily on the periodogram. Most recently, spurred largely by developments in
speech and communication theory, methods based on autoregressive spectral estima-
tion have been developed(see Mackisack and Poskitt(1989), for example). Autore-
gressive spectral estimation for one dimensional time series has become an important
method of spectral density estimation in recent years(Akaike(1969), Parzen(1974),
Ulrych and Bishop(1975)) despite a lack of easily applied procedures for determin-
ing confidence bands on the function being estimated. In a series of papers, Newton
and Pagano(1983, 1984) and Ensor and Newton(1988) provide point and interval
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estimators of such peak frequencies as well as finding simultaneous confidence bands
for the entire spectral density.

The purpose of the present paper is to extend these results to spatial processes
that are observed over a discrete grid in the plane. Such processes have been found
to be useful in a variety of scientific areas including agricultural, meteorological, and
geophysical(see Chapter 5 of Ripley(1981) for a survey). In Section 2, we consider
two dimensional analogs of autoregressive processes and investigate the property
of estimators for the coefficients in the process. In Section 3, we derive asymptotic
simultaneous confidence bands for an causal spatial autoregressive processes. Section
4 gives the results of a simulation study for the simultaneous confidence regions for
the entire spectral density.

2. Causal Spatial Autoregressive Processes and Estimators

Let {Yj, : (i,7) € Z%} be a zero mean spatial processes with summable autoco-

variance function
R(S, t) = E(Y;',jY;-Fs,j-H)) (S:t) € Z2 (1)

and spectral density function

1 oo o0 . )
flonw) == > 3 Ruv)e™e™, (w,w) € L, (2)

U=—00 V=—00

where Z is the set of integers, Z? = Z x Z, and I, = [, 7] x [—m,7]. We consider
i and j to be the horizontal and vertical positions of Y;; in the plane. A major
difficulty in extending one dimensional autoregressive processes to the spatial cases
is that the natural idea of expressing an observation as a linear combination of
observations in the past(unilateral representations) is lost. However, there are two
natural analogs of unilateral representations, called the causal and half-plane models,
that have been found useful(see Tjostheim(1981) for a discussion of the utility of
these models). The causal model expresses Y; ; as a function of Y’s that are below
or to the left of Y;;, that is, of Y;,’s for s < ¢ and ¢ < j. The half-plane model
expresses as a function of Y’s that are in the same column or a column to the left of
Y.,; except that it does not allow an Y directly above Y; ;. In order to simplify the
analysis described in this paper, we consider only the causal processes. As pointed
out by Tjostheim(1981), under mild conditions on the function f{w;,w?) , one can
arbitrarily closely approximate a spatial series by such a causal process for some
(possibly large) order (pi,p2). Symbolically then, the causal autoregressive process
of order (p1, p2) satisfies

1

) P2
Yii =D ) onYikji+ € (3)
k=0 1=0
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where aqgg = 0, {€; ;} is a collection of independent random variables with zero mean
and unit variance, and the complex valued polynomial

P P2

glz1,22) =1 =3 ozt 2 (4)
k=0 1=0

is not zero for any z; and z; which simultaneously satisfy [z;] < 1 and |25 < 1.

Such a process is called a causal autoregressive process of order (p;, p2) and denoted

by AR(p1,p2). The number of coefficients in the model (1), not counting agy = 0,

is given by d(p) = (p1 + 1)(p2 + 1) — 1. We can write the spatial analogue of one-

dimensional Yule-Walker equations as

R(s,t)= Y anR(s—k,t—1) (s>0,t>0), (5)

k€S,
where S, = {(3,7) : 0 <4 < p;,0 < j < po}. If we let T, = S, — {(0,0)} , we can
write (5) for all (s,t) € T, as Ra =1 , where R is a d(p) x d(p) matrix and « anc. 7

are vectors of length d(p). Throughout this paper, we will use the same ordering of
elements into the matrices and vectors as that used by Ha and Newton(1993). The

a vector is thus a = (a1, "+, Q0 pyy -, Xp1,0,* * * , Opy,py)- FOr s > 0 and ¢t > 0, define
1 m—sn—t
.S', t) - Y i+s t+Ja ‘t S Z Z K]sz+s,1 ts (6)
mn
=1 j=1 i=1 j=t+1

which are the sample autocovariances at lags (s,t) and (s, —t), respectively. Note
that R(s,t) = R(—s,—t) and R(—s,t) = R(s, —t). Tjostheim(1978) showed that
the sample autocovariances are consistent estimator of the autocovariance function
defined in (1). When we solve the Yule-Walker equations with the R’s replacing the
R’s, we obtain the Yule-walker estimators, denoted by @&. If instead of R we use

R(s,t) = {mn/(m — s)(n — t)}R(s,t) (s,t > 0), (7

we obtain what we will call the 'unbiased Yule-Walker estimators’, denoted by d.
The least squares estimator is defined as the estimator @ which minimizes

m-+p1 n+pa Dop2 2
2D (Ym -3 akIYi—k,j~z) (8)
=1 j=1 k=0 1=0

where any unobserved Y is replaced by zero. We denote the least squares estimators
by &. Ha and Newton(1993) showed that if m/n — ¢2(0 < ¢ < 00) as m,n — oo, the
Yule-Walker estimator is consistent and has an asymptotic normal distribution with
mean b(a) = R™!R*a and covariance matrix R~!. The R* is the function of ¢ and R
and the exact formula of R* is in Ha and Newton(1993). The unbiased Yule-Walker
and least squares estimators have the same asymptotic properties as Yule-Walker
estimator except that the asymptotic bias is zero(Ha and Newton(1993)).
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3. Simultaneous Confidence Regions for Spectral Densities

Suppose Y is a stable causal spatial AR(p1, p2) process. We can write the spectral
density of the process as

1 1
flwr,we) = me, (w1,w2) € I, 9)
The reciprocal of f(w;,ws) can be written by
h(wy,w2) = 1
DT Flonw)
= 47% - 8n? Z a;k cos(jwy + kwg)

ikeT,

+4r” Z Z A Qi c0s[(J — Dw; + (k — m)wo)
j,kETp l,mETp

= 4?1+ XT (o, w1, wo)al, (10)

where X (o,wi,w?) and « are vectors of length d(p) = (p1 + 1)(p2 + 1) — 1. The
element of X (a,w,ws) corresponding to the aji, is

X (o, wi,w2) = 2cos(jw + kws) + Zalm cos{(j — Dwy + (k — m)wy). (11)

ILm

In a theorem below we use three estimators &,@&,a of the coefficients a for the
causal spatial AR(p1,p2). Then the causal spatial autoregressive spectral estima-
tor f(wi,ws) of fwy,ws) consists of evaluating (9) with &, &, & replacing o. Then
asymptotic simultaneous confidence bands for the spectral density function using
Scheffe projections are given by the following theorem.

Theorem Let {Y;;:i=1,---,m,j =1,---,n} be data from a causal autore-
gressive process of order (p1,p) and let & be the Yule-Walker estimators defined in
Section 2. Let

- 1
h(w,ws) = < = 4?1+ XT (&, wy,w2)d). (12)

f(wi,ws)

Then if m/n — ¢?(0 < ¢ < 00) as m,n — oo , we have the following
(a) The probability is at least 1— 3 that simultaneously for all (w1, ws) in the interval
(w,wo) € 1, = [~m, 7] X [~m, 7],

1 1

- < flw,wg) <
h(wy,ws) + s(wi, w2)

h{(wi, wa) — s(wy,wo)’ (13)
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where if fl(wl, wg) — s{wy,ws) < 0 we use infinity as the upper limit, and

,
Xg.am)A) op . - .
$*(wy, wa) = _&%%-—XT(O‘,CthQ)R_lX(a,wl;UJZ) (14)

with X?@, d(p)(S\) being the upper 3 critical value of a noncentral chi-squared distribu-

tion having d(p) degree of freedom and noncentrality parameter A = b7 (&)Rb(&).
The b(a) and R is defined in Section 2.
(b) If we use the unbiased Yule-walker estimators and least squares estimators, we
have the same asymptotic properties as in (a) except that the noncetrality parameter
is zero.

Proof: (a) Since & is consistent estimator of & , using Slutsky’s theorem(Rac,
1973, p. 122)

Vmn(h(é, w1, ws) — k(e wi,ws)) = dnty/mn(XT (&, wy, w2)d — XT (0, wy, we)a),

(15)
has the same asymptotic distribution as
art/mn(XT (o, wy, wo)d — XT (o, wy, wa)av). (16)

Since \/mn(&—a) has an asymptotic normal distribution with mean b(a) = R™!R*c/
and covariance matrix R7!, mn(@ — a)TR(& — a) is asymptotically noncentral
chi-square variable with degree of freedom d(p) and noncentrality parameter A =
bT(a)Rb(c). Since R is the consistent estimator of R, mn(& — )TR(& — a) also
has the same asymptotic distribution as mn(& — @) R(& — a). Thus the probability
is asymptotically 1 — 3 that the true parameter o lies inside the ellipsoid defined
as the set of vectors (& — I)D(A\)(& — 1) < 1, where D()\) = mnR/xg(p ()). Since
b(&) is consistent estimator of b(cx), we also have (& — )D(A)(& — 1) < 1, where
D) = mnR/x2 i) (A). But (Scheffe, 1957, p. 407), « is in this ellipsoid if and

only if |ZT(& — a)| < (ZTD~1(X)Z)'/2 for all d(p) dimensional vectors Z. Thus, in
particular only if | X7 (&, w;,w2) (& — )] < (XT(a,w1,w2)D’1(/\)X(a,w1,wg))1/2 for
all d(p) dimensional vectors Z. Since & is consistent estimator of &, we thus have

1XT (&, w1, w2)é — XT(a,wi,wa)a] < (XT (&, w1, w2) DY (N X (&, wi,wn)) V2. (17)
This gives a 1 ~ 3 simultaneous confidence bands for
h(wy,ws) = 1/ f(w1,ws) = 47 + 47T2XT(a,w1,w2)a, (18)

because ) )
h(w1,wz) — s(w1,wa) < h(wi,ws) < h(wy, w2) + s(wr,ws), (19)

the reciprocal of which is the simultaneous confidence band for f(wi,ws). It could
happen that h(wl,wg) — s(w1,w2) < 0 for some (w;,ws) in which case one can use
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infinity for the upper limit which does not diminish the probability content of the
bands.

(b) Since the unbiased Yule-Walker estimators & and the least squares estimators &
have the same asymptotic properties as the Yule-Walker estimators & except that
the asymptotic bias b(«a) is zero, the part (b) in the theorem is satisfied.

4. Numerical Examples for Spatial AR(1,1) Process

Let Y be an causal spatial autoregressive process of order (1,1) with coefficients
o1, @10, 011, that is

Y,j =anYij-1+awYi-1;+anYio1 -1 +e€; (20)

where € is a white noise series of uncorrelated zero mean random variables having
unit variance. The reciprocal of spectral density function is

472
f(wl)w2)
= 4r?[1 4+ XT (o, wi,w2)al, (21)

h(wl, wQ) =

where the o vector is af = (a1, 10, @11) and X vector is

—2 cos(wz) + 2010 cos(w — wa) + a1
X(a,wy,wr) = —2a cos(wy) + 201 cos(wg) + ayp | - (22)
—2cos(wy + wa) + 2ap1 + an

We thus have the simultaneous confidence bands of spectral density of level 0.95
for all (w1,w2) in the interval (wy,ws) € I, = [-7, 7] x [—7, 7] with Yule-Walker
estimators &, where

Xg.05,3(/\)

— X7 (&, w1, w2) R™1X (6, w1, wo) (23)

8% (Wi, wp) =

with Xg.05y3(5\) being the upper 0.05 critical value of a noncentral chi-squared distri-

bution having 3 degree of freedom and noncentrality parameter A = b7 (&) Rb(&). To
complete the simultaneous confidence bands for spectral density, we need to compute
the estimated noncetrality parameter A = bT (@)Rb(6), which is the estimator of true
noncentrality parameter A = b7 (a) Rb(cr). Ha and Newton(1993) showed the explicit
formula of b(a), so we can obtain the estimator of noncentrality parameter by plug-
ging & into ¢ and using R instead of R. We also can similarly construct the simulta-
neous confidence bands of spectral density using the unbiased Yule-Walker estima-
tors and least squares estimators. To investigate the finite sample behaviour of the
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proposed confidences bands we first considered their performance on 100 sample rezl-
izations for each of three estimators &, &, @ using the ag; = 0.3, a9 = 0.5, 11 = 0.1.
This model is used because the magnitude of the biases of this model are larger ard
changes(with changing c) are also larger. Given the parameter estimators we eval-
uated the true spectra, the estimated spectra, and the estimated upper and lower
0.95 confidence bands at the 31 equally spaced frequencies between w; € [—n, 7]
and the 31 equally spaced frequencies between wy € [—m, 7]. We then counted the
number of times the true spectra was contained in these estimated bands at all fre-
quencies. For the large sample sizes, the simulation results was consistent with the
stated confidence level. Next we look at some simulation results for moderate grid
sizes to see the effect of bias of the Yule-Walker estimators. The simulations are
performed for the grid sizes (m,n) = (20,20), (16, 20), (15, 25), (12, 30), (15, 60) to
represent a range of 0.5 < ¢ < 1.0. Table 1 gives the values of the asymptotic biases)
b(a) = (bo1, 10, b11), €% = limp, 5. M/n, the asymptotic noncentrality parameter )\,
and the frequency of 0.95 confidence band coverage for the Yule-Walker estimators
using 100 sample realizations. We can see from Table 1 that the biases are larger
when has a smaller value. The noncetrality parameter also large when the bias is

Table 1: Frequency of 0.95 confidence band coverage

[ (m,n) i c L bo1 I bio Lbu [ A TFrequencyW
(20,20) | 1.000 | 0.590 | -0.030 | -1.049 | 1.455 98
(16,20) | 0.894 | 0.726 | -0.139 | -1.092 | 1.747 95
(15,25) | 0.775 | 0.916 | -0.282 | -1.169 | 2.323 97
(12,30) | 0.632 | 1.217 | -0.494 | -1.319 | 3.606 95
(15,60) | 0.500 | 1.629 | -0.765 | -1.561 | 6.055 90

large. When the bias is not large, the simulation results for moderate grid sizes is
reasonably good although not excellent. For the grid size (15, 60), the bias is large
compared to the other grid sizes and the frequency of 0.95 confidence band coverage
is 90 which does not attain the stated confidence level for simultaneous confidence
bands of spectral density. In calculating the confidence bands, for several of the
simulated series, A(wi,ws) — (w1, ws) Was negative for several frequencies. This be-
haviour may be indicating the existence of deterministic components in which case
the spectral density does not exist at these frequencies.
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