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Assessing Cure Rates via Piecewise Gompertz model
with Covariates
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Abstract

‘We modify the Gompertz regression model for estimation of cure rates from
pediatric clinical trials by assuming different hazard rates on the different peri-
ods. A treatment period may be divided by the stages of treatments under the
different treatment arms. The piecewise Gompertz models provide an efficient
method for estimation of the cure rates and a method for testing the difference
of the treatment effects in the given interval.
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1. Introduction

In recent years, considerable research has been conducted in censored survivzl
analysis, where the data include the observed survival time, which may be termi-
nated either by a failure or by a censoring, and a vector of covariates. See Kaplan and
Meier(1958), Feigl and Zelen(1965), Cox(1972, 1975), Kalbfleisch(1974), Kalbfleisch
and McIntosh(1977), Gray and Tsiatis(1989) and Laska and Meisner(1992).

The problem of estimating the fraction of subjects who will never do experience a
particular life event such as like death or recurrence of diseases, has been discussed by
several authors. For example Geiser et al.(1998) developed the method of estimating
the cure rate using the maximum likelihood for the Gompertz model and compared
it with using the Farewell(1982) model and the plateaus of the Kaplan—Meler curves
in the presence of covariates.

Cantor and Shuster(1992) suggested a modified Gompertz approach with the
hazard function

AMt) =aexp(ft), a>0, B<0,
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to analyze the survival data from pediatric clinical trials, since the hazard function
for competing risks is virtually zero. The corresponding survival function and cure
rate are respectively

S(t) = exp{f (1 — exp(Bt)}

and m = exp(8~'a). Because of the convexity of the log likelihood function, the
parameters and the cure rate are guaranteed to be estimated by the method of max-
imum likelihood (Garg, Rao and Redmond(1970) and Cantor and Shuster (1992)).

In most situations the assumption of a smooth relative hazard rate is reasonable.
But there are applications in survival analysis for which the smooth functions are
not applicable. In pediatric cancer, we may find the hazard rates of individuals
changes whenever patients receive treatment. The hazard rates might decrease after
an appropriate treatment. Hence, it is reasonable to assume different hazard rates
in periods between treatments. An interpretable model for this situation can be
represented by a piecewise hazard rate. A partitioning of the period is automatic
tool. The partitions are usually taken to be equal length(for example, six months,
one year or two years), but that is not necessary because the periods when patients
are under different treatments are varied. This allows easier analytic study and more
flexible survival model building.

With estimating the cure rate, we are also interested in comparing the effects
of treatment. In this article, we propose a piecewise parametric mode! that allows
us to estimate the cure rates, assuming different regression coefficients in the stages
between treatments under different treatment arms. We describe the model and
the method of deriving the maximum likelihood estimates of regression parameters
and the cure rates. Section 3 contains the aspects of the properties of the proposed
model. An example illustrating the possible types of inference is presented in Section
4.

2. The piecewise Gompertz model: basic properties
and maximum likelihood estimation

Suppose there are I periods and p — 1 covariates. The hazard function of the

individual in the gth treatment arm with covariate 2’ = (1, zy,- -, 2,—1) is modeled
as

At:z,9) =exp(\t+B2), ten,m), i=1---,I, g=12 (1)
where t € [1i-1,7:), © = 1,---,1, is a disjoint partition of [0,00) with 79 = 0 and
Tr = ©Q.

The likelihood function for the model involves (21 + p) parameters: )\fl S are
associated with treatment arm g and the ith period. 3 is associated with covariates.
Let R;; denote the set of individuals entering interval ¢ from treatment arm g and
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let D;, denote the set of individuals dying in interval ¢ from treatment arm g¢. If ¢
is the observed survival time of the Ith individual, let ¢;, be the portion of interva. 4
in which the ! individual is observed as surviving,

t, =

t; — 7;-1, the ith individual dies or is censored in interval i,
A, the ith individual survives through interval i

where A; is the length of interval i, A, =7, —7,_1,i=1,---, 1.
The likelihood function is then

I 2
1 1
LA, B) = H H[ H exp{eﬁ 2 Ti-1 (] — M ) )\_} H Nt a)
i=1 g=1 lERig lEng
The log-likelihood can , therefore, be written as
I 2 : , ,
;6) = ZZ{ Z 6,3216/\1‘ Ti—l(l )\ iy ))\ + Z ()\ 9t +ﬂ zl)} (2)

=1 g=1 leRig Z lED,y

The maximum likelihood estimates(MLE’s) could be obtained by setting tke
(21+p) derivatives of [(A, 3) equal to 0 and solving the resulting system of equations.
To obtain the MLE’s for (), 3), we compute the following derivatives of (2)

N B) ‘ e (i tt)

/ ATy
g Z exp(B'z){—e - 912
aAZ IERJg ()\Z )
: X9y _ . /\,'g(Ti_1+t1A)
Ti—1€ Ti-1 + 1 )e i
R T FD
?

lEDig

ol( A ! MITimL _ M (T,
ﬂ) ZZ{Z uexp(z) —— )\e.g + 2 an}

i=1g=1 I€R, : leD,;,

/\ Ti-l __ e/\ig(Tv'—l‘*‘tli)

N B) K&
3ﬂk5ﬁk1 ;gzllg zizwexp (B Zl) A 3)

From the structure (3), it is seen that (2) is a convex function of By, 1, -, Bp-1
for fixed AY's.
Moreover
I\ B)
ONIONG

-/

for g#4¢ and for g=g4, i=41.



448 Daehyun Chung - Dong-Yu Won

62l()\, ,B) — Z exp(ﬁlzl)[Q(e)\ini_l _ e/\,‘g(T;-1+t1i))

a(A‘ig)Q lERig ()‘ig)3

—2A (1ie €T — (g + 1y, )N (i)

HNO)P (TN — (g + 1y, )N )y (4)
o\5) O )

ig

Notice that [ | in the expression of (4) can be written as G(z;) — G(z2) where
G(z) = 2% — 2ze” + 22e%, 21 = \I7i_1, 22 = A9 (Tim1 + 1)

It can be shown that G(z) is an increasing function. Therefore the right hand
side of (4) is strictly negative. Consequently (2) is a convex function of the N’s for
fixed G’s.

The Newton-Raphson algorithm is one of the well-known methods to solve the
system equations. However a simple and computationally preferable methods ex-
ists(Richards, 1961).

It is a 2-step procedure to compute the MLE’s:

1. For fixed AJ’s, apply the Newton-Raphson method to find B such that Equation
(2) is maximized.

2. At the value of 8 found in 1, apply the Newton-Raphson method to find N’s
such that 1 is maximized.

Step 1 and 2 will be repeatedly applied until the desired accuracy is achieved.
The advantage of this procedure is obvious. In each step, the convergence is guaran-
teed by the convexity of (2), which was discussed by Geiser et al.(1998). The value
of the likelihood function is guaranteed to increase from one step to the next.

Note that it is possible to prove that, under mild conditions, the maximum
likelihood estimates exist and are unique by the Fix Point Theorem(Friedman,1982).

To obtain asymptotic variances and covariances of the MLE’s, evaluate the ob-
served information matrix at (}, 3):

Sy | I Lo
I(/\aﬁ) - [ 1'21 122 } H

where I is the 21 x 2] diagonal matrix, whose diagonals are the negative of (4)
and I is the 2] x p matrix. I} is the transpose matrix of I5; and I is the pPXp
matrix obtained from (3).

As usual the inverse of (;\, ﬁ) provides asymptotic variances and covarianves for
the \’s and B’s.
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For the piecewise Gompertz model, we have
At;z,9) =exp(\t+ B'2), te(r-,m], i=1,---,I, ¢g=1,2.

The corresponding survival function is

k-1 e/\gTi_l _ e/\‘:-’T,' e/\‘Z‘rk _ Nt

St:2,9) =ep{e” (L —7—— + — )
i k

i=1

fO’I' Te-1 St < 7, k‘=1,---,I—1.

Assume A} < 0. By taking the limit ¢t — oo, the cure rate corresponding to z in
treatment arm ¢ is expressed as

=1 oAfTicy _ A0 M7

e
m(z,9) = exp[exp(ﬂ’zz){; p¥Y + Y

By replacing A\7’s by :\;‘7 's and 8 by 3, we obtain the estimator of m(z,g). To com-
pare the cure rates between treatment arm 1 and arm 2, we may propose comparing
the averages 7(z,g), g = 1,2,

#(z,0) =+ Y #(,0)

where the summation is over the observed covariates arising from both treatmen:
arms. We use the difference #(z, 1) — #(2,2) as the test statistic. The delta method
can be applied to obtain the standard error of #; — 75 as usual.

Given the parameter estimates, the survival function is estimated as:

. k=1 ;\qu_1 :\-T,' /\g,Tk _ :\gt
Py 7 €’ — €% (A €k \
S(t;2,9) = exp{e?*(} = +——} (5)
=1 ’\i Ak:

for m1<t<m, k=1,---,1—1.

This gives the estimated survival function at a fixed value z of the covariate
vector and treatment arm g. The asymptotic variance of S(¢; z, g) can be obtained
by using the delta method. If we consider as a function of ( A, (), the relevant
derivatives are
Bg(t;z,g) & edz

= =8(t; 2,9)—= T'_le:\?”—l — M)A — (N1 _ M

for i=1,---k k=1,---,I-1.
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05(t2,9) _ & e 5 3804 2 50t
— = = 5(t;2,9)—= TRe %1 — teN AT | — (eMT — e
o = 5.0 s M - )
for 1=k+1 n<t<mn, k=1,---,I-1.
Og(t;z,g) _

o S’(t; 2,9) logS’(t; z,9)z for T <t< Ty, k=1,---,I-1
OBk
To compare the survival functions of patients under two different treatment
arms, we propose the averages of S (t; z,g) over the observed marginal covariates
arising from both treatment arms. Pooling of the two treatments provides a fairer
comparison that averaging by treatment. From S\(t D 2,9) = exp(j\ft + ,3’ z), we

measure the difference in hazard rates over the ith period between treatment arm 1
and 2 by 6;; = %EZZ—;; For testing the null hypothesis Hp : log8;; = 0 ( no difference
in the effects between two treatment arms). We can use the test statistic

11 12
7 = /\z — )\z
s.e.

where the denominator is the standard error of the numerator. We apply the delta
method to compute this standard error. Since Z approximately follows a standard
normal distribution for large sample, we conclude that the hazard rates are signifi-
cantly different for large values of |z|.

3. Conclusions and Remarks

One of the advantages of the model (1) is to consider the different regression
coefficients in the different periods. The hazard rates would be changed during the
periods when patients received treatments as scheduled. This allows easier analytic
study and more flexible survival model building. For a nonpiecewise model, we
assume the regression coefficients are constant respective of what treatment arms
patients are under and no matter what phases patients belong to.

It is important to notice that a desirable property of the model (1) is that it
has log-linear hazard. As shown by Geiser et al.(1998) its log-linear property yield-
ing the convex loglikelihood function leads to existence, uniqueness and asymptotic
normality for the MLE.

In general the advantages and disadvantages of the proposed model are summa-
rized as follows:

Advantages:
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1. The proposed model is easy to implement. The maximum likelihood estimates
exist and are unique. The consequence of the iterative computational proce-
dure is guaranteed.

2. Interpretation is simple.

3. This model may fit the data better than nonpiecewise one because of its flexible
nature.

4. There is considerable work on piecewise exponential models with covariates
in the literature. For example, our approach is similar to Karrison(1987) and
Friedman(1982).

5. Because of the stability of the computational procedure, simulation studies are
feasible. For example, assuming that the underlying model is a mixed model
as proposed by Farewell(1977,1982), we are able to perform simulation studies
to see how well our model can asses the cure rates.

Disadvantages:
1. The cure rate is in a somewhat complicated form.

2. Similar to piecewise exponential model, the selection of intervals [r;,_1,7;) is
arbitrary.

3. The number of parameters is larger than in other methods.

One can generalize the model by entering covariates into regressors associated
with the ith period under treatment arm g via A(t; 1, g) = exp[(A\Y't + 3')2] where A
and (3 are regression coefficients and z consists of covariates. The generalization is
important, in practice when the model does not fit the data within each covariate but
fits the data well within each of several strata defined as appropriate combinations
of periods and covariates.

4. Example

In May of 1981, the Pediatric Oncology Group(POG) began a multi-center,
prospective study of standard risk non-infant acute lymphocytic leukemia in chil-
dren(ALinC). In this section, we use these data to illustrate practical uses of the
proposed model, the piecewise Gompertz regression model. In this analysis that
follows we include the covariates age and treatment, because there is previous ev-
idence they are prognostic factors of survival in this patient population. Since we
are interested in comparing the cure rates of male and female, we define gender as
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treatment arm in the text. To dichotomize ages we use the cut point of 10 of age as
this is what National Center Institute uses to define its consensus risk groups.

The variables initially included in the model are defined as follows:

g = 1 if male and 2 if female,
1 if treatment S(standard)
0 if treatment SAM(standard plus high dose methotrexate pulses)

zg = 1 if age > 10.0 years and 0 if age 0.0 — 10.0 years.

A Gompertz regression model with covariate vector Z = (21, 22) and treatment
arm variable g is expressed as

At 2, 9) = exp(Aift + Bo + Brzu + Bazar)

where 1,2y, , and 2y are the observed survival time, treatment, age for the Ith
subject. A/ is regression coefficient associated with ith interval and 3’s are related
to sex and treatment. Since some patients had follow-up as long as 12 years, we
partitioned the whole period into three sub-intervals subdivided 4 and 8 years.

There are 1125 patients with complete data included in model. Three hundred
ninety patients experienced events, while the remaining 727 have censored event-
free survival time, as the time from study registration until progressive disease,
relapse, second malignancy, death or last contact. When we fit the data using
the model, our program based on the Newton-Raphson method yields maximum
likelihood estimates with convergency after only 8 iterations.

A summary of the resulting maximum likelihood estimates(MLE) and their es-
timated asymptotic standard errors(ASE) appears in Table 1.

The test of the null hypothesis of no treatment difference as described in (1)
yields a significance level of 0.896. Thus the data does not show a significance
difference between standard and standard plus high dose methotrexate pulses. So
treatment has been omitted from the reduced model. But age yields a significant
p-value of less than 0.0001. Table 3 shows the maximum likelihood estimates and
their asymptotic standard errors resulting from the fitting the reduced model. All
of estimates of yields significance levels of less than 0.0001. Age is also significantly
related to survival time in the reduced model.

To compare the cure rates of male and female, we will consider the part of group
who have the common covariates, since they should be compared under the same
conditions. For the purpose of illustrations, consider 490 out of 1125 patients who are
younger than 10 years and received by Standard . Out of 490, 246 are male and 226
are female. Table 4 shows the estimated cure rates and their asymptotic standard
errors for the two gender groups. For comparison purposes we also estimated cure
rates using the survival estimates and standard errors at 8 years when the plateaus
of the Kaplan-Meier curves fitted to he two gender groups starts. Table 4 shows the
estimated cure rates and their asymptotic standard errors of the two gender groups.
The estimated cure rates are 53.65% and 68.86% for male and female respectively

Z] =
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using the Kaplan-Meier curves. The null hypothesis of no gender difference on cure
rate under the conditions that they receive standard and are younger than 10 years
yields a significance level less than 0.001. Thus we conclude that female’s cure rate
is considered significantly higher than male’s cure rate if they are under 10 year old
and treated with standard.

We note here that, the results of the piecewise Gompertz regression agree with
corresponding Cox regression with the gender and the treatment. The advantage of
the Gompertz approach is its provision of estimates of the cure rates.

Figure 1 shows the estimated survival curves using both Kalpan-Meier method
and the piecewise Gompertz method. They show that the cure rate estimates ob-
tained by both methods are similar. But the proposed model provides an estimate
of cure rate, even though cure rate is considered after 10 years or later.

Table 1: Result of fitting Full Model

Parameter* ML Estimate Estimated ASE p-value

A 0.2809 0.0248 < 0.0001
by -0.1834 0.0305 < 0.0001
Y -0.2744 0.0783 < 0.0001
by 0.0410 0.0367 0.262

by -0.2923 0.0407 < 0.0001
23 -0.3669 0.1100 < 0.0001
Bo -2.5697 0.2213 < 0.0001
B -0.0173 0.1385 0.896

Bo 0.4698 0.1657 < 0.0001

\s are the Gompertz parameters associated with female and the it period ;
A\¥s are the Gompertz parameters associated with male and the 5t* period ;

f1 and (3, are the parameters associated with treatment and age, respectively.

Table 2: Cox Regression

Parameter* ML Estimate Estimated ASE  p-value
Treatment -0.0223 0.1003 0.8164
Age 0.5119 0.1051 < 0.0001
Gender -0.4940 0.1009 < 0.0001
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Table 3: Result of fitting Reduced Model
Parameter* ML Estimate Estimated ASE  p-value

A 0.1595 0.0253 < 0.0001
AL -0.2399 0.0307 < 0.0001
A -0.3109 0.0784 < 0.0001
A2 -0.0875 0.0376 < 0.0001
A2 -0.3500 0.0409 < 0.0001
A2 -0.4035 0.1101 < 0.0001
Bo -2.2671 0.1551 < 0.0001
B 0.4701 0.2313 < 0.0001

M\'s are the Gompertz parameters associated with female and the it period;
)\?’ s are the Gompertz parameters associated with male and the i** period ;

B are the parameters associated with age.

Table 4: Estimated Cure Rates

Estimate(Standard error) %
Gender Piecewise Gompertz Kaplan-Meier

Regression
Male 53.26(0.30) 53.65(3.02)
Female 65.34(0.28) 68.86(3.03)
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