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Abstract

The estimation of parameters in regression models with multiplicative er-
rors is usually based on the gamma or log-normal likelihoods. Under reciprocal
misspecification, we compare the small sample efficiencies of two sets of esti-
mators via a Monte Carlo study. We further consider the case where the errors
are a random sample from a Weibull distribution. We compute the asymptotic
relative efficiency of quasi-likelihood estimators on the original scale to least
squares estimators on the log-transformed scale and perform a Monte Carlo
study to compare the small sample performances of quasi-likelihood and least
squares estimators.
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1. Introduction
Consider a multiplicative regression model for positive observations, given by
Kzﬂiai (i:l,...,n) (1)

with log u; = By + Y-F_, Brzir and {e;} independently and identically distributed
(IID) with E(e;) = 1 and Var(e;) = ¢1, where Bo, Br(r = 1,...,p), and ¢, are
unknown parameters and z;.(r = 1,..., p) are explanatory variables. This model
can be alternatively expressed as an additive model for its logarithm, given by

logY,=v;4+m (i=1,...,n) (2)

with v; = {6+ E(log €;)} + >%_, B,2;; and {n;} IID with E(z;) = 0 and Var(n;) =
¢2, where ¢2 is a unknown parameter. Model (1) has a constant coefficient of
variation with logarithmic link and Model (2) has a constant variance with identical
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link. The non-intercept parameters 3y, ..., Bp can be estimated from either Model
(1) or Model (2). To ensure the identifiability of these parameters, we impose
Yiixir =0 (r = 1,... ,P), which is always possible. The intercept parameters
cannot be similarly identified.

In order to estimate fy, ..., 8,, we can apply the quasi-likelihood(QL) method,
a generalization of the least squares(LS) method, described by Wedderburn (1974).
The QL equations are given by

n PR .
Zuz”: (r=0,...,p) (3)
& owi .

for Model (1), which will be denoted by ‘OG’, and

En:(log ¥i—vi)zy (r=0,...,p) (4)
i=1

for Model (2), which will be denoted by ‘LG’. It is well known that the equations (3)
are the maximum likelihood(ML) equations when Y; follows a gamma distribution
and the equations (4) are the ML equations when log Y; follows a normal distribu-
tion. Also we note that the QL equations (4) are the unweighted LS equations.

In Section 2, we first consider the case where the true distribution of g; 18 ei-
ther gamma or log-normal. We present and compare the asymptotic relative effi-
ciency(ARE) of QL estimators of 31, ..., 3, relative to ML estimators when the true
distribution is reciprocally misspecified. Next we consider the case where the true
distribution is Weibull. We calculate and compare the AREs of QL estimators from
(3) and (4) relative to ML estimators. In Section 3, we compare the small sample
efficiencies of QL estimators relative to ML estimators under reciprocal misspecifi-
cation and then compare small sample performances of QL estimators from (3) to
LS estimators from (4).

2. Asymptotic Relative Efficiencies

Models with Constant Variance

~ Here we consider Model (2). This model has identical link function g(v;) = v;
and a constant variance function V(1;) =1, i.e.

14
EQogY;) =vi =83+ Y _Bxir, Var(log Y;) = ¢ (i=1,...,n)
r=1

with 3§ = {60 + E(log €;)}. The equations LG, given in (4), are used to estimate
1817 ey /Bp-
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Cox and Hinkley(1968) showed that the ARE of QL estimators of f,...,8,
relative to ML estimators based on the true distribution is given by (¢2A4,)~!, where

A, = E(—0%41/0V%)

with ¢; being the log likelihood of log Y;.

Cox and Hinkley(1968) calculated A, for some distributions and showed that,
using the result of Bartlett and Kendall(1946), if €; has a gamma, distribution with
index 7, then the ARE becomes

effc(LG) = {v/(7)} (5)

where /() = 8%log I'(7)/87? is the trigamma function and I'(-) is the gamma
function.

When ¢; has a Weibull distribution with shape ¢, we can show that A, = ¢? and
¢2 = ¢'(1)/c? and so the ARE becomes

effw (LG) = {¢/'(1)} ! = 6/2%. - (6)

Models with Constant Coefficient of Variation

Here we consider Model (1). This model has logarithmic link function g(y;) =
log u; and quadratic variance function V(i;) = p2, i.e.

E(Yz) = i, lOg Hi = ,30 + Z,Brxzr; Var(Y) - ¢1 /‘z (2 - 1 )

r=1

The equations OG, given in (3), are used to estimate 3y, ..., Gp.
Firth(1987) showed that the ARE of QL estimators of 5i, ..., B, relative to ML
estimators based on the true distribution is given by ($14)7 L, where

Ae = ﬂ%E(—azq/a,u%)

with £} being the log likelihood of Y;.
Firth (1987) calculated A, for some distributions and showed that if the true
distribution of ¢; is log-normal, the ARE becomes

eff ,(OG) = log (1 + ¢2)/¢2- (M

When ¢; has a Weibull distribution with shape c, it is easy to show that A = ¢?
and ¢ = I'(2/c+1)/T?(1/c + 1) — 1 and thus the ARE becomes

effiw (0G) = {2[0(2/c+ 1)/T*(1 /e +1) 1) - 1]} . 8)
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Comparisons

Firth(1988) compared the AREs in equations (5) and (7) by noting the relation
that y~! is equal to ¢1, the variance of ¢;. For some five points in the realistic range,
0.1 to 2.0, of ¢4, eff,(OG) and eff¢(LG) can be calculated as in Table 1.

Table 1: Asymptotic Relative Efficiencies Under Reciprocal Misspecification

o1 0.1 0.2 0.5 1.0 2.0
effg(LG) | 0.951 0.904 0.775 0.608 0.405
eff, (OG) [ 0.953 0.912 0.811 0.693 0.549

As noted in Firth(1988), over the range considered, effg(LN) is slightly bigger
than eff,(OG) and the difference increases in ¢;. Thus QL estimators on the original
scale performs a little better than LS estimators on the log-transformed scale under
reciprocal misspecification.

‘We now consider the case where €; has a Weibull distribution with shape ¢. Since

effy(LG) = 6/72 and effw(OG) = {c*[['(2/c + 1)/T%(1/c+1) — 1]} 1,

the ARE of QL estimators on the original scale to LS estimators on the logarithmic
scale is given by

effw(0G,LG) = n*/ {6c*[0(2/c + 1)/T*(1/c +1) - 1]} . (9)

effw (OG, LG) increases in ¢ on the range (0,1) and then decreases in ¢ on
the range (1,00). The maximum value of effy(OG,LG) is 72/6 at ¢ = 1, and
effw (OG, LG) approaches to 0 as ¢ goes to 0 whereas it approaches to 1 as ¢ goes to
oo. It is easy to show that effyw(OG,LG) = 1 is attained at ¢ approximately equal
to ¢* = 0.3881. Therefore effw(OG,LG) < 1 for 0 < ¢ < ¢* and effw(OG,LG) > 1
for ¢ > ¢*. To calculate the ARE in terms of ¢;, the variance of ¢;, we can use the
relation between ¢ and c, ¢; = I'(2/c+1)/T%(1/c+1) — 1, which is given just prior
to (6). For the five points in the realistic range, 0.1 to 2.0, of ¢4, effw(OG LG) are
calculated and summarized in Table 2.

Since ¢ > ¢* is approximately equivalent to ¢; < 10.92, over the range considered,
the QL estimation on the original scale performs much better than the LS estimation
on the logarithmic scale.

3. Monte Carlo Study

In this section, we first calculate and compare small sample efficiencies of QL esti-
mators to ML estimators under reciprocal misspecification when the true distribution
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Table 2: ARE of QL on the Original Scale to LS on the Logarithmic Scale

1 0.1 0.2 0.5 1.0 2.0
effw(OG,LG) | 1.341 1452 1.596 1.645 1.583

of €; is either gamma or log-normal. We then compare small sample performances
of QL estimators from (3) to LS estimators from (4) when the true distribution is
Weibull.

Since the ARE of QL estimators of non-intercept parameters 3,..., 3, to ML
estimators is the same for all estimators, we only consider the simple regression
model with intercept, i.e. p = 1. We consider the sample sizes such as n = 10, 20, 50
and, for each sample size, we generated the explanatory variable z;; ({ = 1,...,n)
from the uniform distribution from 0 to 1 and then centered it so that 3~ z;; = 0. As
noted in Section 1, this centering is taken to ensure the identifiability of ;. When
we compare two methods of estimation, we generate 500 random samples from the
true distribution and then calculate 500 estimates of 3; by each method. The small
sample efficiency of method 1 to method 2 is just given by E(b?) —B1)%/ Z(bz(l) —pB1)?,
where bgl) and b?’ are the estimators of B; based on method 1 and method 2,
respectively.

We first consider gamma and log-normal distributions as true distributions of ¢;.
For the five points of ¢; considered in Section 2, small sample efficiencies, eﬁc(LG)
and eﬁ'L(OG), of QL estimator of 3; to ML estimator under reciprocal misspecifi-
cation are calculated and summarized in Table 3.

Table 3: Small Sample Efficiencies under Reciprocal Misspecification

[ o1 [01 02 05 10 20 |
n=10 | efig(LG) [ 0.960 0.941 0.848 0.776 0.617
eff ,(OG) | 0.970 0.936 0.892 0.816 0.814
n=20 | effg(LG) [ 0.963 0925 0.789 0.643 0.531
eff (OG) | 0.964 0.931 0.889 0.835 0.723
n =50 | eff(LG) | 0.967 0922 0.782 0.708 0.423
effL(OG) | 0.955 0.926 0.848 0.807 0.645

We find that the difference in effL(OG) and eAffG(LG) issmall for ¢; = 0.1,0.2,0.5
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and becomes large for ¢; = 1,2. We also find that there is a trend that the difference
increases in ¢;. Therefore, as expected from the comparison of the AREs in Section
2, we can conclude that QL estimator on the original scale performs a little better
than LS estimator on the logarithmic scale under reciprocal misspecification.

Next we consider the case where the true distribution of ¢; is Weibull. Small
sample efficiency ei‘fw(OG , LG) of QL estimator of 81 on the original scale to LS esti-
mator on the logarithmic scale is calculated for the five points of ¢ and summarized
in Table 4.

Table 4: Small Sample Efficiency effyy (0G, LG)

1 0.1 0.2 0.5 1.0 2.0
n=101] 1160 1.227 1.290 1.448 1417
n=20|1272 1381 1.544 1.685 1.489
n=250|1336 1400 1.535 1.536 1.421

We find that eAffW(OG, LG) > 1 for all values of ¢; and that e}fW(OG, LG)
increases in ¢; on the range [0.1, 1] and drops a little bit at ¢; = 2. These findings
are well expected from the study on ARE in Section 2 and we can conclude that QL
estimator on the original scale performs better than LS estimator on the logarithmic
scale.
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