Regulation of thyroxine release in the thyroid by protein kinase C

갑상선에서 protein kinase C에 의한 thyroxine 유리조절

  • Kim, Jin-shang (College of Veterinary Medicine, Chonbuk National University)
  • 김진상 (전북대학교 수의과대학)
  • Received : 1999.06.11
  • Published : 1999.12.25

Abstract

Previous studies suggested that the inhibition of thyroxine ($T_4$) release by ${\alpha}_1$-adrenoceptor and muscarinic receptor stimulation results in activated protein kinase C (PKC) from mouse and guinea pig thyroids. In the present study, the effect of carbachol, methoxamine, phorbol myristate acetate (PMA), and R59022 on the release of $T_4$ from the mouse, rat, and guinea pig thyroids was compared to clarify the role of PKC in the regulation of the release of $T_4$. The thyroids were incubated in the medium containing the test agents, samples of the medium were assayed for $T_4$ by EIA kits. Forskolin, an adenylate cyclase activator, chlorophenylthio-cAMP sodium, a membrane permeable analog of cAMP, and isobutyl-methylxanthine, a phosphodiesterase inhibitor, like TSH (thyroid stimulating hormone), enhaced the release of $T_4$ from the mouse, rat, and guinea pig thyroids. Methoxamine, an ${\alpha}_1$-adrenoceptor agonist, inhibited the TSH-stimulated release of $T_4$ in mouse, but not rat and guinea pig thyroids. In contrast, carbachol, a muscarinic receptor agonist, inhibited the release of $T_4$ in guinea pig, but not mouse and rat thyroids. These inhibition were reversed by prazosin, an ${\alpha}_1$-adrenoceptor antagonist or atropine, a muscarinic antagonist or $M_1$- and $M_3$-muscarinic antagonists, in mouse or guinea pig thyroids. In addition, staurosporine, a PKC inhibitor, reversed methoxamine or carbachol inhibition of TSH stimulation. Furthermore, PMA, a PKC activator, and R59022, a diacylglycerol (DAG) kinase inhibitor, inhibited the TSH-stimulated release of $T_4$ in mouse, rat, and guinea pig thyroids. These inhibition were blocked by staurosporine. These findings suggest that the activation of receptor or DAG inhibits TSH-stimulated $T_4$ release through a PKC-dependent mechanism in thyroid gland.

Keywords