加味沙苶麥門冬湯이 抗癌活性卌 放射線副作用抑制效果에 미치는 影響

朴陽春•金珂卓＊

Abstract

Study on Antitumor Activity and Radioprotective effects of Kamisasammaekmundongtang

Park，Yang－chun • Kim Byeong－tak
Division of Respiratory，Department of Internal Medicine， College of Oriental Medicine，Taejon University，Taejon，Korea

To evaluate the antitumor activity，antimetastatic and radioprotective effects of Kamisasammaekmundongtang（KSMT），studies were done experimentally．

The results were obtained as follows：1．In cytotoxicity against P388，A549 and B16－F10，KSMT was not showed satisfiable cytotoxicity as compared with control．2．In Inhibitory effect on activity of DNA topoisomerase I，KSMT has strong inhibitory effect．3．The inhibitory effect on adhesion of A549 to complex extracelluiar matrix was significantly increased at $0.5 \mathrm{mg} / \mathrm{ml}, 1 \mathrm{mg} / \mathrm{ml}$ of KSMT ． 4．The $\mathrm{T} / \mathrm{C} \%$ was 122 in KSMT treated group in S－180 bearing ICR mice．5．In antiangiogenetic effect on CAM assay，inhibitory rate was 33% in KSMT treated group．6．In pulmonary colonization assay，a number of colonies in the lungs were decreased significantly in KSMT treated group as compared with control group．7．By FACS analysis of splenic leukocyte after exposure to radiation by linear accelerator，T－helper cell，B cell and macrophage in KSMT treated group were significantly increased while splenocytes were decreased in control group．8．In histological changes of jejunum of BalblC mice after exposure to radiation by linear accelerator，exclusion and fusion of villi were decreased as compared with control group．But in duodenum and ileum，exclusion and fusion of villi were not decreased as compared with control group．9．WBC，PLT were increased in KSMT treated group as compared with control group after exposure to radiation by linear accelerator，but the increasing effect was not significant．．

Above results suggest that KSMT may be useful in prevention of cancer metastasis and protection from damage by radiotherapy．But the further study of KSMT would be demanded．

Key words：antitumor activity，radioprotective effects，Kamisasammaekmundongtang（KSMT）

[^0]I．緒 論

隀愓은 組織이 自待的으로 過剩的 成文을 하는 것으로，이것은 㑬體에 대하여 意義计 없거나 이 콥지 않을뿐너러 IE：常組織에 대해서 破壊的인 것 을 말하는데，이중 빠른 战匡，效潤性 成辰，體閉各 部任에의 搌散 및 轉移를 特徵으로 하는 腎性

勢에 있다 ${ }^{\text {Fin }}$ ．
 폭》 ${ }^{71}$ 에서 最初로 傐述되었으나《革帝队経》 ${ }^{8-91}$

 이라 할 수 있다．
射線療法，抗膈化學療法，免疫療法 坒 ${ }^{13-4,17]}$ 이 있 다．이 중 化學療法证 正常彩胞에 대한 毒性作用
 에는 好息的으로 㕍川될 仚밖에 없고，报射線療法 은 輔移 隀瘍의 경우에는 適用이 制限的이면서 紬
蜼，泄鳰 歪首 胃腸管 症狀，白血球減少疲，血小板減少症，筫血 같은 骨㵦抑制只 인한 各種 血球減少症의 副作用을 招來한다 ${ }^{18-237}$ ，따라서 最近에는韓薬 또
 하는 많은 實驗 研究가 進行되고 있다．

韓擎學에서 癌의 治療는 语氣養血，養陰生津，健脾益氣，補肝盆腎，健脾益腎 등人體 抗病 能力을增進시키는 扶正培本法斗 清熱解毒，活血化淤，化㾳消疮，理氣消腫 등 癌細胞를 直接 攻擊하는 社邪法 및 이 두 가지 方法을 配合新 扶汇䏻邪法 등 ${ }^{32-36)}$ 으로 區別할 수 있는데 이 중 扶开培本法의 －種인 養陰生津法은 手術中의 體液战失，放射線

治療에 의한 火灼傷陵，化學療法에 의 한 嶇叶㸷泄鹁，未期患者의 感染發熱 등으로 造成된 狯侓侦傷의 状態总 恢復시키는 治法으로 翟肋된다 ${ }^{3237}$ （39）

效果에 대한 畕䮦研究는 춪아보기 어려윘다．

加束하여，이를 侙料䛈 抗癌•抗轁移 效果를 檢素
 topoisomerase 1 活性抑制效果，衫合甚犋에 대한

化 등을 測定하였고，放射線 䨋作用 瑊少效果童

 여 们意性있는 結果롤 얻었기에 報告하는 바이 다

I．實 驗

1．材 料

1）動 物
動物은 雄情 4週齢의 ICR（International Cancer Research，U．S．A），Balb／C 및 C57BL／6 생쥐를 韓
料（조단백질 22.1% 以上，조지방 8.0% 以下，조섬 유 5.0% 以下，조회분 8.0% 以下，칼숨 0.6% 以上，燐 0.4% 以上 抗生劑 無添加，삼양배합사로 Co．）와 물을 充分히 供給歼巫 室溫 $22 \pm 2^{\circ} \mathrm{C}$ 를 계 속 維持하면서 2 週日間 實驗究 噮境에 適隼시킨後 實驗에 使用하였다．

2）薬 物

本 實驗에 使用站 薬材는《溫病條辨》 ${ }^{4!11}$ 의 用量에 따라 大田大學校附蟼韓方病院에서 購入하여實驗에 使用竔였으며，處方约 한첩 分量은 아래와 같다．

韓 泉	生 楽 名	用量（g）
沙営	Adenophorae Radix	12
要明冬	Liriopis Tuber	12
F：\％	Polygonati odorati Rhizoma	8
荿禹	Mori Folium	6
门間富	Dolichoris Semen	6
大化为	Trichosanthis Radix	6
生都草	Glycyrrhizae Radix	1
「化蛇岳芴	Oldenlandiae diffusae Herba	24
利倠早早	Argimoniae Herba	12
息腥学	Houttuvniae Herba	12
緦 㽞		102

3）试楽 洖 機器
：式薬은 RPMI 1640，fetal bovine serum（FBS）， dulbecco＇s phosphate buffered saline（DPISS－A）， trichloroacetic acid（TCA），sodium dodecyl sulfate（SDS），trypsin－EDTA，3－［4，5－dimethyl－ thiazol－2－yl］－2，5－diphenyl－tetrazoliumbromide M T＂「），sulforhodamine－B（SRB，Sigma Co．，（I．S．A．）， tris base，penicillin－streptomycin，sodium hydroxide，sodium bicarbonate，formaldehyde， lysophosphatidic acid， $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2} \mathrm{FITC}$－goat anti rat Ig antibody，trypan blue，phenol red，sodium azide 및 isopropanol 등은 Sigma 製战，thanol， HCl 은 Merck 製： 13 ，sodium bicarbonate 는 Gibco製品，glicial acetic acid는 Duksan 製䀎，DNA topoisomerase I，pBR322 DNA는 Takart 製品．受精卵은 풀무원淔 製品，intralipose는 녹십자 製
 각 使用하였다．

耭器는 CO_{2} incubator（Vision Scientific Co．， Model VS－9108 MS，U．S．A．），clean bench（Vision Scientific Co．，KMC－14001．U．S．A．）． centrifuge（Beckman Co．，GS－6R），inverted
microscope（Nikon Co．，Japan），bright microscope（Nikon，UFX－DX），linear accelerator（Varian ELISA－reader（Emax， activated cell sorter Calibur（FACS 〔alibur Becton Dickinson．U．S．A．），rotary vaccum evaporator（Büchi 461），autoclave（Hiravama， Japan），micro－pipet（Gilson，U．S．A）．autostill WC25（Japan），titer plate shaker（Labline Inst．， U．S．A），culture flask（Falcon，3024），multiwell plate 96 －well，Faloon），conical zube，disposable pipet（5me， $10 \mathrm{ml}, ~ 25 \mathrm{ml}, \quad$ Falcon）．camera：Nikon， 6015 ，Japan）吴 syringe filteri0．22 $\mu \mathrm{m}$ ， $0.45 \mu \mathrm{~m}$ ， Falcon）등을 使用하였다．

2．万沙

A．扰癌 呆 抗轉移性 探宗

In vitro assay

1）試籼 의 製造

 rotary vaccum evaporator（Büchi 461）에시 減扉

製迻하여 使用站였다．動物 寛䮰特에는 生埋食覧
 는 RPMII 1640 free medium에 塎解시켝 syringe filcer $0.22 \mu \mathrm{~m}$, Faicon）로 濾過하여 使用하였나

21稩胞培養
In vitro 䇆胞毒性 測定에는 P388 白血病癌林， A549（ATCC CCL185）肺㿋株央 B16－F10 melanoma（ATCC CRC 6322）롤 使用하였고， pulmonary colonization assay에늘 316－BI． 6 을 使用하였는데 이들의 培養液은 모드 L－glutamine이边台空 RPMI 1640 培地咞 $56^{\circ} \mathrm{C}$ 水槽에서 30 分間加溫；하여 不活性化시킨 fetal bovine serum（FBS， Flow Laboratories Inc．，Mclean，VA）을 10% 包

含하고 1% 扩生矨（penicillin－G 10 萬 units streptomycin 100 mg ）와 NaHCO_{3}－ g g 을 话加 하여 製选하였다．

动《

 고．96－well flat bottom microplate 1 Falconi에 well당 綳胞数가 $2 \times 10^{*}$ 個가 되도록 分情 하 였다．

分怢된 槒胞들은 CO_{2} incubator내에 ㅅ 24時同

 다시 48時間 동안 境积하였다．

試料는 쌔하기 전에 $0.45 \mu \mathrm{~m}$ filter로 潈過하여 實驗의 無菌状態总 稚持하였다 薬物과 함에 48時間境着이 끝난 後，각 well의 medium 을 除去하고， 10% trichloroacetic acid（TCA）를 well당 100 mm 씩加하여 $4^{\circ} \mathrm{C}$ 에서 1 時間 동안 放置하여 細胞들을 plate의 바닥면에 固定시켰다．

細胞经 固定이 끝나 嵝 plate를 물로 5～6问洗

滌하여 남아 있는 TCA 溶液을 完込栓 除去하고客温에서 남은 물기가 없도록 乾燥시켰다．完全히

乐占하였다。

「ris로 東美被을 잘 녹여 낸 다음 500 nm 에서 3

 다．즉， $\mathrm{T} z \geqq T$ 인 경우에는（ $\mathrm{T}-\mathrm{Tz}$ ）$(\mathrm{C}-\mathrm{T} 2!\times 100$ ） 의 数式으로 미算하였고． $\mathrm{T} z<\mathrm{T}$ 인 경우에는 T－TzノTz $\times 100$ 의 数式으로 站百하였으며，이릴 제 站弱된 값들로부터 lotus program의 data regression 機能을 이용하여 ED_{50} 값을 訃算하여

 \therefore 侙料의 農度 $(\mu \mathrm{g} / \mathrm{ml})$ 로 주이지뗘，美或立癌矿究斥인 VCI（National Cancer Institute，U．S．A）
各 淟度에 대한 成長率 $\mathrm{Y}(\%) \div$ 는음과 같이 計算 하였다．
$Y(0)=\left[\left(T-C_{0}\right) /\left(C-C_{0}\right)\right] \times 100$ 이때，

 $\mathrm{C}_{0}=$ 培養 始作時 千好 細胞數（cells $/ \mathrm{nk}$ ）
각각 濃度의 $\mathrm{Y}(\%)$ 값과 $\mathrm{L}\left(\mathrm{g}_{10}\right.$ dose를 風式化 하 고 다음과 같은 式에 의하여 可歸線을 구했다．이 때 各各의 濃度에 대하여 計算한 $Y(\%)$ 값이 모두
50% 보다 작으면 再實駿을 實施飒였다．

$$
\mathrm{B}=\text { slope }=\frac{\mathrm{N} \cdot \sum(\mathrm{Xi} \cdot \mathrm{Y} \mathrm{i})-\left(\sum \mathrm{Xi}\right) \cdot\left(\sum \mathrm{Yi}\right)}{\mathrm{N} \cdot \sum(\mathrm{Xi})^{2}-\left(\sum \mathrm{Xi}\right)^{\prime}}
$$

$$
A=\text { intercept }=\frac{\sum Y i}{N}-B \frac{\sum X i}{N}
$$

이때，$N=$ number of prints selected
$[\leq$ number of dose level $\&>2$ ］
$X i=\log$ dose i
$\mathrm{Yi}=$ growth ratio calculated dose i
 $\mathrm{Y}=\mathrm{A}+\mathrm{BX}$ 를 얻었으며 이 回歸棪의 기울기롸

$$
\begin{aligned}
& 50=A+B\left(\log _{u} E D_{\overline{4}}\right) \\
& \log _{41} E D_{: k}=(50-A) / B \\
& E D_{n}=10^{\log _{11} E D_{3}} \mu_{5} \cdot m \ell
\end{aligned}
$$

 있다．

Scheme 1．The experimental scheme for cytotoxicity of KSMT on A549 cells

5）DNA tropoisomerase I assay ${ }^{491}$

貝驗에 使用된 DNA topoisomerase I 른 Calf thymus에서 $\quad 11$ 來된 것이며， $\mathrm{pBR} 3 \geqslant 2 \mathrm{DNA}$ 는 E．coli C 600 의 것으로 Takara shuzo，Co．，LTD．에 서 購入 仙弗하였다．Topoisomerase I i 「作 의 䫓
 $\mathrm{MgCl}: 0.5 \mathrm{mMI}$ dithiothreitol， 5 rnM Spermidine． 0.01% Bovine serum album， $0.5 \mu \mathrm{~g} \mathrm{pPR} 32$.

 SDS（sodium dodecylsulfate）， $2\left(\begin{array}{l}\text { a } \\ \text { gljcern }\end{array}\right.$

 buffer： 50 mM Tris base， 50 mM boric acid， 2.5 mN EDTA！로 湖師된 1% agarose gel에 色莱

 을 意味한나

Aう49 相胞姿 cell culture dishoㅇ monclayer로 자나도록 相胞 濃度送 調節하면시 키욌다．嵒稩胞
 plate의 각 well에 100μ（씩 朋한 5.10^{4} cells＇well）

問 啳 培稆襍을 陈去시키고 96 well plate의 바닥 을 $2 \% \mathrm{FBS}$ 로 洗候한 다음 24時間培養刏킨 後 SRB法에 의하여 바닥에 붙어 있는 細胞數를 觀察 하였다．

In vivo assay

7）S－180 懆細胞嘈 對 한 生存比 測文：
ICR 생쥐의 腹腔队에 7E間 培湌된 sarcoma 180 細胞를 腹水新 함叫 취하여 减菌된 岎生理食

生理食監水听 浮游시켜 다시 遠心分離部여 上澄湤 을 除去放 後 漉在된 赤血球를 浴血시키고 sarcoma 180 細胞만을 취하였다．同 •한 力法으로 3 回 洗候한 後 hemacytometer로 세어 $10^{7} \mathrm{cells} / \mathrm{ml}$ 의 濃度가 되도록 暞胞 浮游液苇 만들고 이浮游液을 $0.1 \mathrm{~m} \mathrm{\ell}$ 씩 癁腔內에 移植故였다．移植 後 24時
溶解시켜（ $19.6 \mathrm{mg} / 20 \mathrm{~g} / \mathrm{day}$ ）保仔溶液是 만튼後 $4^{\circ} \mathrm{C}$
動物의 11腔内에 投入하였으며 對照群에는 同昆의

算하였다．

$$
\mathrm{T} / \mathrm{C}(\%)=\frac{\begin{array}{c}
\text { MST(mean surviva time) } \\
\text { of sample group }
\end{array}}{\begin{array}{c}
\mathrm{MST}(\text { mean surviva time }) \\
\text { of control group }
\end{array}} \times 100
$$

8）血管形成 抑制作用（chorioallantoic membrane assay：CAM assay $)^{53}$
 켰다．이 때 incubator의 溫度는 $37-38^{\circ} \mathrm{C}$ ，鼬度는 90% 以 ：維持되도록 수시도 確認하였나 여기에
 3－4일 以队의 것을 말한다．
－3以째（2日组）：受精郋의 뽀족한 習부분에 칼 로 홈을 낸 後 水斗으로 뉘어놓고 5 ml 注射器로 구멈을 낸 다음 알부민을 $3-5 \mathrm{ml}$ 정도 뽑아내었다．受精卵이 乾燥되지 않고 또 减染되지 않도록 구멍 을 유리테읻으로 封한 後 구멍이 아래로 향하도로诗고 다시 培蓌시켰다．
－4［邜（3日㗏）：受精射의 air sac이 있는쪽 （沛射器 구멍의 반대쪽）으로 直徑 $2-3 \mathrm{~cm}$ 크기의 ［勋形 window를 내고 受精卵으로 확인된 것만 넓 은 유리테잎으로 막고 다시 培養시시켰다．參考로，䐣形 window를 내는 방법은 날카로운 칼로 受精邲의 껍질위에 圓形으로 흠을 낸 뒤 핀쎗으로 껍 질을 뜰어내었다．이때 껍질가루가 안쪽으로 떨어 지지 않도록 注意하였다．受精卵이란 window를 냈을때 十字架形의 가는 血管이 보이는 것을 意㕲 한다．
－ 5 以邜（4．5日肬）：이 時期가 되면 CAM이 尘成 되며，工 值徑이 $2-5 \mathrm{~mm}$ 정도된다．sample을 적담 한 溶媒（물，에탄올）에 녹인 다음 4答分된 thermanox coverslip 위에 $10 \mu \ell$ 씩 떨어뜨리고 clean bench안에서 말렸다．여기에 thermanox coverslip은 가위로 잘라 4等分하여 clean bench안 의 UV 아래에서 ovemight시费다．受精想의 유리 테인을 칼로 뜯어내고 CAM을 찾아 確認한 㷋 핀 셋으로 sample이 厒理된 thermanox를 뒤집어 조 심스럽게 올려놓고 다시 유리테잎으로 막았다．이 때 使用하는 가위，칼，핀셋등은 70% 에탄올로 浒曾하여 使m하고，푄셋은 sample을 하나하나 loading 할 때마다 沙毒하여 使用하였다．기타 花驗器俱들도 受精卵이 感染되지 않도록 流意하면서使用하였다。
－ 7 H 째（ 6.5 냉）：유리테잎을 칼로 쁠어내었다． त射器로 intralipose（fat emulsion）를 1 ml 취하포，氣泡理 除步한 뒤 CAM의 파로 아래부분에 在入 하였다．이때 흰색 바탕에 떠렷한 血管을 裉察할 수 있었다．淔射器로 intralipose토 在入할 때는 而管이 다치지 않도록 洨意㖕였다．観客이 끝나 受

9）Pulmonary colonization에 미치는 影響 澌运
In vitro에서 䊽代培養한 B16－BL6 肺癌細胞를菑驗에 使用하였다．즉，繼代け인 이들 細胞들을度䮰에 使用站기 위하여 trypsin－EDTA浴液으로附着用으로부터 分離시켜 HBSS 溶淮으로 細胞數 가 2×10^{4} cells／me이 되도록 綳胞懸濁液을 만둘었 다． $18-20 \mathrm{~g}$ 인 $\mathrm{C} 57 \mathrm{BL} / 6$ 생쥐애 細泡懸濁疲 $0.2 \mathrm{~m} \mathrm{\ell}$ 을 각각 尾静脈 洁射하였다．㐮㳔은 B16－BL6 痛細胞 를 移梢한 後 24時間 經過한 後 1 日 1 回监 9.6 mg
管하면서 7H間 連續 zonde를 使用하여 經口 投與 하였다．Pulmonary colonization assay ${ }^{54-56)}$ 는 癌
 의 colony 數를 黣微鏡上（Nikon，Japan）에서 x 200倍媇에서 計算하였다。

B．放射線 副作用 減少效果

1）放射線 照射

생쥐가 움직이지 않게 제작된 아크릴상자에 넣 어 国定시퀴고，放射線은 線形加速器（linear accelerator，Varian Co，U．S．A．）6MV－X線号（使用 하 였으며，照射野（field size）는 $35 \mathrm{~cm} \times 35 \mathrm{~cm}$ ， source－surface－distance（SSD）는 100 cm 거리로 하 였다． $6 \mathrm{MV}-\mathrm{X}$ 線은 皮下 1.5 cm 깊이에서 冣大線量 （build－up）이 形成㓡으로 아크릴상자 前－後通에
 여 쥐 良面에 均 하게 照射되도록 하였다．放射
状 및 SCF（sister chromatid exchange）를 가 장 잘
 $50 \mathrm{CG}-500 \mathrm{CGy}$ 이다．따라서 收射線 照射色은 이 중 暴治撩 H 的으로 가상 많이 使肋敨는 300 CG 를 具谁으로 하였는데 又復的으로 企身 数射됨을
 곽가 $20 \mathrm{cGy}, 40 \mathrm{cGy}, 60 \mathrm{cGy}$ 를 全身 照射하엾으매， 이때 縩是率（dose－rate）는 3cGy：min이다．

2） FACS 에 의한晖藏免疫細胞變化剘这：

BalbC 8마리롤 1样으로 하여 钽射線 異射前 3
 zonde를 이용하여 經门投與故止 照身 後 311间代料를 投與한 Balb／C를 cervical dislocation오ㄹㅗㅗ 敄死시킨 後 脾脸을 摘壮하고 Scheme 2－3에서와 같 이 脾臟 淋已球 繫濁液을 製造하 였다．租胞 處埋 및 萤光染色旧 緩衝液으로는 Ca^{2} 과 Mg^{2-} 이를어 있지 않은 staining buffer를 使用하였다．摘计한脾缕呈 100 mesh（Sigma）에 올려놓고 주사기 파 스톤 뒷부분으로 가볍게 문질러 組織을 制碎䐈였 다． 15 ml conical tube（Becton dickinson에 옳겨 약 5分間 故置하여 組織 덩어리를 沈潵시킨 後 $1:$層液号 取䏠 2回 洗滌하고 $0.83 \% \mathrm{NH}_{4} \mathrm{Cl}$ 溶液을
血시켰다．다시 2回 洗湺하고 RPMI 1610－10\％ FBS 로 $5 \times 10^{6} \mathrm{cells} \mathrm{m} \ell$ 가 되도록 稀擇하였나
（2）㑆疫 䖝光穿色（immunofluorescence staining）

免疻 䖝光染色은 全 過程을 $0-4{ }^{\circ} \mathrm{C}$ 에서 羵施하 였고，淁養한 脾脳 細胞를 问收하여 PBS로 3回

洗湺한 徯 5ml FACS tube（Becton Dikinson， U．S．A）에 $0.3 \mathrm{~m} \ell$ 의 staining buffer롤 넣고 vortex한㖟 遠心畕離（ $1300 \mathrm{rpm}, 5 \mathrm{~min}$ ）하였다．각각의 1 次抗體 Culture sup．을 $100 \mu \ell$ 씩 5 mk FACS tube에 넣고 vortex 한 後 40分問 얼음에서 反隹시켰다．使用한 1 炎 抗體는 3回 洗條 後， Fab＇eFITC－goat anti rat Ig antibody Sigma， U．S．A．）1：100 稀䆁液 50μ 을 ！加하여 40 分间 以然
 vortex 한 缕 FACS CaliburiBecton Dickinson， U．SA．）로 分析하였다．
（3）免度細胞 分析
 buffer에 斿시겨 FACS（alibur Becton Dickinson，U．S．A．i邕 이용하여 \vec{y} 折하였다．試料當 5，000湖의 科胞에 대하여 list mode모 到料를
析하였나．Data의 分析은 forward catter（FSC） 화 side scatter (SSC) 의 dual parameter를 이용한 dot plot상에서 至體 脾臓細胞牛 small Jymphocyte 頒域 및 lymphoblast 頒域을 贾分攱 여 고 중의 T cell， T hellper cell， B cell． macrophage의 比桜（gated，\％）을 算汒하였다．

Table 1．Monoclonal antibody used for immunoflurescence staining

Immune cell types	Markers	Monoclonal antibody
T cells	Thyl．2	Jlj．10
helper T cells	CD4	C．K．1．5．3
B cells	CD23	J11d．．
Macrophages	CD11b	M1／71

Second antibody | $F\left(a^{\prime}\right)_{2} F I^{\prime} \mathrm{CC}$－goat |
| :---: |
| anti rat Ig |

Balb／C mouse
Sacrifice of mouse by cervical dislocation
Excise the spleen out
Spleen
Transfer onto a prewetted 100 mesh
stainless－steel screen
Cut into pieces
Squeeze through the screen
Transfer to a $15 \mathrm{~m}^{\prime}$ conical tube
Keep it for 5 min on ice
Take the upper layer
Wash 3 times with buffer

Hemolysis with 0.83 \％ $\mathrm{NH}_{4} \mathrm{Cl}$
Adjust the cell concentration
to $5 \times 10^{6 i}$ cells mel
in 10% FBS－RPMI 1540
splenic Leukocute suspension
Scheme 2．Preparation of splenic leukocyte suspension

Cell culture

Pool the cells into 5 ml tube
Wash 3 times with the staining buffer Resuspend in $0.3 \mathrm{~m} /$ of the staining buffer Cell suspension（ $100 \mu \mathrm{ul}$ ）
Add 80 ml of the primary Ab
Incubate for 40 min
Wash 3 times with the staining buffer
mAb－bound cells
Add $50, \mu l$ of $\mathrm{F}(\mathrm{ab}) 2$ fragment of FITC－conjugated goat anti－rat Ig
Incubate for 40 min on ice
Wash 3 times with the staining buffer
Resuspend in 0.3 ml of staining buffer
IF－stained cell
Scheme 3．Staining with fluorescein conjugated antibody
 치는 影響
$\mathrm{Balb} / \mathrm{C}$ 생줘를 pentothal sodiumi $30 \mathrm{mg} / \mathrm{kg}$ ．중 외제약）으로 杯醉竔고 미리 heparin이 눌어있는 1回用 注射器（ $23 \mathrm{G} \times 1 \frac{1}{4}$ ，Samwoo Co．）로 心睵穿刺 하여 血液亚 採取㖕ㄹ 血小板數，白血球數，洂血球

数롤 Finio去 ${ }^{571}$ 에 集하여 Minos－ST로 测定하였 다．

4）放射綵 照射 缕 duodenum．jejunum，ileum袢旘變化

BalbC 8 마리를 1 辟으로 하여 故身繳 照射 前 3 山間試料 $19.6 \mathrm{mg} / 20 \mathrm{~g}$ 을 生理住橅水 0.2 m 에 녹여

推察站患다。

III．成 績

가．抗澏 및 抗轉移性 效果

\square In vitro assay
1．P388 億株애 對站 細胞毒性 效果
 $10.5 \mathrm{mg} \cdot \mathrm{m}^{\prime}, 0.25 \mathrm{mg} \cdot \mathrm{mx}$ 濃度에서 䊀照群에 비하여 각 각 $97 \pm 7.9 \quad 104 \pm 8.6 \quad 109 \pm 8.6 \%$ 의 細胞生存妾이 나타나 移胞毒性이 거의 없었다（Table 2）
Table 2．Cytotoxic Effect of KSMT on P388 Cells

Conc．$(\mathrm{mg} / \mathrm{m} \ell)$	Percent of control
Control	$100 \pm 20.0^{\mathrm{Al}}$
0.25	109 ± 08.6
0.50	104 ± 08.6
1.00	97 ± 07.9

a）：Mean \pm standard error．

2．A549 癌株에 對한 細胞毒性 效果
A549 榀株에 對한 細胞毒性 實驗에서는 $1 \mathrm{mg} /$
$\mathrm{m} \ell, 0.5 \mathrm{mg} / \mathrm{m} \ell, 0.25 \mathrm{mg} / \mathrm{m} \ell$ 濃度에서 對照群에 비하여 각가 $97 \pm 1.99 \quad 101 \pm 4.2 \quad 101 \pm 3.2 \%$ 의 細胞生存摔 이 나타나 細玸毒性 效果가 거의 없었다（Table 3）．

Table 3．Cytotoxic Effect of KSMT on A549 Cells

Conc．$(\mathrm{mg} / \mathrm{ml})$	Percent of control
Control	$100 \pm 6.80^{\mathrm{a})}$
0.25	101 ± 3.20
0.50	101 ± 4.20
1.00	97 ± 1.99
a）：Mean \pm standard error．	

3．B16－F10 癌株에 對한 細胞毒性 效果
B16－F10 癌林：에 對한 納胞毒性 實驗에시는 1 mg $/ \mathrm{ml}, 0.5 \mathrm{mg} / \mathrm{ml}, ~ 0.25 \mathrm{mg} / \mathrm{ml}$ 濃度에서 對照群에 각각 $92 \pm 6.37,102 \pm 5.83,102 \pm 4.93 \%$ 의 細胞生仔櫟이 나타나 細胞毒性 效果가 거의 없었다（Table 4）

Table 4．Cytotoxic Effect of KSMT on B16－F10 Cells

Conc．$(\mathrm{mg} / \mathrm{ml})$	Percent of control
Control	$101 \pm 5.68^{\text {a）}}$
0.25	102 ± 4.93
0.50	102 ± 5.83
1.00	92 ± 6.37

a）：Mean \pm standard error．

4．DNA topoisomerase I 에 미치는 影響
$50 \mathrm{mM} \mathrm{MgCl}_{2}, \quad 0.5 \mathrm{mM}$ dithiothreitol， 5 mM Spermidine， 0.01% Bovine serum album， $0.5 \mu \mathrm{~g}$ pBR 322 DNA와 酵素（lunit）만 加하여 總 反應液 을 $20 \mu \ell$ 가 되게 한 것을 對照群으로，酵素와 試料 를 加하여 總 反應液을 $20 \mu \ell$ 되게 한 것을 實驗群 으로 하여 活性을 測定列다．電氣泳動을 賃施하여寫眞 撮影한 結果 Figure 1에서 보는 바와 같이 DNA만을 處理한 實驗群은 대부분 supercoiled form으로 나타넜고，DNA에 topoisomerase I을 處理한 對照群은 모두 relaxed form으로 轉換되었다．

이에 비해 實驗群은 $62.5,125,250,500 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell}$濃度에서 濃度依存的으로 topoisomerase ］의 活性抑制 效果를 나타내었다（Figure 1）．
$\begin{array}{lllllll}\text { Lane } 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Figure 1．Effect of KSMT on the DNA topoisomerase I from calf thymus．
Lane 1：DNA（ $0.5 \mu \mathrm{~g}$ ）only．
Lane 2：DNA＋DNA topoisomerase I（0．5 unit）．
Lane 3：DNA＋DNA topoisomerase I（1 unit）．
Lane 4－7：I）NA＋DNA topoisomerase I（1 unit） $+62.5,125,250$ and $500 \mu \mathrm{~g} / \mathrm{ml}$ of KSMT ．

5．複合細胞外基質에 對㱚 A549의 組胞附着 温 1F：效果
 $0.25,0.5,1 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ 의 濃度에서 $105 \pm 5.32,78.5 \pm$ $4.63(\mathrm{P}<0.05), \quad 49.3 \pm 5.38(\mathrm{P}<0.01)$ 로 有意性 있는綳胞附着沮道：效果가 나타났다（Table 5）

Table 5．Inhibitory Effect of KSMT on Cell Adhesion of A549 Cells to Complex Extracellular Matrix

Conc．$(\mathrm{mg} / \mathrm{m} \mathrm{\ell})$	Percent of control
Control	$100 \pm 6.25^{\mathrm{at}}$
0.25	105 ± 5.32
0.50	$78.5 \pm 4.63^{*}$
1.00	$49.3 \pm 5.38^{* *}$

a）：Mean \pm standard error．
Statistically siginificant value compared with control data（ $*: \mathrm{P}<0.05, * *: \mathrm{P}<0.01$ ）．

In vivo assay

6． $\mathrm{S}-180$ 이 移植된 생쥐의 生存比에 미치는 效果

加味沙菿麥門冬湯이 S－180이 栘植된 생쥐의生存比에 미치는 影響을 測定하였던 바 平均 生存日數（MST：mean survival time）에서 数照群은

18．84，m味沙茲麥門冬湯 投與群은 23U로 나타 나，生存比는 122% 로 나타났다（Table 6）．

Table 6．Effect of KSMT on MST and T／C $\%$ in ICR Mice Bearing Sarcoma 180

Group	No．of animals	MST（day）	T／C（\％）
Control	7	18.8	100
KSMT	7	33.0	122

Control：Saline－treated group．
KSMT：Kamisasammackmundongtang（19．6mg $/ 20 \mathrm{~g} / \mathrm{day}$ ）treated group．

7．血管形成 抑制效果

 에서 血管形成 抑制效果数 나타나 33% 의 血管形城 抑制效果를 나타네었다（Table 7，Figure 2）

Table 7．Antiangiogenic Activity of KSMT by CAM Assay

Sample	Dose（／ug／egg）	No．of CAM （avascular／total）
KSMT	15	$5 / 15$

KSMT：Kamisasammaekmundongtang（15us ／egg）treated group

Figure 2．Photography on embryonic angiogenesis of CAM in control and KSMT groups 2 days after sample implantation．（1） control（2）KSMT（15 $\mu \mathrm{g} / \mathrm{egg}$ ）．

8．B16－BL6에 의한 pulmonary colonization 㧩制效果

B16－BL6 哭巴睡 癌森邕 尾垀脈에 江射站여 21
 서는 42．4さ4．86個，加昧沙蔠麥門冬晹 投興陦은 31.7 ± 5.72 湖诖从坐 22.5% 의 有意性 있는（ $\mathrm{P}<0.05$ ）帅稬轉移 抑制效果总 보였다（Table 8）

Table 8 ．Inhibitory Effect of KSMT of Lung Colonies in C57BL6 Injected i．v． with B16－BL6 Cells

Group	No．of animals	No．of colonies
Control	8	$42.4 \pm 4.86^{\circ}$
KSMT	8	$31.7 \pm 5.72^{*}$

Control：Saline－treated group．
KSMI：Kamisasammaeknundongtang（9．8mg 130 g ／day）treated group．
a）：Mean \pm standard error．
Statistically siginificant value compared with control data（＊： $\mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *:$ $P<0.001)$ ．

나．战射楾 副作用 抑制效果

$40 c G y$ 放射綜을 照射 後 100 間 試料䓃 投舆 $(9.8 \mathrm{mg} / 20 \mathrm{~g} / \mathrm{day})$ 하고 脾臟内의 免度細胞 變化를 調查한 結果，大部分의 免疫 細胞倣射線으로 인 하여 組胞数가 크게 減少하여 cell event \％가 正常群에 비하여 크게 減少하였ㄱ，脾臟队의 少數의
题貼이 있었다．

먼저 T cell 變化에서 positive cell 比率은 II常椨，對照胼，KSMT 處理群이 各各 3.97 ± 0.5 ， $1.05 \pm 0.2,1.32 \pm 0.3$ 으로 나타나 增加를 나타내었 으나 有意性은 없었다（Table 9，Figure 3）

T helper cell 戀化에서는 positive cell 比幸이各各 $9.21 \pm 0.14,5.34 \pm 0.13,7.96 \pm 0.18$ 로 나타나對照群에 比新种 有意性（ $\mathrm{P}<0.001$ ）있는 增加를 나 타내었다（Table 10，Figure 4）．

B cell 變化에서는 positive cell 比率이 각각 $63.07 \pm 0.54,43.38 \pm 0.67,54.29 \pm 0.15$ 로 나타나 對照群에 비하여 有意性 있는（ $\mathrm{P}<0.001$ ）있는 增加를 나타내었다（Table 11，Figure 5）．

Macrophage 變化에서는 positive cell 比率이 각각 $44.41 \pm 0.34,17.49 \pm 0.19,24.36 \pm 0.74$ 로 나타 나 對照洋에 비하여 有意性（ $\mathrm{P}<0.001$ ）있는 增杊를 보였다（Table 12，Figure 6）．
Table 9．Effects of KSMT on T cells of Spleen of Balb／C Mice after Irradiation

Group	\％Positive cells
Normal	$3.97 \pm 0.5^{\mathrm{a}}$
Control	1.05 ± 0.2
KSMT	1.32 ± 0.3

Control：Saline－treated group．
KSMT：Kamisasammaekmundongtang（9．8mg $/ 20 \mathrm{~g} /$ day）treated group．
a）：Mean \pm standard error．

Table 10．Effects of KSMT on T Helper cells of Spleen of Balb／C Mice after Irradiation

Group	\％Positive cells
Normal	G．K．1．5．3
Control	$9.21 \pm 0.14^{\text {a！}}$
KSMT	5.34 ± 0.13

Control：Saline－treated group．
KSMT：Kamisasammaekmundongtang（ 9.8 mg
$/ 20 \mathrm{~g} /$ day）treated group．
a）：Mean \pm standard error．
Statistically siginificant value compared with control data（＊： $\mathrm{P}<0.05$, ＊＊： $\mathrm{P}<0.01, * * *:$ $\mathrm{P}<0.001$ ）

Table
11．Effects of KSMT on B cells of Spleen of $\mathrm{Balb} / \mathrm{C}$ Mice after Irradiation

Group	$\%$ Positive cells
Normal	$\frac{\mathrm{J} 11 \mathrm{~d} .2}{}$
Control	$43.07 \pm 0.54^{*}$
KSMT	54.29 ± 0.67

Control：Saline－treated group．
KSMT：Kamisasammaekmundongtang（9．8mg $/ 20 \mathrm{~g} /$ day）treated group．
a）：Mean \pm standard error．
：Statistically siginificant value compared with control data（＊： $\mathrm{P}<0.05, \quad * *: \mathrm{P}<0.01, \quad * * *$ ： $\mathrm{P}<0.001$ ）．

Table 12．Effects of KSMT on Macrophage of Spleen of Balb／C Mice after Irradiation

Group	\％Positive cells
Normal	M1／70
Control	$41.41 \pm 0.34^{\text {a1 }}$
KSMT	17.49 ± 0.19

Control：Saline－treated group．
KSMT：Kamisasammaekmundongtang（9．8mg $/ 20 \mathrm{~g} /$ day $)$ treated group．
a）：Mean \pm standard error．
：Statistically siginificant value compared with control data（＊： $\mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *$ ： $\mathrm{P}<0.001$ ）．

Figure 3．Effects of KSMT on T cells of Balb／C mice after irradiation（A：Normal，B： Control，C：Sample）．

Figure 4．Effects of KSMT on I helper cells of $\mathrm{Balb} / \mathrm{C}$ mice after irradiation（A：Normal，B： Control，（：Sample）．

Figure 5．Effects of KSMT on B cells of Balb／C mice after irradiation（A：Normal，B： Control，C：Sample）．

Figure 6．Effects of KSMT on macrophage of $\mathrm{Balb} / \mathrm{C}$ mice after irradiation（A：Normal，B： Control，C：Sample）．

2．血液學的絞化

赇數의 變化에서는 正常群은 $4.5 \pm 0.12\left(\times 10^{3} / \mathrm{mm}^{3}\right)$ 인데 비하여 對照群은 $1.04 \pm 0.26\left(\times 10^{3} / \mathrm{mm}^{3}\right)$ 으로 현격히 減少하였으며，駩驗群은 1.36 ± 0.09（× $10^{3} / \mathrm{mm}^{3}$ ）로써 약간의 增加를 보였으나 有意性은 없었다．血小板數의 變化에서는 正常群은 $596.9 \pm$ $24.8\left(\times 10^{3} / \mathrm{mm}^{3}\right)$ 인데 비하여 對照矿은 $420.9 \pm$ $46.31\left(\times 10^{3} / \mathrm{mm}^{3}\right)$ 으로 현격히 堿少하였으며 實驗群의 경우 $468.7 \pm 20.19\left(\times 10^{3} / \mathrm{mm}^{3}\right)$ 로 賭加邕 보였 으나 有意性은 없었다（Table 13－14）．

Table 13．Effects of KSMT on the Number of White Blood Cell of Balb／C Mice after Irradiation

Group	No．of animals	WBC $\left(\times 10^{6} / \mathrm{mm}^{3}\right)$	P value
Normal．	8	$4.50 \pm 0.12^{\mathrm{a})}$	
Control．	8	1.04 ± 0.26	
KSMT	8	1.36 ± 0.09	-

a）：Mean \pm standard error．
Control：Saline－treated group．

KSMT：Kamisasammaekmundongtang （ 9.8 mg $/ 20 \mathrm{~g} /$ day）treated group．

Table 14．Effects of KSMT on the Number of Platelet of Balb／c Mice after Irradiation

Group	No．of animals	Platelet $\left(\times 10^{3} / \mathrm{mm}^{3}\right)$	P value
Normal．	8	$596.9 \pm 24.80^{\text {a }}$	
Control．	8	420.9 ± 46.31	
KSMT	8	468.7 ± 20.19	-

a）：Mean \pm standard error．
Control：Saline－treated group．
KSMT：Kamisasammaekmundongtang 9.8 mg $/ 20 \mathrm{~g} / \mathrm{day}$ ）treated group．

3．Duodenum，jejunum，ileum의 組織學的 變化放射線 照射 程度邕 決定하기 위하여 照射10日後 貝施한 jejunum 組織檢査에서 $20 \mathrm{cGy}, 40 \mathrm{cGy}$ ， 60 cGy 照射 實驗群은 모두 正常群에 비하여 jejunum villi의 梲落이 나타났고，특히 40 cGy ， 60 cGy 에서는 Figure 15에서 보는 바와 같이 jejunum villi의 fusion이 이루어지면서 界状的인杷原 形態가 나타나고 villi 數가 크게 減少하였다．

이에 40 CGy 를 實驗 故射線量으로 定한 後 貝驗 을 實施하였는데 duodenum，jejunum 및 ileum 組嬂檢査에서 40 cGy 照射 對照群은 모두 正常群에 비하여 duodenum，jejunum 및 ileum crypts의 값 은 $19.43 \pm 3.06,19.29 \pm 2.38,23.86 \pm 2.77$ 로써 脘落 이 나타넜다．實驗群에서는 對照群에 비하여 duodenum，jejunum 및 ileum crypts의 값이 19.00 $\pm 1.38,25.33 \pm 2.23,23.96 \pm 2.14$ 로써 duodenum과 ileum에는 影製을 미치지 않았으며，jejunum의 경 우 脫落이 相對的으로 적게 나타나고，fusion되어 나타나는 crypts 數가 적었다．또한 對照群에서 $1:$皮細胞의 核 윤곽이 뚜렷하지 못하고 核淮失이 일 어난 반면 實驗群은 이에 비해 뚜렷한 核 윤곽을

觀察할 수 있었다（Figure 7－10，Table 15－17）．
Table 15．Effect of KSMT on Duodenum Proliferating Crypts Counts in Mice after 40 cGy Irradiation by Linear Accelerator

	Surviving crypts	
Injury	Duodenum	P value
Normal	40.00 ± 3.74^{21}	
Control	19.43 ± 3.06	
KSMT	19.00 ± 1.38	-

Control：Saline－treated group．
KSMT：Kamisasammaekmundongtang ${ }^{\text {（ } 9.8 \mathrm{mg}}$ $/ 20 \mathrm{~g} /$ day ）treated group．

Table 16．Effect of KSMT on Jejunum Proliferating Crypts Counts in Mice after 40cGy Irradiation by Linear Accelerator

	Surviving crypts	
Injury	Jejunum	P value
Normal	$36.00 \pm 3.15^{\text {a }}$	
Control	19.29 ± 2.38	
KSMT	25.33 ± 2.23	>0.05

Control：Saline－treated group．
KSMT：Kamisasammaekmundongtang（ 9.8 mg $/ 20 \mathrm{~g} /$ day）treated group．

Table 17．Effect of KSMT on Ilium Proliferating Crypts Counts in Mice after $40 c G y$ Irradiation by Linear Accelerator

	Surviving crypts	
Injury	Ileum	P value
Normal	$32.00 \pm 2.87^{\text {a }}$	
Control	23.86 ± 2.77	
KSMT	23.96 ± 2.14	-

Control：Saline－treated group．

KSMT：Kamisasammaekmundongtang（9．8mg $/ 20 \mathrm{~g} /$ day）treated group．

20 cGy
treated group

40 cGy
treated group

60 cGy treated group

Figure 7．Histological changes of duodenum of Balb \backslash C mice after irradiation．

Control KSMT treated group
Figure 8．Histological changes of duodenum of Balb $\backslash \mathrm{C}$ mice after 40 cGy irradiation．

Control KSMT treated group
Figure 9．Histological changes of jejunum of Balb $\backslash \mathrm{C}$ mice after 40 cGy irradiation．

Control KSMT treated group
Figure 10．Histological changes of ileum of Balb C mice after $40 c G y$ irradiation．

IV．考 察

隀場은 組織이 自律的으로 過剩的 成長을 하는 것으로，이것은 佃體에 대하여 鄫義가 없거나 이 롭지 않을뿐더러 佂常紐織에 대해서 破壞的이다 ${ }^{1-}$
 바이러会感染，遗傳的 要因，慢中⿰㇒⿻土一𧘇刂刺戟 및 突然變異 등에 의하여 iE常棌胞가 일정한 過程을 거쳐
胞는 人體의 抗病能力이 低下된 状態吅代 免疫防響機能이 弱化되어 增殖하게 된다 ${ }^{58 \sim 59}$ ．癌은 生物學 및 生化學的으로 單一 細胞의 遺傳的 變化에서 시작해서 怘性 細胞 클론올 形成하고，正常 生化學的 및 物理的 影響에 의 해 城医이 適切顽 調節 되지 않으며，开常的이고 調和的인 細胞 分化의钢乏이 있ㄱ，不連續的인 成辰斗 身體의 다른 部 （1）로 輔移能을 나타낸다는 特徵이 있다 ${ }^{3-4)}$ ．

韓政學에서 㿋에 대한 記載는 宋代의 《衛谇賽書》 ${ }^{7}$ 에서 最初로 記述되었으나 이미《黄帝內經 $>^{8-9}$ 에서 보이는 積聚，鼓服，腸覃，石瘕，息叓，

石抯，石虧 등 ${ }^{10-(16)}$ 이 오늘날의 癌과 가장 類似한病證이다．

韓醫學에서 癌의 治療는 盆氣養血，寞陰生津，健脾盆氣，補肝益腎，健脾盆腎 등 人體 抗病 能力을增進시키는 扶开培本法斗 清熱解毒，活血化疮，化痰消瘀，理氣消腫 등 癌細胞异 直接 攻撃部는 社

邪法 및 이 두가지 方法娅 配合한 扶正詓邪法 등 ${ }^{3}$ 2－36）으로 區別된다．

幽洋䂏學에서 癌의 治療法으로는 手術㙩法，放射線療法，抗癌化學療法，免疫療法 등 ${ }^{1,3,4,17)}$ 이다．이 중 化學療法은 正常細胞에 대한 毒性作用이 問題 가 됙工工，手術療法은 轉移된 腫瘍의 治療에는 好息的으로 應用될 수 밖에 없고，放射線療法은 局所的 浸潤性 畽場의 治療에는 有效하지만 轉移 畽瘍의 경우에는 適用이 制限的이고，糽斑，表皮脫落 같은 皮膚反應，惡心，嘔叫，嚥下困難，泄准 같은胃腸管 症枵，白血球減少症，血小板減少病，角血 같은 骨膸抑制 등이 副作用으로 招來된다 ${ }^{18 \text {－} 25!}$ 。

이러한 副作用은 韓唒學的으로 正氣掠傷에 該當 하는 것으로 腫場에 의한 正氣廇弱 狀態에서 抗癌劑 및 放射線燎法에 의한 祛邪의 治法을 行하여
培本의 治法에 根據하여 免疫機能을 强化시킴으로 써 抗癌 效果를 上升시키고，抗癌劑 洖 故射線 治療의 副作用을 減少시키고，癌이 生命에 威魯이 되는 가장 큰 原因인 癌細胞의 轉移能을 抑制하는昒究가 韓弽髙 또는 樂針液을 中心으로 多數 淮行되고 있다 ${ }^{26-311}$ ．

腫傷治燎에 있어 扶正培本法의 一種인 㯡陰生津法은 手術中의 體液喪失，放射線治療에 의한 火灼傷赊，化學㙩法에 의한 嘔吐와 泄寝，末期患者의感染發熱 등으로 造成된 陰津損傷의 狀態浔 恢復 시키려는 B 的으로 應用되고 있다 ${ }^{32,37-391}$ ．이에 著者志《溫病條辨•秋燥》 ${ }^{40}$ 에서＂燥傷肺胃陰分 或熱或咳者 沙殄麥冬湯主之＂라하여 燥熱邪克 肺胃의陰分이 損傷되어 나타나는 症狀을 治療하는 處方 으로서 腫痬治療에서는 주로 氣陰損傷型 肺癌에多用되고 있는 ${ }^{32,41 ~ 42)}$ 沙蓼麥門冬湯에 이미 抗癌效果가 認定된 白花蛇舌草，仙鶴草，魚腥草를 加味한加味沙䒮麥門冬湯의 抗癌效果外 放射線副作用 抑制效果를 實驗的으로 紏明하고자 하였다．

加味沙颒麥門冬湯의 構成 樂物约 本草學的 效能 을 살펴보면 沙莩，玉竹，麥門冬，天花粉은 養陰澗燥生津하여 ${ }^{60 \sim 61)}$ 모두 肺癌을 비롯한 各種 癌에 使用되고 있으며 ${ }^{62-65)}$ ，甘草，兒扁豆는 健脾和中，調和諸樂하여 ${ }^{60 \sim 611}$ 各種 消化器癌에 使用되며 ${ }^{(64 \sim 66)}$ ，

桑葉은 疏散風熱，清肺潤燥，清肝明目하고 ${ }^{611 \sim 61)}$ ，白花蛇舌草结 清熱利瀑，解毒消畽故여 ${ }^{60 \sim 61)}$ 消化器癌，淋巴腺癌을 비롯한 各種 癌에 使用되며 ${ }^{62 \sim 68 \%}$ ，仙鶴草는 收斂止血，戴㠊，止痢，解瑇郆乐 ${ }^{60-61)}$ 出血症，惡性腫瘤 등에 使用되며 ${ }^{63-64,661}$ ，魚腥草는 清熱解
 등에 使用된다 ${ }^{62,64-66,69)}$ ．

먼저 抗癌性을 探索하기 위하여 in vitro에서 數種 癌細胞에 對한 細胞毒性效果，DNA topo－ isomerase I assay와 A549 澏株의 複分基質에 대한 附着祖纵效果 등을 살펴보았고，in vivo에서 S－180이 移植된 ICR 생쥐의 生化比，CAM assay 를 通한 血管形成 抑制效果，pulmonary colonization assay를 通한 抗轉移 效果를 測定하 였으며，放射線 副作用 抑制 作用을 紏明하기 위 하여 放射線이 照射된 생쥐의 脾勝 免疫緋胞 變化，血洨變化，十一指腸，空腸，回腸的 組織變化 를 살펴보았다．

抗澏效果邕 觀察하기 위하여 實拖한 SRB法 ${ }^{45}$～ ${ }^{47}$ 에 의한 細胞毒性 測定에서 P388，A549， B16－F10 듬의 癌株에 對한 細胞毒性은 微傢하였 다（Table 2－4，Figure 1－3）。 이는 加味沙衫麥門冬湯이 주로 稂陰潤燥薬으로 構成되어 䣓邪法冽 活用되는 清熱解毒，活血化疮，利濕祛㷋，軟堅散結，以瑇攻毒站는 薬物 ${ }^{32-33)}$ 이 相對的으로 적세 m味 되어 有意性 있는 細胞毒性을 보이지 돗한 것으로 생각된다．

DNA topoisomerase는 紐胞內 DNA의 super－ coiling state를 調節하는 酵素로서 DNA에서 일어 나는 複製，轉寫，再組合에 至大妾 影響을 미친다． 즉，DNA topoisomerase는 DNA의 supercoiling state를 調節하므로써 複製，轉寫 등의 initiation의效率性에 影響을 주며，이러한 過程들이 進行되는段階에서 發生되는 DNA topological 問題를 解決 해 준다．이와같이 DNA topoisomerase는 細胞队 DNA의 여러 機能에 必須的으로，그들의 抑制劑는抗生，抗癌剂 開發 의 目標 ${ }^{70 \sim 71}$ 가 되고있다．

이러한 DNA topoisomerase는 工 觸媒機作에 따라 두 形態로 分類되는데，그 中 topoisomerase I 은 DNA duplex의 한 가닥을 phosphodiester
bond에서 끊고，械断된 한끝을 상대편 DNA 가닥 을 軸으로 한바퀴 问轉시킨 後，끊어졌던 부분을 다시 湩結한다 ${ }^{723}$ 1990年代 以前外지 DNA topoisomerase II 抑制辣는 많이 알려져 있지만 D．NA topoisomerase I 抑制製는 camptothecin외에 는 불로 알려져 있는 것이 없다 ${ }^{711}$ ．

이에 明棟沙慈麥門冬湯을 利朋站 topeisomerase I assay에서 DNA만을 废明한 惯驗群은 대부분 supercoiled form으로 나타났고，DNA에 1 unit topoisomerase I을 㝿理站 對照群은 모두 relaxed form으로 棘換되었으나．이에 比해서 川味沙苳麥
醂絜의 浱性을 抑制하였다（Figure 4）이같은 結果 는 加味沙蔘麥門冬湯 이 topoisomerase I 活性 抑
 으로써 抗癌效果를 나타낼 수 있을 것으로 보이나湖別䔩物에 대한 棇时 역시 必岀할 것으로 보인 다．

또한 郎治療에 있어서 가장 큰 問題點으로 대두 되고 있는 轉移를 效果的으로 抑制할 穴 있는지를評價하기 위한 in vitro에서의 A549费株의 複台

 $\mathrm{mg} / \mathrm{ml}$ 의 高濃度에서 50.7% 의 附差温小标苇 나타내 어 川味㡽子地黄湯 ${ }^{731}$ ，桃紅收物湯加減 $j^{7{ }^{74}}$ 이 같은濃度에서 보인 $33.7 \%, 39.7 \%$ 보다 效果利으로 나타 났다．

S－180이 移植된 생쥐를 利用한 坐存比 湘定에付 對照样은 膈株 移植 後 平均 生存日数乾 18.8 4인데 비하여，加味沙蔘麥門冬湯 投與群은 23 山 로，生存比（T／C\％）가 122% 로 나타나 微弱하게 生的을 延長하였다（Table 6）。 이는 癌䋚胞가 移植된動物에 대한 加味沙蔘麥門冬湯 의 生命延長效果를小動物을 利用竔여 評價한 것으로 向後 大動物 및人體에 대한 臨床研究가 必要할 것으로 思料된다．

血管形戊（angiogenesis）은 新生血管（new blood vessel）이 生成되는 根本的인 過程 ${ }^{75}$ 으로써 이러한新生血管约 形成号 胎盤解 形戎，初期解 embryonic development 동안에 embryonic membrane의 形城 ${ }^{761}$ ，生殖，傷處回復外 再生 ${ }^{\text {7）}}$ 등

과 같은 生理學的 状態에 있어서 必需的인 適程으 로 매우 精두하게 調節된다．

또한 血管形成은 㿋의 战辰（growth）가 invasion， metastasis에 重要한 段喈로 알려져 있다．즉，癌 은 成度을 위해 새로운 毛組血管을 자기 쪽으로

管을 利肋䇎 偾環器를 통하여 肝，肺，骨租織 등응
管이 形成되지 않으면 大部分的 癌細胞比 南徑 1 mm 以 을 자라지 돗하며，다른 곳으로도 輔栘 되지 못한다．그러나 일단 새로운 微組血管이 形成되년，이 猺紐胞는 急速히 자라게 되며 筧娄分 의 供給源인 새로운 微細血管이 그 周阉를 둘러 싸工 結雨 㬍移가 일어나게 된다 ${ }^{791}$ ．따라서 angiogenesis의 過程을 抑制하면 嵒을 治撩할 수 있으리라는 것을 豫想站 수 있으며＇陵際로 1971年 에 Folkman ${ }^{801}$ 예 의해서 처음으로 antiangiogenic therapy가 癌治療를 위한 하나의 意味있는 于f段으 로써 登場한 以來로 많은 所究가 이루어 지고 있 다．

지금까지 抗血管形成 硎究에 널리 使用되고 있 는 screening j法觡로는 in vivo 로써 受精卵의鵎㢈（Chick embryo）의 䄉毛尿膜（chorioallantoic membrane：CAM）을 이용한 䄉毛永膜 分析法 （CAM assay）${ }^{811}$ 과 토끼나 줘의 角膜（Cornea）을 이 용하는 Cornea assay ${ }^{82}$ 외에 Intradermal assay ${ }^{83)}$ ， Disc angiogenesis assay ${ }^{841}$ ，HCP assay ${ }^{871}$ 등이 있 다．이주万 CAM 은 䍃脭의 弡生 3－4 4 째에 生成되 는 还外膜（extraembryonic membrane）으로써 毛細血管覀 다른 血管들을 뚜렷이 品別할 수 있어서血管移動㣉 形態形成에 影響을 击는 村子琶 研究 하는데 適當한 모델로 使用될 수 있으나 試料의渗透壓， pH ，素性：등에 의 해 CAM을 收縮시키거 나 炎症을 誘發할 수 있으므로 汰意를 기울여야한 다．CAM assay 를 通한 血管形成抑制 實驗에서貝驗에 使用된 15 估의 受精睤中15個에서 血管形成이 抑制되어 33% 의 血管形成 抑制效果를 보였 다（Table 7）．

抗淒移 1＂⿸⿱⿰㇒一丨二⿱⿱亠䒑十⺝刂用에 대한 動物實驗으로서 B16－BL6黑色腫을 利用衣 pulmonary colonization assay ${ }^{5}$－ 50 总 通站 肺癌轉移 抑制賽驗에서 對照群에 比竍
 타냈다（Table 8）．

政射線治療的 副作用으로 造血 組織이 损偒乐 면，争靕 및 免疫機能이 低下되어 白血球減少应，
 되는데 ${ }^{81}$－891，이러한 것들은 患者의 삶의 黟을 低下시키고 심한 경우는 玫命的인 秙果致 가对오며，

 하므로 清熱林腎，健脾和胃空 综末承 하고，未期에
 E：로 하고 있다 ${ }^{3233}$

放射線 副作用 減少效果에 대한 政究空 살펴보 면 永 ${ }^{901}$ 의 數種 韓樂劑의 放射線 保護作用에 대한
後의 脾臓細胞增寘训 비치는 效果에 대한 侀究，台 ${ }^{731}$ 의 加味地黃湯，加味四君子湯 咢 加味青子地黄湯의 故射線 副作用 减少效果에 대한 㑬究가 았는 데， F 로 人唓의 免疫機能 低下을 防止：하沪데 초 점을 두고 있다．

림프구는 末梢血液 白血球中 正常에서는 약 20% 를 차지하며 機能上 대개 T 림프구， B 림프구 및 null 細胞로 分類하고 있는데 ${ }^{95}$ ，現在 腫場免誜
 으로 알려져 있다．最近에는 립픅ㄱㄱㅖ 租胞의 在佰扎原올 特買的으로 認識하는 단클론항체를 利用 하여 T 립프구를 다시 助力／誘發（helper／inducer，

CD4＋）細胞头 抑制／細胞 傷實（suppressor／ cytotoxic， $\mathrm{CD8}+$ 組胞로 分類하로 있는데， $\mathrm{CD} 4+$稩胞它 抗原을 B 립프구에 傅淁하여 抗澧 生成虽
 같은 非价常的이 細胞邕 直接 唋去站 수 있는 機能이 있는 것으로 朝告되고 있다 ${ }^{9 n \prime}$ ．

이에 FACS를 扴用하여 加減沙蔘婪門冬湯이 脾
 는데，Figure 9－12에서 보는 바와 같이 饮时線 照射로 인하여 䊀照样에서는 T cell， T helper cell， B cell，macrophage가 怗常群에 비하여 湤少하였
 하여 T helper cell，B cell，macrophage가 ㅁ．․ㅜ if

 있읍을 알 수 있었다．

凉뇌지 않았다（Table 13－14）．

呚射線 照射의 適定 線量을 供坐新기 위하여 照
 40 cGy 및 60 cGy 를 照射한 實驗库 에서는 모두 II常群에 비하여 jejunum villi의 特落이 나타났고， 특히 $40 \mathrm{cGy}, 60 \mathrm{cGy}$ 에서는 Figure 15 에서 보는 바 와 같이 jejunum villi의 fusion이 이루어지면서 異楽的인 肥厚 形態가 나타나고 villi 數가 크게 減少하였다．

이에 40 cGy 를 貫驗 放射線量으로 定하여 實施 한 故射線 照射 後 duodenum，jejunum 딫 sleum
 은 duodenum과 ileum의 crypts 變化는 仿意性이 없었으나 jejunum에서는 有意性 있네 crypts의 脘落이 抑制되었다（Figure 16－21，Jable 15－17）
胞挂性은 없었고，抗癌，抗轉移 作用이 있으며 放射線 副作用 抑制 效果가 있는 건으로 나타났지만

向後 補至 實驗 및 臨床硏究神 必要하리라 思料된 다

V．結 論

加味沙美娄門冬湯胫 抗腫疡活性斗 放射袙 副作
䊾䛔을 얻었다．
 은 없었다．

2．DNA topoisomerase I assay에서는 Hit 萁한抑制效界童 보였다．

3．A549 癌株의 複合稩胞外氣質에 대한 附着沮 （f）效果에서 淟度化存的으로 附着沮上作用을 보였 다．
 122% 로 19 意性은 나타나지 않았다．

5．CAM assay에서는 33% 의 血管形沿 抑制作：用을 보였다．

6．肺癌軵移 抑制實驗에서 22.5% 의 pulmonary corony 抑制 效果롤 보였다．

7．放射線 照射後 脾臟解 免疫相胞 變化充 放射線으로 인해 線著히 減少된 對照群에 비하여 T helper cell，B celli과 macrophage가 $1 ;$ 意性있게增加되었은白血球，血小板은 變化가 없었다．

8．放射線 照射 後 小晹의 組織變化에서 對照群 에 비하여 jejunum에서 crypt의 肸落과 fusion이 적게 나타났다．

參考文樀

1．서울대학표의 과대학：腫椖學，서울，서울大學校出版部，p．137，pp．1～3，203～204，213～215， 22 5～234， 1989.

2．金春元：病理學，서울，新光出版社，p．84， 1989.
3．Bennett JC，Plum F：Cecil Textbook of Medicine（20th edi．），W．B．Saunders co．， Philadelphia，pp． $1004 \sim 1008$ ，1036～1049， 1996.

4．Isselbacher KJ，et al．：Harrison＇s Principles of Internal Medicine，Vol．2．New York， McGraw－Hill Inc．，pp．1814～1840， 1994.

5．統計恶：死亡原因統計年譜，서울，統計廳， pp． $21 \sim 28$ ， 1997.

6．이문호：최근 한국의 질병변천，대한의학협화 지，32（3）：283～290， 1989.
版明，pp．1－2， 1988.
然 p．78，219，卜卷 p．37，48，142．255，326．391， 1982.

9．干淇圖：黃帝内經素間，春秋朋版汸，p．71，237， 271， 1988.

10．金定湾：東䂐臨床要覽，서울，劳苑堂，pp． 25 3～254， 1981.
馆，pp．302～307， 1982 ．

12．葉銘淇：治癌中薬及處方，臺北，花聯出湤社， pp． $1 \sim 10,1986$.

13．方薬中：寛用中㗨內科學，上海，上海科學技術出版社，pp．12－16，621－635， 1986.

14．樍伯華：寞用中䣽外科學，上海，上海科學技術出版形，pp．148－149， 1985.

15．郎偉君：抗癌中薬一下开，北京，中國嫛藥技術出版社，pp．5～17， 1994.

16．上海中醫學院：中國外科學講義，香港，醫檪衛生出版社，pp．95～101， 1973.

17．Holleb AI，Fink DJ，Murphy GP： American Cancer Society textbook of Clinical Oncology，The American Cancer Society Inc．， Atlanta，pp．80～98，589～591， 1991.

18．金束照 외：抗癌劑 및 故射線 副作用에 對한韓方療法，東醫病理學會誌，9：239～264， 1994.

19．Grunberg SM：Control of chemotherapy induced emesis．N Engl J Med 329：1790～1796， 1993.

20．Mitchell EP：Gastrointestinal toxicity of chemotherapeutic agents．Sem Oncol 19：566～ 579， 1992.

21．Morrow GR，et al．：Progress in reducing nausea and emesis．Cancer 76：343～357， 1995.

22．Blomgren H ，et al．：Effect of radiotherapy on blood lymphocyte population in mammary carcinoma．Int J Radiant Oncol Biol Phys 1：177， 1976.

23．Stratton JA，et al．：A comparison of the acute effects of radiation therapy，including or excluding the thymus，on the lymphocyte subpopulations of cancer patients．The Journal of Clin Invest $56: 88,1975$.

24．Job G，et al．：The influence of radiation therapy on T－lymphocyte subpopulations defined by monoclonal antibodies．Int J Radiant Oncol Biol Phys 10：2077， 1984.

25．Idestrom K ，et al．：Changes of the peripheral lymphocyte population following radiation therapy to extended and limited fields． Int J Radiant Oncol Biol Phys 5：1761， 1979.

26．李風雨：防荘湯의 抗腫場效果外 免疫反應에閣呫 書驗的做究，大韓煵醫學會誌， 15 （1）：245～263， 1994.
大學校 韓醫學硏究所 論文集，3（2）：315～321， 1995 ．

28．金賢洙 외：蔁莖湯，加味营茥湯的 B16－F10 에 對한 抗畽瘍效果里 組織變化，大韓韓豚學會誌， 16（2）：365－387， 1995.

29．李宇彬 외：補中益氣湯對 cyclophosphamide抗㾇活性和毒性的影響，中薬雜誌 3：50， 1989.

30．孫甲鏑 외：柴胡 茵陳禹 肝癌細胞에 對한 抗癌活性 및 抗癌劑阧의 相乘效果，大韓韓䣽學會誌， 16（2）：414～432， 1995.

31．張代釗 외：中醫薬對畽瘤放化療的增放減毒作用，中國中西結合雜誌，12（3）：135～138， 1992 。

32．惪琳种 외：中醫治癌大成，北京科學技術诂版㖣，北京，pp．111～112，122～143，232～233，245， 246，470～472，p．484， 1995.

33．李佩文：中西醫臨床腫瘤學，中㚜中幚薬代版社，北京，pp． $101 \sim 124,134 \sim 154,1996$.

34．郭瑞林：扶正祛邪與腫瘤免疫，實用中无䂐結合雜誌，4（4）：205～208， 1991.

35．李佩文：中䂏診治腫䗜的現状興展望，北京中㞺學院學報，15（3）：146～151， 1992
雜誌，7：33～34，1992．

37．張毓坽：挨陰生津法在腫瘤病治療中的應用，浙：I吅醫學院學報，14（1）：20，1990．

38．陳柄旗：扶正法在腫瘤治撩中的臨床蓮用，浙汇中瑿學院學報，17（4）：20～21，1993。

39．陳 斌 외：㹄氣養陰湯合抹化療治療小細胞肺癌26例治效觀察，實用中西智結公雜読，4（4）：204， 1991.

40．赑 瑭：溫病條辨，石家莊，河北科臬技術率版神，pp．63～64， 1993.

41．洪素闌 외：實用中醫呼吸病學，北京，中閾中䂐樂出版柿．，p．397， 1995.

42．䒾基采 외：肺癌의 變䛬斗 治有에 대한 文鬳的 考察，大田人學校 韓醫學汧究所 論文集， 5（2）：243～269， 1997.

43．Scudiero DA，et al．：Evalulation of a soluble tetrazolium／formazan assay for cell growth and drug sessivity in culture using human and other tumor cell lines．Cancer Res 48：4827－4833， 1988.

44．National Cancer Institute：Cell Culture Screen，KB，Protocol 1600，Cancer Chemother Res（part 3），3：17， 1972.

45．Rubinstein LV，et al．：Correlation of screening data generated with a tetrazolium assay（MTT）versus a protein assay（SRB） against a broad panel of human tumor cell lines， Proceedings of the American Association for Cancer Research，30：2418， 1989.

46．Skehan P，et al．：New colorimetric cytotoxicity assay for anticancer－drug screening． J Natl Cancer Inst 82（13）：1107～1112， 1990.

47．Skehan P ，et al．：Evaluation of colorimetric protein and biomass strains for assaying in vitro drug effects upon human
tumor cell lines，Proceedings of the American Association for Cancer Research，30：24：36， 1989.

48．National Cancer Institute U．S．A．：Cell culture technical procedures， 1972.

49．Spjut RW，Perdue RE；Plant folklore，a tool for predicting sources of antitumor activity． Cancer Treat Rep 60：979， 1966.

50．Liu LF，et al．：Cleavage of DNA by mammalian DNA topoisomerase II．J Biol Chem 256（4）：15365， 1983.

51．Cheiberg MK，et al．：Type IV collagen－mediated melanoma cell adhesion and migration：Involvement of multiple，distant domaines of the collagen molecule Cancer Reserch 49：4796～4802，1989

52．Hellmann K，Carter SK：Fundamentals of cancer chemotherapy，McGraw－Hill Book Company，New York，pp．132～140， 1987.

53．Tanaka NG，et al．：Inhibitory effects of antiangiogenic agents on neovascularization．Exp I＇athol 30：143－150， 1986.

54．Humphries MJ，et al．：Oligosaccharide modifications by swainsonine treatment inhibits pulmonary colonization by B16－F10 murine melanoma cells，Proc．Natl．Acad．Sci．USA． 83：1752～1756， 1986.

55．Martin J，et al．：Inhibition of experimental metastasis by castanospermine in mice： Blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors．Cancer Reserach 46：5215～5222， 1986.

56．Fidler IJ：General consideration for studies of experimental cancer metastasis．Methods Cancer Res，47：3239～3245， 1987

57．金井泉 외：臨床檢査法提要，서울，高文形， p．242，249， 1984.

58．Bridges BA：Short－term screening tests for carcinigens．Nature 261：195～200， 1976.

59．Heidelberger C ：Chemical carcinogenesis． Ann Rev Biochem 44：79～121， 1975.

60．李時珍：本草綱目（上冊），人民衛生出版武，北京，pp．691－692，710～711，721～723，1033～1034， 2067～2068， 1982.

61．全國韓稪科大學 本草學教授 予装：本草學，永林刑，서울，pp．145－146，65－166，212－213，22 $3 \sim 224, ~ 385 \sim 386,539 \sim 541,587 \sim 589,593 \sim 594$ ， 1991.
 рр．356～359，p．365， 1980.
 $29,32,50,73,1990$.
 pp． $96 \sim 98,119 \sim 122,126 \sim 128,188 \sim 190$ ，192～ 194，282－283， 1987.
 pp． $100 \sim 103,1990$.

66．委们崇：抗癌食樂本芹，中國食品出版刑， pp．110～115，483－488， 1989.
兵에 關故 栁究，人田大學校 韓醫學研究所 論文集， 4（2）：273～297，1996．

68．金與動：向花蛇舌草로북터 分離站 ursolic acid의 白然殺書效果와 抗轉移作用，大时大學校 喡䁈學研究所 論文集，5（2）：523～533， 1997.

69．侐鉉雨 외：金銀花 및 魚腥草枝 人體 癌組胞株에 미치는 影響，東醫病理學會誌， $10(1): 126 ~$ 132， 1996.

70．Arpa PD，Liu LF：Topoisomerase－ largeting anticancer drug．Biochim Biophysica Acta 989：163～177， 1989.

71．Champoux JJ：Mechanistic aspects of type－I topoisomerases，In Cozzarelli NR \＆ Wang JC（eds），DNA topology and its biological effects，Cold Spring Harbor Laboratory Press， Cold Spring Harbor，pp．217～242．

72．Drlica K，Franco RJ：Inhibitors of DNA topoisomerases，Biochemistry 27（7）：2253～2259， 1988.

73．金東熙：加味地黃湯，加味四君子湯 哭 加味君子地黃湯䄈 抗腫瘍活性斗 放射線 副作用 減少效果，大田大學校 大學院， 1998.
74．趙漢震：桃紅四物湯加減方㐿 抗癌 哭 抗轉移效果에 關한 例究，大田人學校 大學院， 1988

75．Folkman J：in Biologic Therapy of Cancer（DeVita V，Hellman S，and Rosenberg SA，eds），J．B．Lippincott Co．，Philadelphia， pp． $743 \sim 753$ ．76．Feinberg RN，Sherer GK， Auerbach R（eds）：The Development of the vascular system，S．Karger，Basel， 1991.

77．Knighton DR，et al．：Wound healing angiogenesis：indirect stimulation by basic fibroblast growth factor．J Trauma 30rSuppl． 12）：S134～144， 1990.

78．Folkman J：Anti－angiogenesis：new concept for therapy of solid tumors．Ann Surg 175：409～416， 1972.

79．Fidker IJ，Ellis LM：The implication of angiogenesis for the biology and therapy of cancer metastasis．Cell 79：185～188， 1994.

80．Folkman J：Tumor angiogenesis： Therapeutic implications．N Engl J Med 285：1182～1186， 1971.

81．Tanaka NG，et al．：Inhibitory effects of antiangiogenic agents on neovascularization．Exp Pathol 30：143～150， 1986.

82．Gimbrone MA，et al．：Tumor growth and neovascularization：An experimental model using the rabbit cornea．J natn Cancer Inst 52：413～ 427， 1974.

83．Sidky YA，Auerbach R：Lymphocyte－ induced angiogenesis：a quantitative and sensitive assay of the graft－vs．－host reaction．J Exp Med 141：1084～1100， 1975.

84．Fajardo LF，et al．：The disc angiogenesis system．Lab Invest 58：718～724， 1988.

85．Schreiber AB ，et al：Transforming growth factor alpha：a more potent angiogenic factor than epidermal growth factor．Science 232：125

0～1253， 1986.
86．Lichtman M ：The ultrastructure of the hemopoietic environent of the bone marrow．A review Exp Hematol 9：391～410， 1981.

87．Gray R，et al．：Methods in immunotoxicology．Vol．1，New York，U．S．A．， Wiley－Liss，pp．197～210， 1995.

88．Makinodan T，James SJ：T cell potentiation by low dose ionizing radiation； possible mechanism．Health Physics 59：29～34， 1990.

89．Yarilin AA：Action of ionizing radiation on lymphocytes（inhibition and activation effects）． Immunology 5：5－11， 1988.
 1200 例燎效分析，新中醫，22（9）：35－37，1990
91．李秋貴 외：中矮薬配合放痶證治垻律的探討，中硻雜誌，28（5）：28－30，1987．

92．赤怕簐 외：只一純防治腫瘤放化療後副反應的經驗，遼寗中醫䌖誌，20（11）：11～12， 1993 。

93．邱琴珠：治療癌症放療後血向細胞下降的體會，浙汇中智雜誌，1：36，1991．

94．达廣寧 외：扶正增效合劑對食营癌放射增敏的臨床和賽驗研究，中華腫瘤雜誌，15（1）：79， 1993.

95．Hsu HY，Hau DM，Lin CC：Effects of Kueipi－tang on cellular immunocompetence of γ －irradiated mice．American J Chinese medicine， 11（2）： $151 \sim 158,1993$.

96．李綾基：數種 韓薬劑计 생쥐의 骨隨 및 脾臟細胞神 造血促進斗 放射線 防禦에 미치는 影響，慶藇大學校論文集， $19(2): 157 \sim 173.1996$.

97．崔㤠勳：放射線 照射後의 N：GP（S）mouse脾臓細胞增殖에 미치는 補中笽氣湯斗 四六湯의 敏果，第1回 東洋醫學 國際㑒포지움論文集，pp．110～ 239， 1995.

98．Schulof RS，et al．：T－cell ahnormalities after mediastinal irradiation for lung cancer． Cancer 55：974， 1985.

99．Rotman M，et al：Monocytosis：A new observation during radiotherapy．Int J Radiant Oncol Biol Phys 2：117， 1977.

[^0]: ＊大田大學校 韓塸科大學！肺系內科學数室

