麋香•牛黄•三七根 複合方이 高脂血症 哭 腦損傷에 미치는 影響

朴重陽•金炳卓＊

ABSTRACT
The Effects of SWS（Sahyang • Woohwang • Samchilkeun）on Hyperlipidemia and Brain Damage

Park Jung－yang，Kim Byeong－tak

For the evaluation of the effect on SWS，experiments were made on hyperlipidemia induced by hypercholesterol diet，inhibitory reaction to human platelet aggregation，pulmonary thrombosis induced by collagen and epinephrine，global cerebral ischemia induced by KCN ，brain ischemia induced by MCA occlusion，cytotoxicity of PC12 cells induced by amyloid β protein（25－35），and NO production in RAW cells stimulated by lipopolysaccharide．

The results were obtained as follows：
1．In the experiment on hyperlipidemia，the level of serum total cholesterol，phospholipid，and LDL－cholesterol were significantly decreased while the level of triglyceride，VLDL－cholesterol，and HDL－cholesterol had no significant change．

2．In the experiment on inhibitory reaction to platelet aggregation，SWS inhibited platelet aggregation induced by $\operatorname{ADP}(36.05 \%$ ），by collagen（ 20.4% ），and by thrombin $(0.6 \%$ ）．

3．In the experiment on pulmonary thrombosis induced by collagen and epinephrine，the protective effect was found $(37 \%$ ）．

4．In the experiment on global cerebral ischemia，coma duration induced by KCN changed insignificantly．

5．In the experiment on MCA occlusion，the change of neurologic grades on hind limb was significant only after the operation．Besides brain ischemic area and edema ratio were significantly decreased．

6．In the experiment on cytotoxicity of PC 12 cells induced by amyloid β protein，the significant protective effect was found as concentration increases．

7．In the experiment on NO production in RAW cells stimulated by lipopolysaccharide， NO was significantly decreased．

According to the results，it is expected that SWS might be effective on hyperlipidemia and brain damage

[^0]
I．緒 論

最近 우리나라에서는 食生活의 變化外 老䊆人口 의 增品的 따라 高血幉，腦齐中 등의 發病痃이 增 쎄하고 있어 深刻站 iㅏ會問題泋 되고 있는데 ${ }^{1.23 ;}$ ，

截되고 있남．
 말하는 것으로 ${ }^{8-101}$ ，血㴖脂質의 1恶线分은 cholesterol，phospholipid，triglyceride，free fatty acid 동으로 이루어져 있으며 ${ }^{8-113}$ ，冠状動脈이나 腦和管 乒咞 動脈硬化讨 進行吴 促進人켜 狹心病，心肪梗塞 및 膍桇中을 誘發하는 ＊－11
形成就 겻으로 心肳 등에서匕 狹心症，心直泾 및動脤硬化邕 䝘生시키며，腦에서는 腦血怪 등의 胹向管疾患을 誘䯴하는 것으로 알려져 있다 ${ }^{\text {612－14 }}$ ．
的 抧傷이 惹起되어 갑작스런 愚識障碍와 連動，感鱟，从射機能의 障磾를 일으키는 것，1215－17으로
阤은 風 ${ }^{18197}$ ，火 $火^{209}$ ，氣慮 ${ }^{211}$ ，瀑痰 ${ }^{221}$ ，斿血 ${ }^{23.41}$ 등으로要約되는데，中風初期에는 化痰開骰，［回陽固脫法 아，恢復期에는 平肝化㷋，益氣活血，清肝䳆火，滋
 3，4，5253
人事不省 등에 救急蘇生의 目的으로 活用하五 있

應用하고 있다 ${ }^{261}$ 。 또한 牛黃斗 榑香의 沘合投與는腦損偒의 昏㸺，㭔吸，生存時間에 有效하다 ${ }^{311}$ 는 점 에서 이들 樂物에 活血祛瘀의 作用을 가지고 있는三七根을 加한 處方은 中風治療에 活用慣値가 있 을 것으로 思料된다．

最近 中風에 關聯된 韓醫學的 研究足 童 등 ${ }^{32-38 \%}$ 은 高血黡 및 高脂血症에 대하여，安 등 ${ }^{39-42)}$ 은 血

桿에 관하여，李 둥 ${ }^{43-497}$ 은 腦損傷에 대하여 實驗的 으로 有效함을 報告한 바 있으나 憲秀．件黄，三比根 複合 \boldsymbol{j} 이 高脂血症 및 腦摃傷에 미치는 影響 에 對한 報告는 아직 接하지 못하였다．

이에 著者는 高cholesterol食佴로 誘發한 家鬼의高脂血症 모델에서 血清脂質吴 测定斿여 扰脂血效坚总，vitro에서 血小㤢凝集 抑㫼效果终 vivo에서肺塞栓 唀発 向鼠线 抗血怪作用을，KCN을 利刖한

皘 및 浫畽紞을 測定하여 腦循環代謝의 收善效果 를 살퍼보았고，amyloid β protein으로 誘導된 組！胞在性 保謢效果头 lipopolysaccharide로 誘發한 RAW 細胞의 NO production에 대한 抑制效果를躍然站的 住意한 結果를 언었기에 報告하는 바이 L．

I．實 驗

1．材料 哭 動物
1）材料
要枚 附屬韓方病院에서 購入하여 精選한 것을 使用하였으며，複合方 4 g 을 基本으로 한 用量比는 나음과 같다．

The Composition of Sahyang，Woohwang， Samchilkeun（SWS）

韓樂名	生藥名	用量比
等	香	Moschus
生	2	
革	Bobis Calculus	3
匕极	Pseudoginseng Radix	4
Total amount		

2）動物

本 實驗은 韓國化學研究所（대전，한국）에서 供給 받은 體重 180～220g의 Sprague－Dawley系 雄性白鼠芑 局所腦虚血 誘發 實驗에， $20 \sim 25 \mathrm{~g}$ 의 ICR （International Cancer Research）훈 생쥐를 KCN誘發 全腽虚血神 肺塞栓 實驗에 使用하였으며，大

韓翼驗動物센터에서 體重 $1.5 \sim 1.8 \mathrm{Kg}$ 의 Neuzealand white采 家兎를 購入하여 高脂血症

 히 供給하였고 溫度 $23 \pm 2^{\circ} \mathrm{C}$ ，相對濕度 $50 \pm 10 \%$ ，照明時間 12時間（07：00～19：00），照度 150～300
體重笑化가 一定학 健康한 動物만을 選別部稹菑験에 使用歼였다．
3）㮴液의 調製

水에 稀蠌竔여 使用하였다．

4）試薬 및 機器

 U．S．A．），KCN（potassium cyanide，Sigma Co．， U．S．A．），RPMI 1640 （Hyclone Inc．，U．S．A．）， 10% fetal bovine serum（FBS，Sigma Co．．U．S．A．）， dulbecco＇s phosphate buffered saline（DPPBS－A， Sigma Co．，U．S．A．）， 5% horse serum（Gibco－BRL， U．S．A．），antibiotics（Sigma Co．，U．S．A．），amyloid β protein（25－35，Peptron ，한국），trypsin－EDTA （Gibco－BRL．U．S．A．），sulforhodamine－B（SRB， Sigma Co．，U．S．A．），penicillin－streptomycin （Sigma Co．，U．S．A．），normal saline（중외제약．한 국）， $0.1 \% \mathrm{~N}$－ethylene diamine dihydrochloride （Sigma Co．，U．S．A．）， 1% sulfanilamide（Sigma Co．．U．S．A．），phosphoric acid（Sigma Co．，U．S．A．） 등을 使用하였다．
機器는 express 550（Ciba－corning Co．， U．S．A．），serum separator（녹십자，한국），minos－ ST（Cobas Co．，France）， CO_{2} incubator（VS－9108 MS，vision scientific Co．，Korea），clean bench （KMC－14001，vision scientific Co．，Korea）， centrifuge（Beckman Co．，U．S．A．），inverted microscope（Nikon Co．，Japan），bright microscope（UFX－DX，Nikon Co．，Japan）， elisa－reader（Emax，U．S．A．），rotary vaccum evaporator（Büchi 461，Swiss）．deep
freezeriSanyo Co．，Japan），freeze dryer（Eyela Co．．Japan），autoclave（Hirayama，Japan）， micropipet（Gilson，U．S．A．），autostill WG25 （Yamata，Japan），titer plate shaker（Labline Ins．， U．S．A），culture flask（Falcon 3024，U．S．A．）， multwell plate（ 96 －well，Faicon，U．S．A．），conical tube（Falcon，U．S．A．），disposable pipet（5m．， 10 ml ， 25me．Falcon，U．S．A．），syringe filter（ $0.25 \mu \mathrm{~m}$ ， Falcon，L＇SA．）등을 使用하였다．

2．f_{j} 法
1）商cholesterol食们에 의한 高北血病：涹發 䨘㓩
（1）高脂血疾誘發 方法
高脂血痖 모델은 Naito 둥의 万法测：을 修正하여 만들었다．족 3% cholesterol을 包含한 高脂肪性
 록 하였다．
 하여 3000 rpm 에서 15 分間 遗心分離하였으며 total
惯驗에 使用午였다．
（2）投興力法 呆 投與量
正常群은 高脂肪性 飼料가 包宂되지 않은 …般鲇料至 鲇育되었으며，檢液 대신 生理食䭆水总 經山投與郖였고，對照群号 高脂肪性 鲇料（ 2% cholesterol）로 鲇育되었으며 嬹液 대신 同量의 生理食臨水总 經口投與 하였으며，惯䮰群足 檢液 $0.24 \mathrm{~g} / 1.5 \mathrm{~kg} / \mathrm{day}$ 을 生理食腎水 $3 \mathrm{~m} \ell$ 에 容解시켜 1 日

（3）採血 및 血清分離方法
探血은 最終 檢液 投與 후 家寃邕 ether号 麻醉
注射器 23gauge（Samwoo Co．，한국）로 取하였다．採血한 血液을 3000 rpm 에서 15 分間 遠心办離하여血清을 分離하였다．
（4）血清成分衫測定
血清中 total cholesterol，triglyceride， phospholipid，HDL－cholesterol，LDL－cholesterol， VLDL－cholesteroi의 測定은 自動生化學分析機
（Express 550，Ciba－corning Co．，U．S．A．）를 使用 하여 測定하였으며，訳算式 ${ }^{51)}$ 은 다음과 같다．
LDL－cholesterol $=$
total cholesterol－（HDL－cholesterol＋triglyceride／5）
VLDL－cholesterol＝
wtal cholesterol－（HDL－－cholesterol＋IDL－cholesterol）

（1）自小板凝集抑制的 對站 貝驗（in vitro）
17n小板 凝藮 抑制能首 platelet aggregometer 를

速心分離器（Beckmann Co．，U．S．A．）에서 1000 rpm ，
 을 취해 L動 血球計算機，Minos－ST（Cobas Co．
 추어 $\operatorname{PRP}($ platelet rich plasma）로 使川하였고，
 여 f層液을 $\mathrm{PPP}($ platelet poor plasma）로 使垪하 였다．

向小枚 凝集效果卡 Whole Blood Lumi－ Aggregometer（Chrono－Log Co．，U．S．A）를 使用하 여 platelet aggregation을 湘定하였다．cuvette에 PRP $400 \mu \ell$ ，agonist（thrombin $0.4 \mathrm{U} / \mathrm{ml}$ ） $50 \mu \ell$ ， sample 50 ） $\boldsymbol{\ell}$ 를 조심스럽게 넣ㄱ $1 \mathrm{mg} / \mathrm{ml}$ 의 高濃度 에서 始作하여 낮은 濃度로 抗血栓作用을 訨價部 였다．
（2）肺塞烃에 對한 實驗（in vivo）
準하여 實施하였다．實驗 動物은 몸무레 $20 \mathrm{~g}-23 \mathrm{~g}$ 정도의 婎性 ICR mouse를 使用䇋巫，血怪의 誘發 은 filis枝 凝集試薬（ $11.3 \mu \mathrm{~g}$ 의 collagen과 $1.32 \mu \mathrm{~g}$ 의 epinephrine） 0 Hank＇s balanced salt solution（HBSS） 200μ 에 含有되도록 調製하고 mouse 體重 20 g 당 200μ 의 用量으로 꼬리정맥에汁射部다．抗升栓效果를 알아보기 위하며 惯騇動物을 24時間 絶食시킨 후 血小板 凝集試樂의 静脈注射 2 時間 전에 $3.2 \mathrm{mg} / 20 \mathrm{~g}$ 의 藥物을 ICR mouse 에 經口投與하였으며，陽性 對照群으로는 aspirin
$2 \mathrm{mg} / 20 \mathrm{~g}$ 을 經口投與하였다．抗血栓效果는 血小板凝集試薬의 投與五 ⿴囗大立여 發生하는 mouse 뒷다 리의 㾋瘒나 죽음으로 부터 保護된 實驗動物의 숫 자의 ㄴㄱ分率䛈 計算郖며，여기서 㾭痺는 15 分以 t ：뒷다리의 機能을 喪失하거나 떨림상태가 持縝 될 때롤 基準으로 하였다．

3）脑損傷誘發萝䮰

（1）ノ注 哭 湘兑

 11投囟 30 分 후에 非致死量인 $1.4 \mathrm{mg} / \mathrm{kg} \mathrm{KCN}$ 을 郘
 를 可後할때 外지의 時間을 測定하였다．

對照群에는 橞液을 녹일 때 使閉한 同量의 生理食嘘求䓃 經川投與 하였고，寛驗群에서는 檢液 3.2 $\mathrm{mg} / 20 \mathrm{~g} / \mathrm{day}$ 을 生理食臓水 3m에 溶解시켜 oral zonde（ 대종기기，한국）를 利用하여 1可經い投與故 였다．
（2）局所 腺虚血 誘發 實驗（MCA occulusion）

횐쥐 4 마리를 1 群으로 하어 對照群（control）과實驗群으로 區分하였다．中大椔動脈 閉鎖 2시간 전에 흰쥐의 體重을 測定학 特香，牛黃，㲹七树 을 $2: 3: 4$ 의 比率至 總量 $400 \mathrm{mg} / 250 \mathrm{~g} / \mathrm{day}$ 을 經 $1]$ 投與㖕ㄱ 神經學的 檢査总 하였다．局所 腦慮血 誘發 24時間 후 sacrifice하고 腦邚片 8개를 만 들어 浮腫摔과 虚血面積을 計算하였다．
（2）Probe 製作
나일론 縫合絲（4－0，Deknatel Inc．，Japan）를 適営한 길이로 잘라 熱을 가해 한 쪽 끝에 매듭을 만들었다．總 길이를 18 mm 로 만든 후 硬化劑를 섞 은 실리콘을 약 0.3 man 두께로 매듭 반대편에 얇게 5 mm 덧씌워 probe를 만들었다．
（3）局所 膰虚血 誘發
횐쥐롤 手術臺에 固定시퀴고 enflurane으로 Royal Multi－Plus（Royal Medical Co．，Korea）${ }^{\text {e }}$使用하여 窒素와 酸素의 比率을 7：3으로 調整卉 여 吸入麻醉하였다．Nagasawa 등의 方法 ${ }^{125)}$ 에

따라 목 中央을 好開하고 迷走神經에 損傷을 주지 않도록 注意하면서 오른努 總頸動脈，內頸動脈 및外钼動脈을 分離한 뒤 總䜖動脈头 外頸動脈을 結枈하고 곤바로 外頸動脈과 內頸動脈의 分枝點에 매듭을 除外한 probe 全體를 摴入한 뒤 插入部位 바로 위쪽을 結紫함으로썽 同側 中大腦動脈을 閉鎠하였다．總 手術 時間은 30分 以队로 하였으며，值晹溫度計를 使用하여 體溫 下降을 判定站였고冻外線을 비추면서 保溫하였으며，中人腦動脈을閉鎖하고 60分 동안 $\mathrm{N}_{2} \mathrm{O}$ 와 O_{2} 를 90% 와 10% 比
 후 probe를 0.5 cm 정도 당겨 再灌流를 行하였다．
（4）神經學的 檢査
中大䐉動服 閉錝 후，低酸素症 㛢發 후，再灌流 시킨 후 神經學的 檢査䓃 行하여 中人腦動脈閉鋿에 奸른 神經學的 候損程度总 湘定하였다。种縒學的 缺損정도는 Bederson 등의 左法 ${ }^{561}$ 에 의하 여 ㄱ 程度䓃 4等級으로 나누어 點数化 하였다 （Table 1）．

Table 1．The Neurologic Examination Grading System

$\begin{aligned} & \text { Fore } \\ & \text { limb } \end{aligned}$	0	No deficit
	1	Forelimb flexation when suspended by the tail
	2	Reduced forepaw resistance to lateral push
	3	Circulating behaviour during suspension （body twisting？）
$\begin{aligned} & \text { Hind- } \\ & \text { limb } \end{aligned}$	0	Immediate placement of the behind back on to the table（normal）
	1	No limb placement／movement

（5）虚血面積 哭 浮腫測定
手術 24時間 후에 횐쥐에서 腦를 꺼내어 brain matrix（Asi Ins．Warren MI．，U．S．A．）를 利用하여 2m뚜메의 coronal brain slice를 얻은 후 이 중 8 slice만을 選擇하여 2% triphenyltetrazolium chloride（TTC）溶液을 加하고 $37^{\circ} \mathrm{C}$ 에서 50 分間 培養하였다．TTC에 의해 正常 組織은 짙은 빨강색 으로 染色되나，虜血이 일어나 組織은 染色되지 않음으로夾 正常 組織斗의 區分이 可能하였다．培

養 終了 후 染色된 組織을 10% formalin neutral buffer 溶液으로 图定시키고，2－3日內애 칼라 寫厝用 필름으로 鳥眞을 찍어 現像한 뒤 coronal slice 에서의 虛血 而積을 測定하였다．虚血百積 및 浮腫摔은 아래의 計算式에 의 해 算 H_{1} 하였다 ${ }^{501}$ ．

$$
\begin{aligned}
& \text { 虚血面積 }(\%)=\frac{\mathrm{C}}{\mathrm{~A}+\mathrm{B}} \times 100 \\
& \text { 浮喠摔 }(\%)=\frac{\mathrm{A}-\mathrm{B}}{2 \times \mathrm{B}} \times 100
\end{aligned}
$$

A ：각 coronal slice에서의 虚血이 誘發된 大腦牛球 面積（mm）

B ：각 coronal slice예서의 對側 大腦半球 面積 （ $\mathrm{mm}^{\text {＇}}$ ）

C：각 coronal slice에서의 虔血｜fifi積（ mm^{\prime} ）
（3）Amyloid β protein으로 誘澊된 PCl 2細胞 의 細胞毒性에 對한 倲護 作用
（1）細胞 哭 細胞培香
PC12 cell（ATCC CRL 1721）은 rat의 adrenal pheochromocytoma ${ }^{\text {a7）}}$ 에서 由1來된 細胞며 최근 Alzheimer＇s disease의 實驗에 使用되는 細胞로서韓國人蓼煙草硏究院（대전，한국）에서 分譔받았다．培地로는 RPMI 1640 培地에 10% fetal bovine serum， 5% horse serum 과 antibiotic $10 \mathrm{ml}(100,000$ units penicillin， 100 mg streptomycin， $250 \mu \mathrm{~g}$ amphotericin ）을 涯加한 淁養液으로 $377^{\circ} \mathrm{C}, ~ 5 \%$ CO_{2} 狀態의 培養器에서 培養하였다．
（2）細胞毒性 評僄分析
PCl 2 cell에 대한 amyloid β protein（25－35， Peptron，한국）의 細胞毒性은 SRB assay ${ }^{51}$ 를 實施 하였다．즉， PC 12 cell을 1回用 減菌 注射器 （26gauge，Boin Medica Co．，Korea）를 利用하여單一緇胞 狀態의 紐胞 懸濁液을 만들어 96 well plate의 각 well에 $100 \mu \ell(2 \times 104$ cells／well）씩 加한 뒤 24時間 培養 후 NGF（nerve growth factor， $50 \mathrm{ng} / \mathrm{ml}$ ）를 넣고 48時間 培養하였다．檢液은 細胞毒性을 나타내지 않는 $0.25 \mathrm{mg} / \mathrm{m} \mathrm{\ell}, 0.50 \mathrm{mg} / \mathrm{ml}$ 및 1 mg $/ \mathrm{ml}$ 濃度로 稀釋한 뒤， 96 well plate의 각 well plate에 $10 \mu \ell$ 씩 넣었다． 4 時間 후에 다시 각 well plate에 $50 \mu \mathrm{M}$ 의 amyloid β protein을 加한 다음

48時間 培餋한 후 SRB法에 의하여 細胞毒性을 觀察하였다（Scheme．1）．

Scheme．1．The Experimental Scheme for Protective Effects of SWS on The Cylotoxicity Induced by Amyloid β Protein
（A）Lipopolysaccharide로 誘發한 RAW細胞의 NO production에 對한 抑制作用
（1）細胞 呆 細胞培秀
RAW cell（ATCC TIB 71）은 abelson leukemia virus를 생쥐에 靜脈注射하여 intraperitonium에
 ㄴ ㄴ 綳胧记서 ATCC（American type culture collection）에서 分讓怗았다．淁地로는 DMEM 培地에 10% fetal bovine serum을 添m한 培養液으 로 $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ 哭態의 培稂器에서 境蔗하였다． （2） NO assay ${ }^{58 \%}$
Macrophage 를 活性化시키는 物質인 lipopoly－ saccharide는 Sigma Co．（U．S．A．）에서 주문 購入 하였다．細胞毒性을 보이지 않는 濃度인 $0.25 \mathrm{mg} / \mathrm{ml}$ ，
 NO assay를 實施하였다．즉，RAW cell을 1 回用減菌 注射器（26gauge，Boin Medica Co．，한국）를利用하여 單一細胞 狀態의 細胞 懸濁液을 만들어 96 well plate의 각 well에 1×10^{6} cells $/ \mathrm{ml}$ 의 細胞懸濁液 $100 \mu \ell$ 씩 加한 뒤 3時間 培䖯하였다．檢液 은 $0.25 \mathrm{mg} / \mathrm{ml}, 0.50 \mathrm{mg} / \mathrm{m} \mathrm{\ell}, ~ 1 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ 濃度로 稀䆁한 뒤

에 96 well plate의 각 well plate에 $20 \mu \ell$ 씩 넣었고 ［可｜時에 가 well plate에 $2 \mu \mathrm{~g} / \mathrm{m} \ell$ 의 lipopolysaccharide를 加하였으며，48時間 培養한 후 1500 rpm 에서 3 分동안 遠心分離하여 細胞 源遊物만을 $100 \mu \ell$ 収한 다음 새로운 96 well plate에 옮겨 돟고 griess reagent를 $100 \mu \ell$ 씩 添加하였다． 10分 후 elisa reader를 통하여 570 nm 에서 吹光展 플 测定하였다（Scheme 2）

Scheme 2．The Experimental Scheme for Effects of SWS on NO Production in RAW Cells Stimulated by Lipopolysaccharide

4）統計 處理
實驗 結界는 student＇s t－test를 使用하여 統計䞦理하였으며， $\mathrm{P}<0.05$ 水準에서 有意性을 檢定하 였다．

III．成 績

1．高脂血症에 對站 效果

1）血清 total cholesterol에 띠치는 效果
高cholesterol食餌로 誘發된 高脂血症에서 total cholesterol의 含量은 正常群이 $98.87 \pm 2.49 \mathrm{mg} / \mathrm{d} \ell$ 인 데 比하여 對照群은 $909.5 \pm 52.8 \mathrm{mg} / \mathrm{dl}$ 로 增加하였 다．實驗群은 對照群에 比하여 $460.05 \pm 74.32 \mathrm{mg} / \mathrm{d} \ell$ 로 나타나 有意性 있는 $(\mathrm{p}<0.01)$ 抑制效果가 나타 났다（Table 2，Fig．1）．

Table 2．Effects of SWS on The Serum Total Cholesterol Levels in Rabbits with Hypercholesterolemia Induced by Cholesterol Diet

Group	No．of Animals	Cholesterol $(\mathrm{mg} / \mathrm{dl})$
Normal	3	$98.87 \pm 2.49^{\mathrm{a}}$
Control	3	909.50 ± 52.80
Sample	3	$460.05 \pm 74.32^{*}$

a）：Mean \pm Standard Error
Nurmal ：3m！normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with 3 m！normal saline once a day for 14 days
Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with 0.24 g .1 .5 kg of SWS solved in 3 ml normal saline once a day for 14 days
＊：Statistically significant value compared with control data

$$
(*: \mathrm{P}<0.05, * *: \mathrm{P}<0.01 . * * *: \mathrm{P}<0.001
$$

Fig．1．Effects of SWS on the serum total cholesterol levels in rabbits with hypercholesterolemia induced by cholesterol diet

Normal ：3ml normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with 3 ml normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in $3 \mathrm{~m} \mathrm{\ell}$ normal saline once a day for 14 days
＊：Statistically significant value compared with control data
（＊： $\mathrm{P}<0.05, * *: ~ \mathrm{P}<0.01, * * *: ~ \mathrm{P}<0.001$ ）
2）向清 triglyceride에 미치는 效果
Triglyceride 含量은 正常群이 $167.03=11.35 \mathrm{mg} /$ d ℓ 인데 比하여 對照群은 $203.42 \pm 973 \mathrm{mg} / \mathrm{d}$ 로 增加 하였다．䔈驗群은 對照群에 比姑여 189.43 ± 17.43 mgetlo을 减少하였으나 有意性은 없었다（Table 3， Fig．2）．
Table 3．Effects of SWS on The Serum Triglyceride Levels in Rabbits with Hypercholesterolemia Induced by Cholesterol Diet

Group	No．of Animals	Triglyceride $(\mathrm{mg} / \mathrm{d} \ell)$
Normal	3	$167.03 \pm 11.35^{\mathrm{a} .}$
Control	3	203.42 ± 9.73
Sample	3	$189.43=17.43$

a）：Mean \pm Standard Error
Normal ：3m民 normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 davs and was treated with $3 \pi \ell$ normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in $3 m \ell$ normal saline once a day for 14 days

Fig．2．Effects of SWS on the serum triglyceride levels in rabbits with hypercholesterolemia induced by cholesterol diet．

Normal ：3me normal saline treated group
Control：Group fed with 2% cholesterol diet for 14 days and was treated with 3 me normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in 3 mi normal saline once a day for 14 days

加하였다．菑験群은 對照样에 比하여 $247.00=$ $18.54 \mathrm{mg} / \mathrm{d} \mathrm{\ell}$ 로 나타나 有意性 있는 $(\mathrm{p}<0.05)$ 抑制效⿻⽊ㅅㄱㅏ 나타났다（Table 4，Fig．3）。
Table 4．Effects of SWS on The Serum Phospholipid Levels in Rabbits with Hypercholesterolemia Induced by Cholesterol Diet

Group	No．of Animals	Phospholipid $(\mathrm{mg} / \mathrm{dl})$
Normal	3	$169.33=0.88^{\mathrm{a}}$
Control	3	317.84 ± 10.37
Sample	3	$247.00 \pm 18.54^{\circ}$

$$
\text { a) }: \text { Mean }=\text { Standard Error }
$$

Normal ： $3 \mathrm{~m} \ell$ normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with 3 me normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in $3 m \ell$ normal saline once a day for 14 days
＊：Statistically significant value compared with control data

$$
(*: \mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *: \mathrm{P}<0.001)
$$

Fig．3．Effects of SWS on the serum phospholipid levels in rabbits with hypercholesterolemia induced by cholesterol diet．

Normal ： $3 \mathrm{~m} \ell$ normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with $3 m \ell$ normal saine once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in $3 \mathrm{~m} \mathrm{\ell}$ normal saline once a day for 14 days
＊：Statistically significant value compared with control data

$$
(*: \mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *: \mathrm{P}<0.001)
$$

4）血掯 HDL－cholesterol에 미치는 效果
HDL－cholesterol 枲量은 iF 常群이 28.40 ± 0.75 $\mathrm{mg} / \mathrm{d} \ell$ 인데 比하여 對照群은 $26.05 \pm 2.43 \mathrm{mg} / \mathrm{d} \ell$ 로 䌆化하였다．實驗群은 對照群에 比하여 28.60 ± 2.37 mide로 나타나 增加效果가 나타났으나 有意性은 엾었다（Table 5，Fig．4）．
Table 5．Effects of SWS on The Serurn HDL－Cholestsrol Levels in Rabbits with Hypercholesterolemia Induced by Cholesterol Diet

Group	No．of Animals	HDL（mg／d $\ell)$
Normal	3	$28.40 \pm 0.75^{\mathrm{al}}$
Control	3	26.05 ± 2.43
Sample	3	28.60 ± 2.37

a）：Mean \pm Standard Error

Normal ：3m normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with $3 \mathrm{~m} \mathrm{\ell}$ normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in $3 \mathrm{~m} \mathrm{\ell}$ normal saline once a day for 14 days

Fig．4．Effects of SWS on the serum HDL－cholestsrol levels in rabbits with hypercholesterolemia induced by cholesterol diet．

Normal ：3me normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with $3 \mathrm{~m} \mathrm{\ell}$ normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in $3 \mathrm{~m} \mathrm{\ell}$ normal saline once a day for 14 days

5）血清 LDL－cholesterol에 미치는 效果
LDL－cholesterol 含量은 正常群이 $37.06 \pm 4.25 \mathrm{mg}$ $/ \mathrm{d} \ell$ 인데 比하여 對照群은 $842.76 \pm 47.23 \mathrm{mg} / \mathrm{d} \ell$ 로 增加하였다．惯驗群은 對照群에 比하여 393．52士 $54.96 \mathrm{mg} / \mathrm{d} \ell$ 로 나타나 有意性 있는 $(\mathrm{p}<0.01)$ 抑制效果가 나타났다（Table 6，Fig．5）

Table 6．Effects of SWS on The Serum LDL－Cholesterol Levels in Rabbits with Hypercholesterolemia Induced by Cholesterol Diet

Group	No．of Animals	LDL（mg／dl）
Normal	3	$37.06 \pm 4.25^{\circ 1}$
Control	3	842.76 ± 47.23
Sample	3	$393.52 \pm 54.966^{* *}$

a）：Mean \pm Standard Error
Normal ：3me normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with $3 m \ell$ normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in $3 \mathrm{~m} \ell$ normal saline once a day for 14 days
＊：Statistically significant value compared with control data（＊： $\mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *$ ： $\mathrm{P}<0.001$ ）

Fig．5．Effects of SWS on the serum LDL－cholesterol levels in rabbits with hypercholesterolemia induced by cholesterol diet．

Normal ：3m normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with $3 \mathrm{~m} \mathrm{\ell}$ normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in 3 me normal saline once a day for 14 days
＊：Statistically significant value compared with control data
（＊： $\mathrm{P}<0.05,{ }^{* *}: \mathrm{P}<0.01, * * *: ~ \mathrm{P}<0.001$ ）
6）血声 VLDL－cholesterol에 미치는 效果
VLDL－cholesterol 台胃은 汇常碚이 $33.41=2.27$ mg / d 인더 比하여 對照群은 $40.69 \pm 3.28 \mathrm{mg} / \mathrm{d} \ell$ 로 增川하핬다．實驗群은 對照群에 比하여 37．93 ± 3.74 $\mathrm{mg} / \mathrm{d} \ell$ 으로 減少하였으나 付意情은 없었다（Table 7 ， Fig．6）．
Table 7．Effects of SWS on The Serum VLDL－Cholesterol Levels in Rabbits with Hypercholesterolemia Induced by Cholesterol Diet

Group	No．of Animals	VLDL（mg／dl）
Normal	3	$33.41 \pm 2.27^{\mathrm{a}}$
Control	3	40.69 ± 3.28
Sample	3	37.93 ± 3.74

a）：Mean \pm Standard Error
Normal ： 3 ml normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with $3 \mathrm{~m} \mathrm{\ell}$ normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in $3 \mathrm{~m} \ell$ normal saline once a day for 14 days

2．血小板 凝集抑制 및 血栓에 對站 效果
1）血小板凝集抑制唾 對站 效果（in vitro）
ADP 에 의한 血小板 凝集抑制效果에서는 36.05% ，collagen에 의한 血小板 凝集反應에서는 20.4% ，thrombin에 의한 血小板 凝集反應에서는 0.6% 의 抑制效果를 나타냈다（Table 8，Fig．7）

Fig．6．Effects of SWS on the serum VLDL－cholesterol levels in rabbits with hypercholesterolemia induced by cholesterol diet． Normal ：3me normal saline treated group
Control ：Group fed with 2% cholesterol diet for 14 days and was treated with $3 \mathrm{~m} \mathrm{\ell}$ normal saline once a day for 14 days

Sample ：Group fed with 2% cholesterol diet for 14 days and was treated with $0.24 \mathrm{~g} / 1.5 \mathrm{~kg}$ of SWS solved in 3ml normal saline once a day for 14 days

Table 8．Inhibitory Effects of SWS on Human Platelet Aggregation

Aggregation agent	$\%$ of Inhibition
Collagen $(50 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell})$	20.4
Thrombin $(0.5 \mathrm{U} / \mathrm{m} \mathrm{\ell})$	0.6
$\operatorname{ADP}(20 \mu \mathrm{M} / \mathrm{m} \mathrm{\ell})$	36.05

Sample concentration ；collagen，ADP ：2mg／ $\mathrm{m} \mathrm{\ell}$ ，thrombin ： $4 \mathrm{mg} / \mathrm{ml}$

Fig．7．Inhibitory effects of SWS on human platelet aggregation．

2）肺塞栓에 對한 效果（in vivo）
對照群은 collagen과 epinephrine에 의해서 肺塞栓이 誘導되어 8 마리 중 8 마리가 죽거나 15 分以上．研痺가 持續이 되었는데，陽性對照群으로 使用한 aspirin에서는 8 마리 중 3 마리 만이 죽거나 15 分以 1：栕痺가 持續이 되었고，實驗群은 8마리 중 5 마 리가 죽거나 15 分以上 㡿痹가 지속되어 37% 의 押制效果를 나타내었다（Table 9，Fig．8）
Table 9．Effects of SWS on Pulmonary Thrombosis in Mice

	Dose $(\mathrm{mg} / 20 \mathrm{~g})$	No．of killed or paralyzed No．tested	$\%$ Protection
Control	HBSS	$8 / 8$	
Aspirin	2	$3 / 8$	62.5
Sample	3.2	$5 / 8$	37

Control ：Collagen（ $11.3 \mu \mathrm{~g}$ ）and epinephrine（ 1.32 $\mu \mathrm{g})$ treated group

Aspirin ：Aspirin $(2 \mathrm{mg} / 20 \mathrm{~g})$ treated group
Sample ： $\operatorname{SWS}(3.2 \mathrm{mg} / 20 \mathrm{~g})$ treated group
HBSS ：Hank＇s balanced salt solution

Fig．8．Effects of SWS on pulmonary thrombosis in mice．

Control ：Collagen（ $11.3 \mu \mathrm{~g}$ ）and epinephrine $(1.32 \mu \mathrm{~g})$ treated group

Aspirin ：Aspirin $(2 \mathrm{mg} / 20 \mathrm{~g})$ treated group
Sample：SWS $(3.2 \mathrm{mg} / 20 \mathrm{~g})$ treated group

3．腦損傷에 對한 效果
1）全腦虚血에 對한 效果
（1） KCN 誘發 昏睡時間에 미치는 效果
非致死量의 KCN 에 의해 誘發시킨 생쥐의 昏睡時間은 對照群이 $128.53 \pm 28.39 \mathrm{sec}$ 로 나타났다．實驗群은 對照群에 比하여 $82.44 \pm 16.49 \mathrm{sec}$ 로 나타나㫰睡時間 短縮效果（ 36.9% ）가 認氞되었으나 有意性 은 없었다（Table 10，Fig．9）．
Table 10．The Duration of KCN －Induced Coma after Oral Administration of SWS in ICR Mice

Group	No．of Animals	Duration of coma（sec）
Control	10	$128.53 \pm 28.39^{\mathrm{a}}$
Sample	10	82.44 ± 16.49

a）：Mean \pm Standard Error
Control ： $1.4 \mathrm{mg} / \mathrm{kg} \mathrm{KCN}$ i．v．injected group after oral administration of normal saline

Sample ： $1.4 \mathrm{mg} / \mathrm{kg} \mathrm{KCN}$ i．v．injected group after oral administration of $3.2 \mathrm{mg} / 20 \mathrm{~g}$ of SWS

Fig．9．The duration of KCN －induced coma after oral administration of SWS in ICR mice．

Control ： $1.4 \mathrm{mg} / \mathrm{kg} \mathrm{KCN}$ i．v．injected group after oral administration of normal saline

Sample： $1.4 \mathrm{mg} / \mathrm{kg} \mathrm{KCN}$ i．v．injected group after oral administration of $3.2 \mathrm{mg} / 20 \mathrm{~g}$ of SWS

2）吕所 腦虚百红對한 效果
（1）川人滕動脈 閉鏆训 따른 神經學的 缺損 程度의 變化
（1）Fore limb
Fore limb에서 神經學的 缺挰 程度의 綎化는勫照遅의 경우 operation，hypoxia，recirculation 후 의 等級이 各各 $2.78 \pm 0.15,2.89 \pm 0.11$ ㄱ $2.57 \pm$ 0.20 이었는可 比竨여 宽黜群의 경우는 各各 $3.0 \pm$ $0.00,2.67 \pm 0.33$ 과 2.33 ± 0.33 으로 等級约 變化外 없었다（Table 11，Fig．10）．
Table 11．Effects of SWS on Variation of Neurologic Grades in MCA Occluded SD Rats（Fore limb）

	Operation	Hypoxia	Recirculation
Control	$2.78 \pm 0.15^{\mathrm{a}}$	2.89 ± 0.11	2.57 ± 0.20
Sample	3.0 ± 0.00	2.67 ± 0.33	2.33 ± 0.33

a）：Mean \pm Standard Error
Control ：Normal saline treated group
Sample ： $400 \mathrm{mg} / 250 \mathrm{~g} /$ day SWS treated group

Fig．10．Effects of SWS on Variation of Neurologic Grades in MCA Occluded SD Rats（Fore limb）
（2）Hind limb
Hind limb에서 神經學的 缺損 程度의 變化는對照群의 경우 operation，hypoxia，recirculation 후의 等級이 各各 $0.44 \pm 0.18,0.33 \pm 0.33,0.14 \pm$ 0.14 이었는데 比하여，實驗群의 경우는 冬各 $0.0 \pm$
$0.0,0.11 \pm 0.11,0.0 \pm 0.0$ 으로 operation에서는 体意性이 認定되었으나，hypoxia，recirculation에서는有意性이 認定되지 않았다（Table 12，Fig．11）．
Table 12．Effects of SWS on Variation of Neurologic Grades in MCA Occluded SD Rats（Hind limb）

	Operation	Hypoxia	Recirculation
Control	$0.44=0.18^{a}$	0.33 ± 0.33	0.14 ± 0.14
Sample	$0.0 \pm 0.00^{*}$	0.11 ± 0.11	0.0 ± 0.00

a）：Mean \pm Standard Error
Control：Normal saline treated group
Sample： $400 \mathrm{mg} / 250 \mathrm{~g} /$ day SWS treated group
＊：Statistically significant as compared with data of control group

$$
(*: \mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *: \mathrm{P}<0.001)
$$

Fig．11．The effects of SWS on variation of neurologic grades in MCA occluded SD rats（Hind limb）．

Control ：Normal saline treated group
Sample： $400 \mathrm{mg} / 250 \mathrm{~g} /$ day SWS treated group
＊：Statistically significant as compared with data of control group

$$
(*: \mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *: \mathrm{P}<0.001)
$$

（2）中大腦動脈 閉鎖에 따른 虛血 面積 닟 浮腫率에 미치는 效果

中大腦動脈 閉鍞叺 叫至 虚血 面積率은 對照群 에 比立여 實驗群은 虚血面積이 觀察되지 않았으 며（Table 13，Fig．12，14），浮腫率巫 有意性있게好缚되었다（Table 14，Fig．13，14）．
Table 13．Effects of SWS on The Ischemic Ratio in MCA Occluded SD Rats

No．of slices control $(n=3)$	The mean area of infarction（\％）	No．of slice SWS $(n=3)$	The mean area of infarction $(\%)$
1	$9.3 \pm 3.36^{\text {a }}$	1	$\mathrm{ND*}$
2	25.70 ± 3.04	2	$\mathrm{ND} * * *$
3	28.04 ± 2.31	3	$\mathrm{ND***}$
4	22.25 ± 7.26	4	$\mathrm{ND} *$
5	16.00 ± 7.08	5	$\mathrm{ND} *$
6	4.41 ± 2.91	6	ND
7	0.80 ± 0.80	7	ND
8	ND	8	ND

a）：Mean \pm Standard Error
Control ：Normal saline treated group
Sample： $400 \mathrm{mg} / 250 \mathrm{~g} /$ day SWS treated group
ND ：Not detectable
＊：Statistically significant as compared with data of control group
（＊： $\mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *: \mathrm{P}<0.001$ ）

Fig．12．Effects of SWS on the ischemic ratio in MCA occluded SD rats．
Control ：Normal saline treated group
Sample ： $400 \mathrm{mg} / 250 \mathrm{~g} /$ day SWS treated group
＊：Statistically significant as compared with data of control group
（＊： $\mathrm{P}<0.05$ ，＊＊： $\mathrm{P}<0.01, * * *: ~ \mathrm{P}<0.001$ ）
Table 14．The Effects of SWS on Edema Ratio in MCA Occluded SD Rats

No．of slices control $(\mathrm{n}=3)$	The mean extent of edema（\％）	No．of slice SWS $(\mathrm{n}=3)$	The mean extent of edema（\％）
1	$\left.14.30 \pm 3.78^{\mathrm{a}}\right)$	1	$2.83 \pm 1.88^{*}$
2	12.99 ± 1.32	2	$5.19 \pm 1.55^{* *}$
3	10.58 ± 1.74	3	$2.55 \pm 2.31^{*}$
4	10.02 ± 0.06	4	$4.17 \pm 0.88^{* *}$
5	8.61 ± 1.68	5	$1.30 \pm 0.69^{* *}$
6	3.66 ± 0.23	6	4.22 ± 1.70
7	2.56 ± 0.64	7	1.71 ± 0.22
8	4.52 ± 0.00	8	4.21 ± 0.00

a）：Mean \pm Standard Error
Control ：Normal saline treated group
Sample ： $400 \mathrm{mg} / 250 \mathrm{~g} /$ day SWS treated group
＊：Statistically significant as compared with data of control group

$$
(*: \mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *: \mathrm{P}<0.001)
$$

Fig．13．Effects of SWS on edema ratio in MCA occluded SD rats．a）：Mean \pm Standard Error
Control ：Normal saline treated group
Sample ： $400 \mathrm{mg} / 250 \mathrm{~g} /$ day SWS treated group
＊：Statistically significant as compared with data of control group

$$
(*: \mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *: \mathrm{P}<0.001)
$$

Fig 14．Ischemic area in 8 slices of brain in control and SWS groups．

3）Amyloid β protein으로 誘尊된 PCl 細胞 의 細胞毒性에 對故 保護 效果
（1） PCl 2 細胞에 對한 細胞毒性
PC12 勫胞에 對한 賽驗群의 毒性을 觀察한 結果，實驗에 使用站 $0.25 \mathrm{mg} / \mathrm{ml}, 0.50 \mathrm{mg} / \mathrm{ml}$ 및 $1 \mathrm{mg} / \mathrm{ml}$ 의 濃度에서 전혀 䊼胞毒性을 보이지 않았다 （Table 15，Fig．15）．

Table 15．The Cytotoxicity of SWS Against PC12 Cells

Concentration	Viability（\％of Control）
Control	100.00 ± 9.37^{71}
Sample A	101.50 ± 7.42
Sample B	104.70 ± 6.38
Sample C	105.30 ± 9.54

a）：Mean \pm Standard Error
Control ：PC12 cell（ 2×10^{4} cells／well）
Sample A ：PC12 cell（ 2×10^{4} cells／well）and SWS treated group $(0.25 \mathrm{mg} / \mathrm{m} \ell)$

Sample B ：PC12 cell（ 2×10^{4} cells／well）and SWS treated group $(0.50 \mathrm{mg} / \mathrm{ml})$

Sample C ：PC12 cell（ 2×10^{4} cells／well）and SWS treated group $(1 \mathrm{mg} / \mathrm{ml})$

Fig．15．The cytotoxicity of SWS against PC12 cells．

Control ：PC12 cell（ 2×10^{4} cells／well）
Sample A ：PC12 cell $\left(2 \times 10^{4}\right.$ cells／well）and SWS treated group $(0.25 \mathrm{mg} / \mathrm{ml})$

Sample B ：PC12 cell（ 2×10^{4} cells $/$ well $)$ and SWS treated group $(0.50 \mathrm{mg} / \mathrm{ml})$

Sample C ：PC12 cell（ 2×10^{4} cells／well）and SWS treated group $(1 \mathrm{mg} / \mathrm{m} \ell)$
（2）細胞者性에 對站 保護效果
Amyloid β protein에 의 해 誘導된 PC12 紐胞 의 細胞毒性에 대하여 $0.25 \mathrm{mg} / \mathrm{ml}, 0.50 \mathrm{mg} / \mathrm{ml}$ 및 1 mg ； $\boldsymbol{\pi} \ell$ 貫驗群을 前處置한 후 稩胞毒性 保護 效果를觀察한 結果，각각 $48.25 \pm 3.76,64.37 \pm 4.2$ 과 92.53 $\pm 5.32 \%$ 으로 $0.25 \mathrm{mg} / \mathrm{ml}$ 의 濃度에서는 保護效果를 보이지 않았으나， $0.50 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ 및 $1 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ 의 濃度에서 는 각각 有意性 있는 $(\mathrm{P}<0.05, \mathrm{P}<0.001)$ 保護效果 를 나타넸다（Table 16，Fig．16）．
Table 16．The Protective Effects of SWS on Cytotoxicity of FC 12 Cells Induced Amyloid β Protein

Control $(\%)$	$\beta-$ anyloid	Sample		Sample
A	Sample			
B	C			
100.00	47.05	48.25	64.37	92.53
± 4.90	$\pm 1.96^{\text {a）}}$	± 3.76	$\pm 4.2^{*}$	$\pm 5.32^{\cdots}$

a）Mean \pm Standard Error
Control ：PC12 cells（ 4×10^{4} cells／well）
β－amyloid ：PC12 cells（ $4 \times$
10^{4} cells／well $)+$ Amyloid β protein $(50 \mu \mathrm{M})$
Sample A ：PC12 cells $\left(4 \times 10^{4}\right.$ cells／well $)+$ Amyloid β protein $(50 \mu \mathrm{M})+\mathrm{SWS} 0.25 \mathrm{mb} / \mathrm{ml}$

Sample B ：PC12 cells（ 4×10^{4} cells／well $)+$ Amyloid β protein $(50 \mu \mathrm{M})+$ SWS $0.50 \mathrm{mg} \cdot \mathrm{m} \mathrm{\ell}$

Sample C ：PC12 cells $\left(4 \times 10^{4}\right.$ cells／well $)$＋ Arnyloid β protein $(50 \mu \mathrm{M})+\mathrm{SWS} 1 \mathrm{mg} / \mathrm{ml}$
＊：Statistically significant as compared with data of β－amyloid

Fig．16．The protective effects of SWS on cytotoxicity of PCl 2 cells induced amyloid β protein．

4）Lipopolysaccharide로 誘棂한 RAW 細胞의 NO production에 對站 㧕制 效果

Lipopolysaccharide로 诱發한 RAW 細胞의 NO production은 IE 常羘에서는 $36.6 \pm 4.80 \mu \mathrm{M} / \mathrm{L}$ 이었I．對照群에서는 $63.95 \pm 1.71 \mu \mathrm{M} / \mathrm{L}$ 이었다．貫驗群에서 는 $0.25 \mathrm{mg} / \mathrm{ml}$ 에서 $9.13 \pm 0.43 \mu \mathrm{MI}, \quad 0.50 \mathrm{mg} / \mathrm{ml}$ 에서 $8.54 \pm 0.21 \mu \mathrm{M} / \mathrm{L}, \quad 1 \mathrm{mg} / \mathrm{ml}$ 에서 $\quad 7.70 \pm 0.43 \mu \mathrm{M} / \mathrm{L}$ 으로 나타나 對照群에 比하여 濃度倲存的으로 有意性 있는 減少를 보였다（Table 17，Fig．17）．

Table 17．The Effects of SWS on NO Production in RAW Cells Stimulated by Lipopolysaccharide

Group	NO production $(\mu \mathrm{M} / \mathrm{L})$
Normal	$36.60 \pm 4.80^{\mathrm{a}}$
Control	63.95 ± 1.71
Sample A	$9.13 \pm 0.4 \mathrm{a}^{\mathrm{a}}$
Sample B	$8.54 \pm 0.21^{\cdots}$
Sample C	$7.70 \pm 0.46^{\cdots}$

a）Mean \pm Standard Error
Normal ：Non－treated group
Control ：Group was treated with $2 \mu \mathrm{~F} / \mathrm{ml}$ of lipopolysaccharide

Sample A：Group was treated with $2 \mu \%$ me of lipopolysaccharide and $0.25 \mathrm{mg} / \mathrm{m!}!$ of SWS

Sample B ：Group was treated with $2 \mu \mathrm{~m} \ell$ of lipopolysaccharide and $0.50 \mathrm{mg} / \mathrm{ml}$ of $S \mathrm{SS}$

Sample C ：Group was treated with $2 \mu \mathrm{ml}$ of lipopolysaccharide and $1 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ of SWS
＊：Statistically significant as compared with data of control data

Fig．17．Effects of SWS on NO production in RAW cells stimulated by lipopolysaccharide．

Normal ：Non－treated group
Control ：Group was treated with $2 \mu \mathrm{~g} / \mathrm{ml}$ of lipopolysaccharide

Sample A ：Group was treated with $2 \mu \mathrm{~g} / \mathrm{ml}$ of lipopolysaccharide and $0.25 \mathrm{mg} / \mathrm{mP}$ of SWS

Sample B ：Group was treated with $2 \mu \mathrm{~g} / \mathrm{ml}$ of

16 大田大學校 韓䈅學研究所 論文集 第8卷 第1號

lipopolysaccharide and $0.50 \mathrm{mg} / \mathrm{ml}$ of SWS
Sample C ：Group was treated with $2 \mu \mathrm{~g} / \mathrm{ml}$ of lipopolysaccharide and $1 \mathrm{mg} / \mathrm{ml}$ of SWS
＊：Statistically significant as compared with data of contsol data

$$
(*: \mathrm{P}<0.05, * *: \mathrm{P}<0.01, * * *: \mathrm{P}<0.001)
$$

N．考 察

 등에 粥弲動脈硬化의 發症 哭 進行员 伣進시对 狄

 의 하나이다 ${ }^{5(0)}$ ．
 phospholipid，triglyceride，free fatty acid $\frac{\mathrm{r}}{6}$ 으로 이루어지고 있고 ${ }^{8-11}$ ，그 중에서도 cholesterol과
伦总 誘弡하므로 動脈硬化와 密接한 關婇가 있다

 （lipoprotein）의 形態致 存在하는데，inid 指歪自은比重（密度）에 따라 孔糜脂粒（chylomicron），趋底比重脂蛋白（very low density lipoprotein：VLDL），践比重脂歪白（low density lipoprotein ：LDL），高比重脂歪的（high density lipoprotein ：HDL）으로分颣할 수 있으며，含有하고 있는 triglyceride의
堦加한다 ${ }^{9,13.612}$ 。動脈硬化의 原因에 있어 脂質乐 脂蛋向質의 役割은 完全히 밝혀지지는 않았으나 脂蛋白質이 正常 혹은 損傷 입은 血管內皮灵 통해서動脈壁으로 들어가서 粥狀硬化症（atherosclerosis） 을 惹起시키는 것으로 보고 있다 ${ }^{621}$ ．

血桎은 心血管系에서 活動中인 血液이 凝国塊를形成한 것으로 心㦲 등에서는 㹫心症，心血栓 및動脈硬化를 發生시키며，腦에서는 腦血拴 등의 腦

1血管疾患을 誘發하는 것으로 알려져 있다 ${ }^{2,12-14.63)}$ ．
血怪의 形成은 血小板话 血浆에 存在하는 潘解性 凝国蛋宿質들로 形成되는데，二正 중 血小板은 가장 高要한 要因 ${ }^{2,13,14,631}$ 으로 認識되고 있다．自怪症克 일으키는 恶버으로는 血流速度 減少로 血

液和 棤成成分의 䊾化 등이 있다 ${ }^{613.14)}$

血小板은 膜에 含有된 多昂의 phospholipids（橉
子纤 代谢物啠（prostaglandins，serotonin，組胞域原内了 및 CAMP 등）에 依한 血管道動，炎症反隹 咬
 의해서 血体形成线 過程에 決运的으로 關與㖕는

系性心疾患，腎症候群，䐉梗寒 등이 있다 ${ }^{8,64)}$ 。

感叟，义射機能의 障碍를 일으키는 것으로 3，12．151617；가장 흔한 综国은 粥狀動脈硬化와 高血

胜性腦症 등을 包含한다 ${ }^{36,12,131}$ ，最近에는 腦 1 t 血 의
 지는 㙼勢에 있는데 ${ }^{65,66)}$ ，이에 대하여 조 둥 ${ }^{671}$ 은高齡者的 增加礽 社會經济的 與件의 變化 등으로我 등 ${ }^{(6)}$ 은 高血侷 외에 平均壽俞约 延長，生洁條件 의 戀化 工记止 糖尿病 등의 動脈硬化롤 일으키는㚣因들이 複合的으로 關與된 結果㚈 하였다．

腦血管疾患은 韓醔學에서 中風 의 範䁣에 屬하는 데 ${ }^{3.12 .16 .17)}$ 中風은 卒然皆仆，不省人事站면서 17眼
 는 族患 ${ }^{3,12,19)}$ 으로，工 原区은 風 ${ }^{(8,19)}$ ，火 $火^{201}$ ，氣虚 ${ }^{211}$ ，
 있어서는 中風初期에 化痰開放，回陽固脫法이，恢復期에는 平肝化痰，益氣活血，清肝鳰火，滋陰輠陽，息風開㲣，開敗醒神法 등이 活用되고 있다 ${ }^{34.15,25)}$ 。

牛黃은（Bezoar Bobis）은 牛科에 屬한 黃牛（Bos taurus domesticus Gmelin）或은 水什（Bubalus bubalis Linne）의 膅囊 或은 膅道•肝 동에서 病的 으로 생기는 結石을 乾燥한 것 ${ }^{26-28.30)}$ 으로，性은 凉 하고 味는甘苦하며 心•肝 一經에 入하여 開㪓化掞，清熱解毒，熄風定痙，强心作用이 있어 熱病伸

 에 使用乐어 와쏘 ${ }^{26-28,301}$ 近來에 感染性次忠线 高熱，意識障碍，煩燥，痓攣發作 등과 慢性肝炎으로内한 肝機能 低下，腦卒中에 의한 意識障碍豆 掞 이 많은 症狀예 投與하여 有效㬵 效果를 얻고 있 는 것으로 報哲되고 있으며26．27．29），牛黄에 대한貝驗的 矿究只는 白鼠의 䐉損傷 ${ }^{31.68)}$ 및 各種 嵒細胞株에 미치는 影響 ${ }^{\text {69，70 등이 있다．}}$

特香은 芦香性薬物로 鹿科（사슴과；Cervidae）에为数 한椎動物인 수컷 塮香노루（Moschus moschiferus Linne）의 湾部와 䧔莖사이에 있는 腺量，毁 香囊에서 分泌竨는 分泌物을 靯㷈한 것 ${ }^{26-28,30)}$ 으로，性은 溫無教하고 味는 辛하매 士心•脾•肝絰에 墐經하여 開皦醒种，活血散結，消畽止痛，催産下胎经 作用이 있어 熱閉㠆皆，痙欧，
撴㽻，心腹暴痛，跌打損傷，㾝痛，死胎不下，胞衣不下 등의 治療에 活用되어 왔고 ${ }^{26-29)}$ 近來에는 주로各種 熱病师昏，中風神昏 등의 伦急性 疾患组 救急薊生의 日的으로 使用部고 있으며 ${ }^{26,291}$ 铸香에 대한 實驗的 研究로는 李 ${ }^{31,43)}$ 등이 白鼠의 脑損傷 에 미치는 影向에 대하여 報告한 바 있다．
：七根은 五加科（오갈피나무과：Araliaceae）에
 으로 性은 溫無瑇竔고 味는 甘微苦部听 肝•胃 二經에 入하여 止血作用斗 活血祛疮止痛의 作用이 있어 胸痛，腹痛，脇痛，咳血，吐血，鲤白，f血痢，血
意識障碍，言語障碍，冠不全에도 使用되고 있다 ${ }^{261}$ 。

最近 中風両 關聯된 韓醫學的 研究豆 䒾 둥 ${ }^{32-381}$ 은 高血鷢 및 高脂血症에 대하여，安 등 ${ }^{39-421}$ 은 血栓에 관하여，李 등 ${ }^{43-49)}$ 은 腦損傷에 대하여 實驗的 으로 有效합을 報告하였다．

이에 著者는 牛黃斗 憲香의 沘合投與泋 腅損傷 의 昏睡，呼吸，生存時間에 有效部다는 硏究 ${ }^{34}$ 에着眼하여 이들 藥物에 活血呿痉의 作用을 가지고 있는 二比根을 加한 複合方이 中風治療에 活用價値가 있을 것으로 思料되어 그 效能을 살펴보고자高脂边症，血小板凝集抑制反應，肺塞检，全脑虛血， MCA occlusion，amyloid β protein（25－35）으로誘澊乐 細胞毒性 및 lipopolysacch－aride로 誘發 한 RAW 細胞의 NO production에 미친 影響 등에 關한 實驗을 施行하여 工效能呈 比較 檢討 하였다．

生體内의 total cholesterol은 燐脂質斗 함메 細胞膜线 構成成分吴 이루고 있는 任要한 脂質로，血4 cholesterol 濃度는 주로 肘 및 小腸에서 cholesterol의 生成斗 收收，異化作川에 의 해 調節 되내，ㄱ 測定은 體內 脂質代謝異常의 指標로서重要한 것인데 ${ }^{111}$ ，高cholesterol食觡로 唀發된 高脂血艮 家鬼粽 total cholesterol의 会量에서 實驗群 은 對照㪄에 比하여 total cholesterol 含量에서 有意性 있는 $(\mathrm{P}<0.01)$ 抑制效果가 나타났다（Table 2， Fig．1）．

血中 triglyceride의 測定呈 cholesterol 測定斗 함 吺 脂質代謝異常의 解明에 매우 重要한 指標가 되는데 ${ }^{11)}$ ，triglyceride는 HDL－cholesterol 의 騡測因子로서 triglyceride가 增加함에 따라 HDL－cholesterolo 高比重 中性脂肪（HDL－TG）으 로 바뀌면서 HDL－cholesterol이 減少하여 動脈硬化를 일으키는 것으로 說明되고 있다 ${ }^{7172)}$ ．本 賈驗 에서 cholesterol 負荷로 誘發된 高脂血症 家岳의 triglyceride 含量에서 實驗群은 對照群에 比하여減少하였으나 有意性이 認定되지 않았다（Table 3， Fig．2）．

血清 phospholipid는 各種 脂質代謝 異常에 의 해 增減되지만 cholesterol과 平行하여 變動하는境遇가 많으며，脂質线 安定化新 代謝에 重要한役割을 하고 있는데 ${ }^{11)}$ ，cholesterol 負荷로 誘發된高脂血症 家鬼帾 phospho－lipid 含量에서 實驗群 은 對照群에 比하여 有意性 있는（ $\mathrm{P}<0.05$ ）抑制效果가 認定되었다（Table 4，Fig．3）．

HDL－cholesterol은 稩胞內 蓄積된 cholesterol의

除去作用에 關與하고，一部는 LDL－cholesterol 受容僼㘰 競合的으로 結合하여 LDL－cholesterol의受谷을 抑制站다 ${ }^{11.73)}$ ．HDL－cholesterol의 血中濃度 는 動脈硬仁性 疾患의 㔇症 豫告에 有用京 指標疒

 의 HDL－cholesterol 含量에서 實験群은 對照群에比하여 有意性이 認追되지 않았다（Table 5，Fig． 4）．
血中 cholesterol의 主要 構成戊分兰至 phospholipid가 If：常인 境遇에 total cholesterol의圽加는 바로 LDL cholesterol의 堦川흘 반영한다
 LDL－cholesterol 含量에서 寁驗群은 数照群에 比 하여 有意性 있는（ $\mathrm{P}<0.05$ ）抑制效果妓 認过되었다 （Table 6，Fig．5）．

VLDL－cholesterol은 朋에서 糖質로 合成되는脂肪酸이나 脂肪組織으로부터의 동원지방산에 तो來․ㅚㅁㅓ，LDL－cholesterol과 HDL－cholesterol의
新它 血中和 VLDL－cholesterol 의 lipoprotein lipase（LPL），lesithin cholesterol acyl transfernase（LCAT）에 의한 分解에 의해 生㳀되 는 것이다 ${ }^{11}$ ，cholesterol 負苛로 㛢發된 高脂血痤家䂞의 VLDL－cholesterol 含量에서 菑驗群은 有意性이 焐定되지 않았다（Table 7，Fig．6）．

以上：의 結果를 綜合站면 高cholesterol食皌로唀發된 高脂血症에서 實驗群은 對照群에 比하여 total cholesterol 含量，phospholipid 含量，LDL－ cholesterol 含量은 各各 有意性 있는 抑制效果朴認运되었으나 triglyceride，HDL－cholesterol， VI．DL－cholesterol 含量에서 有意性이 나타나지 않은 것으로 보아 檢液의 投與 期間，投與量 및投與 方法에 대한 深度있는 硏究가 必要할 것으로 생 각된다．

Platelet aggregation은－－次的인 止血性塞栓을 만드는 血小板의 能力을 評價하는 法 ${ }^{771}$ 으로 알려 져 있는데，in vitro 嘪驗에서 血小板 燐脂質을 活性化시키는 agonist로 알려진 thrombin 및
 diphosphate（ADP）를 利用하여 血小板을 完全히
閧하여 血小板凝集 抑制效果를 觀察하였다．本 實驗 結果 ADP에 依해서는 36.05% ，collagen에서는 20.4% ，thrombin에서는 0.6% 의 抑制效果를 나타 넸다（Table 8，Fig．7）．

Collagen은 而小板에서 ADP를 放壮시켜 凝集 을 일으키고，epineprine은 血小板凝集段階에서 血小板膜에 있는 α 및 β epineprine type의 receptor에 作用하여 凝葉시킨다 ${ }^{8 \prime}$ 。 이화 같이 血桎 을 誘發시켜 血栓生成程度䓃 測定立으로써 檢體試料의 血烃抑制作用을 判定할 수 있는데 in vivo
 4 肺悬阵이 誘尊되어 8마리 중 8마리가 죽거나
 한 aspirin에서는 8마리 중 3 마리만이 죽거나 15 分
 바리가 죽거나 15 分以上 咞焻疒 持續되어 37% 의而怪 抑制效果를 나타내었다（Table 9，Fig．8）
 이 血小极凝集以㗹에서 ADP，collagen에 의 한 凝集程度绖 低卜시키고，collagen斗 epineprine에 体 해서 誘遒된 塞栓纤서 生存率㱏 堦加시키는 것으 로 보아 血柽症을 일으키는 因子 중 血液構成成分 특히 血浆凝固区对子들의 機能을 抑制하는 것으로准定된다．

腦細胞가 虚血狀態에 빠지는 境遇는 全腦虚血과河所腦虚血豆 나눌 수 있다．全腦虚血은 䐉血流가川很되면 組織이 歁한 低酸素症 状態가 되고 이로
 （glycolysis）이 일어나게 되며 젓산증에 빠지게 되 는더 이 無酸素性 酸症이 腇橋細胞㘰 腦勫胞를 죽 게한다 ${ }^{78}$ 。 이에 反해 局所 脑虚自은 甚한 虚血状態 의 中心部终 이를 둘러싸는 不完全한 虒血狀態의周邊部로 나누인다．虚血 中心部에선 全腦虚血과 비슷한 일이 일어나나 周邊部에서는 側部循環이 部分的으로 腦血流를 供給하고 있어 細胞의 ion 傾斜는 維持되나 電氣的 活性度가 없는 狀態 가 된다 ${ }^{791}$ ．

KCN 은 細胞內 mitochondria의 cytochrome oxidase의 活性을 抑制하고 電子傅達系에서의 酵素利用을 制限하여 高energy 燐酸化合物을 枯源시 킴으로써 細胞 毒性을 發現한다 ${ }^{80}$ ． KCN 으로 誘發 된 低酸素時 腦機能障碍를 促進하는 要内으로는嫌氣的 解糖系의 元進에 起因된 lactate 등의 酸性代謝物의 菩積（組織 acidosis），循環 shock에 의 한中毒性의 腦虚血 등을 들 수 있으며 ${ }^{81.82)}$ ．rat에서 는 KCN 低酸素 時에 䐉 mitochondria의 膨化도惹起된다는 報告도 있다 ${ }^{83)}$ ．

本 實驗에서는 非致死量의 KCN으로 全腦虐血 을 誘發시킨 mouse의 作睡時間에 대한 作州을 經時的으로 檢討站 結果，䯟香•牛黃•「七根 複合 Jj이 對照群에 比하여 皆睡時間을 短縮시켰으나 15意性은 없었다（Table 10，Fig．9）．

局所 腦虚血을 일으키는 方法으로 本 貝䮰에서抎 probe豆 利用한 中人腦動脈 閉鎖一再灌流（2時間後）모델을 選擇하였으며，이 方法 ${ }^{\text {531 }}$ 은 最近에 型
迢할 수 있는 長點을 가지고 있다．

TTC溶液을 使用한 組織 損傷의 檢證은 心筋閉塞에 利用된 以後 ${ }^{84}$ ，䐉梗寨에 널리 使用되고 있다 ${ }^{86}$ 86）．正常 腦組織에서는 mitochondria 内的 存在 하는 脫水素 酵素와 TTC溶液이 以㗹하여 formazan이 形成되어 赤色으로 나타나고，腦梗塞發生部位는 紐胞內 mitochondria의 非可逆的 损傷 을 脱水素 酵素가 消失되어 白色으로 남게 되어病變 部位를 熰分할 수 있다 ${ }^{871}$ 。 그러므로 侍間 經過에 叫른 腦梗塞의 變化에 對한 TTC溶液을 利用京 觀察은 動脈 閉鎖後 脫水素 酵素의 減少 정 도에 左右되며 病變의 進行에 따라 減少速浪冲 比例된다고 알려져 있어 ${ }^{88}$ ，TTC浴液의 染色 様柤은組織의 非叮逆的 損傷 정도와 比例되므로 腦梗塞 의 時間變化에 따른 發生 位置 및 크기를 알 수 있다．

腦梗塞에 隨伴되는 腦浮腫은 腦動脈을 閉鎖人시킨 직후 數分早터 約 4時間까지 持續되는 細胞毒素性浮腫（cytotoxic edema）과 그 후 進行되는 혈관인 성 浮腫（vasogenic edema）으로 나눌 수 있다．腦動脈의 閉鎖후 곧 發生하는 輕한 腦浮腫의 原团은

뚜렷치 않으나 血腦關門（blood brain barrier）이 正常인 점으로 보아 細胞毒素性 源腫으로 생각되고 있다．腦便塞으로 因한 腦浮腫을 豫測하기는 不可能하나 腦動脈의 閉顉持續期間 또는 組織의 壞死程度에 따라 變化를 보이며 動脈閉顉後 3－4時間 부터 始作되그 12－13時間後에 뚜렷해지며，3－4日 에 頂點에 이르고 1 遇末－2週 후에 沙失된다 ${ }^{89}$ 。

䐉虛血性 病變에 起因立 腦强傷 程度의 測定은頞微鏡的 所見을 基礎로 하여 䐉細胞 微細 構造物 의 變化 或은 脑細織의 破壞 程度와 같은 病理學的 所見으로 損傷 程废를 가늠하거나 ${ }^{(90), 911}$ ，또는 腦梗塞 혹은 腦慮血性 病變 範圍线 癀範性을 基準攱 여 工 損傷 程度를 測定하는 j法으로 人別할 수 있다 ${ }^{921}$ ．

本 仳究的 日的은 中大腦動脈 閉鎖에 따른 神經

腦損傢 輕減效果豇 評價하는데 있다．
香•牛革• 三七根 複合 $j j$ 이 對照群训 比하여 fore limb의 境遇 等級의 變化가 없었고（Table 11，Fig． 10），hind limb의 境遇 operation에서는 有意性 （ $\mathrm{p}<0.05$ ）이 認促되었으나，hypoxia recirculation後에서는 有意性이 認定되지 않았다（Table 12， Fig．11）．局所 腦虚血 泊皘은 符香•牛革•
 않았으며（Table 13，Fig．12，14），淂腫縕 또한 䈔香•牛黄•三七根 複合方㕵 對照群에 比敨여 有意性있게 好轉되었다（Table 14，Fig．13，14）

以 1. 의 實驗結果로 볼 때 㸹香•牛黃•三七根複合方品 局所血流의 遮斷으로 惹起된 白鼠의 腦損傷에 있어 虚血面積의 縮小，浮揰率의 減少와神經學的 缺損程度의 回復에 有效한 것으로 認定 되므로 急性期의 腦梗塞 및 中樞神經系統에 對하 여 保護作用이 있는 것으로 思料된다．

Alzheimer＇s disease는 ⿻⿱⿻土㇒匕匕匕化와 더불어 나타나는代表的인 退行性 神經疾患으로 II 發生 原团은 正確하게 밝혀지지 않았지만 特徵的으로 腦에 senile plaque가 지나치게 많이 蓄積되는데 senile plaque 는 amyloid β protein으로 構成되어 있다는 것이

밝혀졌다 ${ }^{4 n}$ ．즉 Alzheimer＇s disease는 amyloid preceursor protein（APP）으로부터 蛋白分解된 代臫扬인 amyloid β protein이 神絰緋胞에 亩積되 어 帊經緗䖞를 죽이기 때문에 일어나는 것으로 解
 에서 神經湅胞组 대乩 amyloid β protein의 毒性 글 都告하고 있으며，이러한 惯駱에 주옫 使用되
 cellif human glioblastoma ils來의［135］cell 등 （xathool 있다．

 의 惯发에서는 紝胞毒性을 보이지 않닸다 TTable 15．Fig．15）．또한 amyloid β protein으로 唀尊된

 $0.50 \mathrm{mg}, \mathrm{ml}^{\prime}$ 및 $1 \mathrm{mg} / \mathrm{mk}$ 의 擃拨에서 각각 f 意性 있는 （ $\mathrm{P}<0.05, \mathrm{P}<0.001$ ）伿譄效果坒 나타냈다 Table 16． Fig．16）．
 이 amyloid β protein의 細胞毒性을 拥制新여 脑

 고 번虑된다．

NO는組胞間 또는 細胞內 messenger로서 뿐만 아니라 免疫學的으로도 매우 里要하지만 superoxide와 久應하여 反應性이 가장 큰 活性酸素인 hydroxyl radical을 生成하기 때문에 脑의 老
 lipopolysaccharide는 cytokine 中의 하나로서 endotoxin이라고 하는데 macrophage에 作用하면 tumor necrosis factor（TNF α ）가 仲介되어 ‥酸化窒素（nitric oxide， NO ）를 生牫하는 것으로 알려져 있다 ${ }^{1(13)}$ ．

本 貝驗에서는 RAW cell에 lipopolysaccharide
 때 어느 정도 NO production을 抑制하는지 살펴
 였다．Lipopolysaccharide로 唀戻한 RAW 細胞의 NO production에 對한 抑制交果䓃 軋察한 結果，
 에 比站여 濃度依行的으로 각가 有禺性 있는 （ $\mathrm{P}<0.001$ ）排制效果豆 나타냈다 Table 17．Fig 17）．

이것 ̌ㅡㄴ NO가 neuronal cells게 作州하였을 uh

 고，而小板凝集哭 肺塞桎을 抑制 하였으며， MCA
 amyloid β protein에 의한 新胞葛性에 保護效果 가 있었드며．NO production 들 냉⿰⿻⿰㇒⿻二丨冂刂⿱亠巾刂灬하였다．따라
损備에 话川檟値가 있을 것으로 보여자며，ㅡㅡ 機

V．結 諞

傷에 미치는 效果豆 보기 워하여 高脂血症 誘發
唀腾 實驗，amyloid β protein으로 誘導ㅚㅚㄴ 細胞毒性 및 lipopolysaccharide로 誘發한 RAW 細胞의 NO production에 미치는 影響에 關한 實驗을 灺行한 結果 다음과 같은 結論을 언었다．

1．高脂血症 實驗 結果 血淸 total cholesterol， phospholipid，LDL－cholesterol의 含量은 有意性 이 있었으나，triglyceride，HDL－cholesterol， VLDL－cholesterol에서는 有意性이 없었다．

2．血小板凝集 測定 結果 ADP 에서는 36.05% ， collagen에서는 20.4% ，thrombin에서는 0.6% 의 抑制效果를 나타냈다．

3．版塞栓 實驗에서 37% 의 抑制效果를 나타내 었다．

4． KCN 誘發 昏睡時間에서는 有意性이 없었다．
5．局所腦虚血 實驗 結果 神經學的 缺損程度의變化는 hind limb의 operation에서만 有意性이 있 었으며，虛血面積乎 浮腫率은 모두 有意性있게 나 타났다．

6． PCl 2 細胞䄆 細胞毒性에 對한 實驗에서 濃度依存的으로 有意性 있는 腦細胞 保護效果를 나 타냈다．

7．NO production에 對한 實驗 結果 有意性 있 는 抑制 效果가 나타났다．

以上의 實驗結果로 보아 㙶香•牛黃• 三七根 複合力的 高脂血症 및 腦損傷에 活用價値가 있을 것 으로 思料된다．

參考文獻

1．統計島富 ：사망원인통계연보（1995），서울，웃고 문화사， $\mathrm{pp} .21-57,1997$.

2．의학교육연수원 ：가정의학，서울，서울대학교 출판부，pp．294－319，343－348， 1996.

3．金鍾石 譯：腦卒中의 豫防斗 治療，大邱，裕盛出版社，p．1，pp．15－142， 1996.

4．黃文東 외：實用中醫內科學，上海，上海科學技術出版社，pp．332－345，378－381，414－423， 439－450， 1986.

5．徐舜表 ：成人病•老人病學，서울，고려의학， pp．37－49，77－83，107－122，137－139，142－149， p．151，pp．155－158，p．186，pp．189－193，196－201， 1992.

6．李文鎬 외：內科學，서울，金岡出版社， pp．1495－1503，1588－1591，1825－1830，1856－1859， 1979.

7．朴忠緒 ：神經學，서울，高文社，pp．70－80， 1983.

8．李貴寗 외 ：임상병리퐈일，서울，의학문화사， pp．107－109，124－129， $635-637$, p．765，860， pp．919－922，931－934， 1990.
9．이혜리：高脂血症，家庭䣽，8（7）：14－17， 1987.
10．祭錫範 ：脂肪質攝取神 已丛面白代謝，大韓㷠學協會誌，31（9）：925－930， 1988.

11．金井泉 외：臨床檢査法提要（29th ed），서울，高文刑，pp．311－455，711－713， 1984.

12．全或韓䣽科大學 心采内科學教堂 編：東醫心系約科學，서울，書苑堂，（上）p．200，pp．202－237， 400－407，448－462，p．485，（下）pp．89－93，97－107， p．113，163，pp．336－338，346－353， 1995.

13．해리슨번역편찬위원회 역 ：Harrison 내과 학，서울，정담，pp．341－346，1145－1165， 1189－1119，1944－1958，2409－2435， 1997.

14．홍사석 ：이우주의 약리학강의，서울，선일문 화사，pp．378－379，p．397，401， 1990.

15．陳 輝 외：實用中醫腦病學，北京，學苑出版社，pp．242－243，791－797， 1993.

16．届松柏•李家庚：實用中缶心血管病學，北京，科學技術文獻出版社，p．88，pp．128－129，143－144， 179－184，290－327，347－353，423－445， 1993.

17．具本㳂 외 ：東醫队科學，서울，書苑堂， pp．493－503， 1985.

18．張隱庵 외：黃帝内經素問靈樞合編，臺北，臺聯國風出版社，（素問）p．20，66，89，91，198，204， 218，286，291，294，408，412，422，629，（靈樞） p．180，199，306，388，405，435，445，468， 1972.

19．孫思漞：備急千金要力，北京，人民衛生出版社，pp．153－154， 1982.

20．劉完素 ：劉河間三六書，서울，成輔社， pp．37－41，281－282，341－342， 1976.

21．李 呆：東坦十種醫書，서울，大星文化社， pp．635－636， 1983.

22．万 廣 ：斗溪心法附餘，서울，大星文化到，
pp．67－68， 1982.
23．土勳烃 編 ：㙠林改錯，서울，一中社， pp．85－86， 1992.

24．唐容川 ：血證論，台北，力行書局有限公司， pp．115－120， 1973.

25．中㙠研究院 主編：中㙠症狀鑑別診断鼻，北京，人民衛生出版社，pp．73－74， 1987.

26．李晌1：외 ：漢薬臨床㦄用，서올，成輔垪， pp．470－472，476－478， 1982.

27．康原秀 金永坡 编著：臨床配台本草學，서 울，永林杜，pp．337－339，344－345， 1994.

28．申佶求 ：申氏本草學，서울，壽文社， pp．505－508，717－718， 1988.
館，pp．125－127，308－310， 1990.

30．李晑氏 외：本草學，서울，修書院， pp．359－360，417－419， 1981.

31．盧鉉泰：牛黄斗 哏香의 混合投與计 白鼠의鲻損傷에 미치는 影業，大田大學校大學院， 1993.
 치는影響，大田大學校大學院， 1996.

33．金照景：身痛逐瘯湯이 高血䐎 呟 高脂血症 에 미치는 影響，愛照大學校大學院，1993．
34．宋美德：海心降火丸이 高血脂 哭 高脂血에 미치는 影製，慶照大學校大學院， 1995.
35．李龍餀：兩儀拱辰丹이 高血照 洖 高脂血症 에 미치는 影響，剫哭大學校人學院，1995，
36．姜和廷：大承氣湯이 高血䄳 喿 高脂血症叺 미치는 影製，大丮大學校大學院， 1995.

37．南昌表：凉腰敬火湯이 高血壓 및 高脂血凊 예 미치는 影製，大田大學校大學院， 1995.
38．李大植：高血柴 및 高脂血症軘 對站 清熱導淡湯线 實驗的 矿究，慶照大學校大學院， 1992.

39．金永錫：血栓症 및 高粘度血症에 對한 鲎蹛飲斗 叫后子湯等 實験的 研究，大韓韓矮學會誌， 14（1）：114－128， 1993.

40．金永錫：血栓症 및 高粘度血症에 對部 赏蹢欲과 黄連解毒湯의 實驗的 比較 研究，度照煪學， 7（3）：322－333， 1991.
41．安主錫：蚚蚓，水蛭，蜻螬 및 蜈蚣의 血栓症

에 미치는 影響，大韓韓嫛學會誌，11（2）：92－101， 1990.

42．金聖勳 ：复元活血湯 및 補陽造九湯이 endotoxin으로 誘發된 血怪生伐抑制咞 미치는 影響，東義大楽校大學院， 1994.

43．本保英 ：特香이 생줘의 脉捻傷에 미치는 影響，大韓韓煪學血話，16（1）：229－310，1995

44．柳鍾三：星香归：氣散이 门鼠线 䐉損儌에 미 치는 影響，人井大學校人學院，1993．
 는影響，大田大學校人學院， 1993.
 치는 影響，大畘大學校大學院， 1993.
47．康永楾：遠志外 石号蒲㭔 單獨 및混合投與 가 的鼠의 慆損澽에 미치는 影響，大田人學校大學院， 1997.
 에 미치는 影響，大田大學校大學侻， 1998.
高粘度血症，高血壂 및 胉損傷에 미치는 影響，大由日學校大學院， 1998.
50．Naito，M．，Yasue，M．Asai，K．，Yamada， K．，Hayashi，T．，Kuzuya，M．，Funaki，C， Yoshimine，N．，Kuzuya，F．：Effects of dexame－ thasone on experimental atherosclerosis in cholesterol－fed rabbits．J．Nutr．Sci．Vitaminol． Jun．，38（3）：255－264， 1992.

51．Rubinstein，L．V．，Shoemaker，R．H．，Paull， K．D．，Simon，R．M．，Tosini，S．，Skehan，P．， Scudiero，D．S．A．，Monks，A．，and Boyd，M．R．： Comparison of in vitro anticancer－drug－screening data generate with a tetrazolin assay versus a protein assay against a devise panel of human cell lines．J．Natl． Cancer Inst．，2（13）：1113～1118， 1990.
52．Bom，G．V．R．and Cross，M，J．：The aggregation of blood platelets．J．physiol．， 168：178－195， 1968.

53．Kimura，Y．，Tani，T．，and Watanabe，K．： Effect of cilostazol on platelet aggregation and
experimental thrombosis．Arzneim．Forsch．／Drug Res．，35（II）：1144－1149， 1985.

54．Schubert，J．，Brill，W．A．：Antagonism of experimental cyanide toxicity in relation to the in vivo activity of cytochrome oxidase．J． Pharmacol．Exp．Ther．，162（2）：352－359， 1968.

55．Nagasawa，H．and Kogure，K． Correlation between cerebral blood flow and histologic changs in a new rat model of middie cerebral artery occlusion．Stroke，20：1037－1043， 1989.

56．Benderson，J．B．，Pitts，L．H．，Tsuji，M．， Nishimura，M．C．，Davis，R．L．and Bartkowski，H． ：Rat middle cerebral artery occlusion ； Evaluation of the model and development of a neurologic examination．Stroke，17：472－476， 1986.

57．Hatanaka，H．：Nerve growth factor－mediated stimulation of tyrosine hydroxylase activity in a clonal rat pheochromocytoma cell line．Brain Research， p．222，pp．225－233， 1981.

58．이복수：Regulation of nitric oxide synthase gene expression by cytokines in murine macrophages，충남대학교대학원， 1994.

59．大韓醫學協會 分种學會協議會：高血然，서 울，醜女閣，pp．1－22， $37-39,52-62,103-111$ ， 264－269， 1986.

60．醫學教育硏修院：薬物療法，서울，서울大學校什版部，pp．135－152， 1988.

61．金辰寺：고지혈증과 동맥경화의 발생기전， 임상약학，9（11）：51－58， 1991.

62．남선우 외 ：고혈압 환자에서 발생한 뇌졸중 유형관련요인에 관한 연구，대한신경과학회지， 13（2）：171－176， 1995.

63．李三悅：踟床病理解釋法，서울，연세대학교 출판부，p．35，pp．144－45，49－ $54,116-117$ ， 128－137， 1991.

64．高文社編輯部：臨床檢査法提要，서울，高文社，p．31，312，pp．429－450，p．813， 1984.

65．명호진 외：最近 國內 腦卒中의 力學的 動

向에 對站 研究，大韓神經外科學會誌，7：179， 1989 ．
66．솧일한 외：우리나라 腦卒中의 最近 10年間變化樣相에 對站 研究，大韓队科學會誌， 43（5）：637－644， 1992.

67．조헌일 외：腦血栓症의 血漿 遊離脂肪酸 變動 및 耐糖能에 關站 砤究，大韓內科學會誌， 29（1）：80－88， 1985.

68．金永安：牛黃이 白鼠의 脑損傷에 미闵는 影问，大田大學校人學院， 1994.

69．安鐸源：人體 慢性骨髓性白血病細胞（K562） 에 미치는 牛黃과 각 抗癌劑线 件用效果，大田大學校大學院， 1993.

70．段載淳 외：암세포주에 대한 우황 50% MeOH 엑스와 항암제의 병용효과，全州义不大學校論文集（自然科學篇），1994．

71．Havel，R．J．：Role of triglyceride－rich lipoproteins in progression of artherosclerosis． Circulation，81：694－696， 1990.

72．Predo－Botet，J．，Sentti，M．，Nogues，X．， Roquer，J．，D＇Olinaberriague．，Olive，J． Lipoprotein and apolipoprotein profile in men with ischemic stroke．Stroke，23：1556－1562， 1992.

73．김시영 외 ：뇌졸중과 HDL subfraction 에 관한 연구，대한내과학잡지，28（8）：790－794， 1983.

74．Siesjo，B．K．：Acidosis and ischemic brain damage．Neurochem．Pathol．，9：31－88， 1988.

75．이근후 외 ：최신입상정신의학，서울，하나의 학사，pp．138－139， 1988.

76．대한신경외과학회 ：신경외과학，서울，중앙 문화사，p．304， 1992.

77．Gresele，P．，Zoja，C．，et al．：Dipyridamole inhibits platelet aggreg－ation in whole blood， Thrombo Hemostasis，50（4）：852－856， 1983.

78．Plum，F．：The clinical problem ；how much anoxia－ischemia damages the brain？Arch Neurol．，29：359－360， 1973.

79．Astrup，J．，Sjesio，B．K．，Symon，L． Thresholds in cerebral ischemia－the ischemic penumbra．Stroke，12：723－725， 1981.

24 大田大學校 韓堅學研究所 論文集 第8卷 第1號

80．Thomas，M．，Devlin．：Textbook of Biochemistry with clinical comrelations．WILEY MEDICAL．PUBLICATION，pp．311－318， 1982.

81．後藤相穴 외：TJ－8007（ツムラ續命湯）$) ~$ 樂理學的做究，低酸素性胸障害保護作用，日薬埋誌， 89：355－363， 1987.

82．Vincent，J．，Collins．：Physiologic and Pharmacologic Bases of Anesthesia．Williams \＆ Wilkins，pp．479－491， 1996.

83．American College of Emergency Physicians ；Emergency medicine，Mc（iraw－Hill， pi．1014－1018， 1996.

84．Fallon，J．T．：Simplified method for histochemical demonstration of experimental myocardial infarct．Circulaton，60（supple 2） ：11－42， 1979.

85．Bose，L．B．，Jewell，L．O．，Berry，R．：A reproducible experimental model of focal cerebral ischemia in the cat．Brain Res．， 311 ：385－391， 1.984.

86．Han D．，Zervas NT．，Geyer RP．，et al． Can perflurochemicals reduce cerebral ischemia？ In Reivich M．Hurting HI（eds）：Cerebrovascular disease．Raven Press，New York，pp．409－419， 1983.

87．Nachlas，M．M．，＇Tson，K．C．，Souza，E．D．，et al．：Cytochemical demonstration of succinic dehydrogenase by the use of a new p－nitrophenyl substituted ditetrazole．J． Histochem．Cytochem．，5：420－436， 1963.

88．Fine，G．，Morales，A．，Scherpella，J． Experimental myocardial infarction．Arch． Pathol．，82：4－8， 1966.

89．김현집 ：국소 뇌경색 급성기에서의 재관류 에 관한 실험적 연구，서울대학교， 1990 ．

90．박세혁 외 ：실험적 뇌경색후 신경학적 및 병리학적 소견에 대한 nimodipine의 호과，대한신 경과학회지， $19: 5-13,1990$ ．
91．Garcia，J．H．，Kamijyo，Y．：Cerebral infarction．Evolution of histopathological changes
after occlusion of a middle cerebral artery in primates．J．Neuropathol．Exp．Neurol．， 33：408－421， 1974.

92．박춘근 외 ：실험적 중대뇌둫맥 폐놰에 의 한 자연성 허혈성 뇌경색，제 1 부：뇌경색의 시간경과예 따른 변화，대한신경외과학회지，18：505－514， 1989.

93．George，G．，GLENNER，Caine W．WONG．
Alzheimer＇s disease：initial report of the purification and characterization of a novel cerebrovascular amyloid protein．Biochem． Biophys．Res．Commun．，120（3）：885－890， 1984.

94．Kang，J．，Lemaire，H．－G．，Unterbeck，A．， Salbaum，M．N．，Masters，C．L．，Grzeschik，K．－H．， Multhaup，G．，Beyreuther，K．，and Mueller－Hill， B．：The precursor of Alzheimer＇s disease amyloid A4 protein resembles a cell surface receptor．Nature，325：733－736， 1987.

95．Selkoe，D．J．：Alzheimer＇s disease ；a central role for amyloid．J．Neuropathol．Exp． Neurol．，53：438－447， 1994.

96．Busciglio，J．，Lorenzo，A．，and Yankner， B．A．：Methodological variables in the assessment of beta amyloid neurotoxicity． Neurobiol．Aging，13：609－612， 1992.

97．Mattson，M．P．，Tomaselli，K．J．，and Rydel， R．E．：Calcium－destabilizing and neurodegenerative effects of aggregated beta－amyloid peptide are attenuated by basic FGF．Srain Res．，621：35－49， 1993.

98．Frautschy，S．A．，Baird，A．，and Cole，G．M． Effects of injected Alzheimer beta－amyloid cores in rat brain．Proc．Natl．Acad．Sci．USA．， 88：8362－8366， 1991.

99．Kowall，N．W．，Beal，M．F．Busciglio，J．， Duffy，L．K．，and Yankner，B．A．：An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P．Proc． Natl．Acad．Sci．USA．，88：7247－7251， 1991.

100．Greene，L．A．，and Tisvhler，A．S． Esteblishment of a noradrener－gic clonal line of
rat pheochromocytoma cells which respond to nerve growth factor Proc. Natl. Acad. Sci. USA., 73:2424-2428, 1976.
101. Pfreundschuh, M., Shiku, H., Takahashi, T., Ueda, R., Ransohoff, J., Oettgen, H.F., and Old, L.J. : Serological analysis of cell surface antigens of malignant human brain tumor. Proc. Natl. Acad. Sci. USA., 75:5122-5126, 1978.
102. Beckman, J. S. : Peroxynitrite versus hydroxy radical; the role of nitric oxide in superoxide-dependent cerebral injury. Ann. N. Y. Acad. Sci., 738:69-75, 1994
103. Ivan Roitt, Jonathan Brostoff, David Male. : Immunology, pp. 8-10, 1992.
104. Abe, K., Yuki, S., and Kogure, K. : Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger, Stroke, 19:480-485, 1988.

[^0]: ＊大田大學校 韓樽科大學 肺系內科學数空

