老化過程의 흰쥐에서 補腎丸이 腎臓의 代謝酵素系에 미치는 影響

採曼成•哭聂錫•穼泰元＊

Abstract
 Effect of BOSINHWAN（BSH）Water Extract on Renal Lipid Peroxide Content and Metabolic Enzyme System．

Sor Min－sung，Oh Min－suk，Song Tae－won．
Dept．of Oriental Medicine
Graduate School Tae jon University

The experimental studies were carried out in order to prove the effect of BSH water extract on Renal lipid peroxide content and metabolic enzyme system experimental studies about peroxide content，transferase，enzyme activity were carried out．

The result were obtained as follows：
1．In the change of lipid peroxide of renal tissue，all group was decreased，more of two weeks was decreased．
2．In the change of BUN of renal tissue，all group was decreased．
3．In the change of LDH of urine，all group was not significant．
4．In the change of γ－glutamyltransferasde，Xanthine oxidase，Aldehyde oxidase of urine，all gr oup was decreased．
5．In the change of protein－bound SH ，nonprotein－bound SH ，glutathione，glutathione S －transfer ase， \mathbf{v}－Glutamylcystein synthetase of renal tissue，all group was increased．

From above results，BSH was had significant effects on the senile，so it is expected to clinical application on senility and geratology．

I．緒 論

老化는 人體의 生理的인 過程 中의 하나로 各自 의 先天的인 菜碔와 後天的인 睘境 및 各北泋 含有하고 있는 精神機能에 따라 老化가 다르개 表出 되고 있다 ${ }^{1-2)}$ ．

[^0]韓㲛學의 古典인 《黄帝內經》〈靈梪•千年篇

而終矣．＂计 하였으며，＜素問•陰陽應象大論＞${ }^{3-4)}$ 에 서는＂年四十而陰氣自牛也，起居变矣，年五十體重，耳目不聰明矣。年六十，陰瘘，氣大衰，九敨不利，下慮上：實，涕泣俱出矣．故日，知之則强，不知則老，＂计 하여 无十歲 以 L 이 되면 老人으로서의 變化가 나

타나므로 이를 알고 崣生을 하여야한다고 說明하 고 있다 ${ }^{5-6}$ ．

西䣽學的인 老化의 概怠으로는 消耗說斗 遺傳子註로 나누고，消耗說은 다시 直㨲的인 原因으로 생각되는 有毒代謝産物의 蓄積과 遊離酸素基理論 （free radical theory），誤謬理論（error catastrophe theory）등으로 나누며，遺傳子說은 豫定誰，體細胞筫然變異㺮論（somatic mutation）哭 㖕劃理椧 （programmed theory）등이 있고 이 f1에서도 游離
 있는 費情이다 ${ }^{7-111}$ ．

한편，腎裁은＂臟腑之本，十二脈之根，呼吸之本，三焦之源＂으로 人身의 坐旻•發真過程䄭 關眑이 있으呩，＜素間•上古天眞論〉 ${ }^{3 \prime}$ 에＂天㙵渦度，粟脈常通，而腎氣有餘也＂라 하여 聚氣의 䀆殔興否泋啇命咕密接한 關聯이 있음을 알 수 있다．
分野애 該當되는 것을 살朋보면 高旤籼參，高彨人
 한 論文 ${ }^{(3-15)}$ ，鹿菱地黃湯，大味地黃湯，庄䟿飲东 右解飲，定志丸 等线 複合處力乎 利朋站 論文 ${ }^{(6-21)}$ ，
利用部 諭文 ${ }^{22-36)}$ 및 理學的 因子珸 利用站 硏究 ${ }^{277}$ 등으로 㾔分할 수 있는데，그 중에서 補砇하는 樂物 닟 處万이 I 從을 이루고 있었다．

이에 著者는 實際臨床에서 가장 多用되는 䣽書
 ゆ腎水不足斗 陰虚牛 活用되는 補腎丸의 抗老化作用을 萁驗的으로 立證하고자 補腎丸 前湯液을老化 흰쥐（ 32 週䶔， 500 g 內外）에 投與하工 腎臟队
 있는 成綪을 얻었기에 報告하는 바이다．

II．實 驗

1．材料

1）試楽 哭 器具

試薬중 atp－disodium salt，glycylglycine， sodium dodecyl sulfate，thiobarbituric acid，

5，5－dithiobis－2－nitrobenzoic acid，sulfamic acid ammonium ，sulfanilamide，glutathione，edta， trichloroacetic acid，ninhydrin reagent，cysteine， xanthine sodium，nad，uric acid，n－methyl nicotinic chloride，2－pyridone， 1－chloro－2，4－dinitrobenzene，tris hcl，1－glutamic acid，atp，oxidized glutathione，nadph，bovine serum albumin는 Sigmatit로부터， malondialdehyde는 Aldrich勍로부터 購入하였으며， blood urea nitrogen kit（Iatron Lab．Japan）， lactate dehydrogenase kit（AM 159－K，Asan）를使用㖕였으때，工利 試樂은 特級 또는 級試樂을使用하였다．

惯驗에 使用한 器機로는 spectrophotometer （Shimadzu UV－240），high centrifuge（Hanil， HMR－1610V），ultra centrifuge（Hitachi，695－7）， light microscopy（Olympus $\mathrm{BH}-2$ with C－35－AD2），cold lab，chamber（Korean Manhattan，KMC－8512）등을 使用하였다．

2）材料
（1）樂材的 選擇
本 實驗에 使用한 樂別는 大田大學校 附漛 韓力㨅院听서 睛入하여 嚴選한 것을 使用 하였으며，
 의 虞方队容新 分量은 다음과 같다．

Prescription of BOSINHWAN（BSH）

韓薬名	生楽名	重量（g）
龜板	Testudinis Carapax	8
知母	Anemarrhen Rhizoma	6
黃柏	Phellodendri Cortex	6
乾㖹	Zingiberis Rhizoma	2
Total amount		22

（2）動物
實驗動物로는 韓國實驗 動物開發로 부터 分讓 반은 雄性 Sprague－Dawley계 正常횐쥐（週歯 6遇， $180 \pm 10 \mathrm{~g}$ ）및 老化횐쥐（週齢 32 週， $550 \pm 10 \mathrm{~g}$ ）를 實驗室에서 1 週日乓안－定한 條件（溫度： $20 \pm 2^{\circ} \mathrm{C}$ ，瀿度： 50% ，明暗： 12 시간 light／dark cycle）에서 秱育한 후 使用하였다．對照群은 同一量의 生理食穓

水를 投與하였다．實驗돟물은 실험前 24 시간 동안 물만주고 絶食하였다．

2．万法

1）檢液의 製造老化過程의 환쥐에서 補腎丸이
上記 處力 20 貼의 分量 440 g 을 水洗하여 蒸溜水로 2回8시간씩 3 回 還流 冷却器에서 反復 貫施 한 後 抽出物을 모아 rotary evaporator로 淢壂 濃縮하여 造抽出物을 冷谏乾燥하여 粉末 69.1 g 을 얻 어 本 書驗에 必要로 하는 湄度로 生理食盬水로稀䆁하여 使用하였다．

2）檢液의 投與
檢液의 投與는 正常횐쥐 10 마리 1 群과 老化횐쥐 10 마리를 3 群으로 나누어 소期間 동안 正常 횐쥐 에 生理食監水账 投與站 正常群（Normal），老化 횐
 횐쥐에 補腎如 抽出物을 用量別（ $100,200,300,400$ $\mathrm{mg} / \mathrm{kg}-\mathrm{BSH} \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ 로 投與한 群으로 各各
 하여 2週間 投與하였다．

3）醋素源纥 娚製
質驗動物을 CO_{2} gas로 栕醉 시킨 产 腹部正扣線을 따라 可開站⼯ 腹部大動脈冽柎 血液을 採取 하였다．이 血液을 $3,000 \mathrm{rpm}$ 에서 15 分間 違心分離 하여 얻은 血清을 blood urea nitrogen（BUN）의测定의 醏素源으로 使用하였으며，水는 metabolic cage에서 24時間 尿를 採取하여 600 xg 에서 20 分間 遠心分離하여 上騰液을 取하여 lactate dehydrogenase（LDH）및 γ－glutamyltransferase （ γ－GT）의 活性을 測定하였다．腎臟을 摘壮하여
 을 除去하고 평량한 다음 0.1 M potassium phosphate buffer（ pH 7．4）롤 添加하여 glass teflon homogenizer로 磨碎하여 10% 로 하였다．이磨碎液을 600 xg 에서 10 分間 遠心分離하여 核 및未磨碎 部分을 除去한 上騰液을 $10,000 \mathrm{xg}$ 에서 20分間 遠心分離하였다．이 上騰液을 $105,000 \mathrm{xg}$ 에 서 1시간 超遠心分離하여 cytosolic fraction으로， ב 沈瑖物에 同一한 量에 0．1M potassium phosphate buffer를 가하여 현탁 시킨 液을 microsomal fraction으로 하였다．腑碎液은 蛋白

結合 SH，非蛋白 結合 SH，脂質過酸化의 含量 哭 glutathione의 含量을 測定하였으며，cytosolic fraction은 xanthine oxidase，aldehyde oxidase， glutathione S－transferase，glutathione reductase 및 v－glutamalcystein synthetase 活性线 酵素源으 로 使用하였다．以上의 모든 造作은 따로 規正이 없는한 $4^{\circ} \mathrm{C}$ 이하에서 行하였다．（Sheme I）

Scheme I．Preparation of mitochondrial， microsomal and cytosolic fractions

4）Blood urea nitrogen의 測定
市販 kit（Iatron Lab．Japan）를 使用하여 urease－indophenol法 ${ }^{299}$ 으로 測 定하였다．즉 血清 에 酵素試液을 가한 후 $37^{\circ} \mathrm{C}$ 에서 15 分間 放置 시 킨 후，이곳에 次业鹽素酸 試液을 加하여 540 nm 에서 吸光度를 測定하여 檢量線에저 活性度总 算定하였다．

5）尿中 lactate dehydrogenase ㅇ 活性 測定
汸中에서 購入한 $\operatorname{kit}(A M 159-K, A s a n)$ 를 使用 하였다．師 器質液（ 100 ml 當 잦산리튬 2.31 g 및 tris－hydroxymethyl aminomethane 2.42 g 含有）과晶色試液（ 100 ml 當 NAD 574 mg 哭 1－methlphenassium metalsulfate 3.4 ml 含有）을

1：1로 混台하여 $37^{\circ} \mathrm{C}$ 에서 5分間 preincubation한 후
义䜿을 終广시켜 波長 570 nm 에서 ㄱ 吸光度를 읽 ㄱ工標準井線에서 工 活性度总 算定하였다

6）永中 γ－glutamyltransferase ㅇ 活性 湘定
40 mM glycylglycine 을 含䨤하는 Tris緮衝液（ pH 8．2）의 必惟液咧 水琶 加하여 405 nm 에서 吸光度를澌迫하여 生或되는 p－nitroaniline을 測题하였다

（1）脂斯過酸化经 盆昌 測㱜
Ohkawa 등의 万法 ${ }^{301}$ 에 体站种 檠 組織 1 g 당 9
 8.1% sodium dodecyl sulfate와 20\％acetate buffer $(\mathrm{pH}$ 3．5）및 弡色의 目的으로 0.8% thiobarbituric acid를 가한 후 $95^{\circ \prime} \mathrm{C}$ 에서 1 시간 동 안 反隹 시킨 후 室溫에서 冷却 시켜 $\mathrm{n}-\mathrm{BuOH}$ pyridine（15：1）을 浱加하여 15分間 遠心分離 시킨 후 紬色의 $\mathrm{n}-\mathrm{BuOH}$ ：pyridine噟을 取하여 波辰 532 nm 에서 工 工 吸光度总 測定하여 標凖井線에서 그 含量을 㛑 組織 \lg 당 malondialdehyde nmole 로 表示하였다．

0.2 M tris buffer（pH 8.2$) \quad 1 \mathrm{ml}, \quad 0.01 \mathrm{M}$ DTNB（5，5＇－dithiobis－2－nitro
benzoic acid） $0.1 \mathrm{~m} \mathrm{\ell}$ ，methanol 4 ml 를 取한 후 여기에 homogenate 0.1 ml 를 取하여 $24^{\circ} \mathrm{C}$ ， 15 分間放置하였다．이것을 4000 rpm 에서 30 分間 遠心分離 한 후 上騰液을 412 nm 에서 吸光度를 测定하여 全體 蛋向 SH濃度를 구하였다．여기예서 非蛋白 SH濃度를 除하여 蛋向結合 SH濃度를 計算하였다．
（3）非蛋白結合 SH濃度의 測定
Higash法 ${ }^{311}$ 에 의 해서 測定效으며 homogenate에同量의 10% trichloroacetic acid 溶液을 加하여 遠心分離한 上騰液을 sample로 하였다．對照群 $0.1 \mathrm{~m} \mathrm{\ell}$ 에 0.01 M NaNO 2 lvol．과 $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} 9 \mathrm{vol}$ ．을 混台調製하여 0.5 ml 를 加한 다음에 5分間 放㯰시켰 다． 0.5% sulfamic acid ammonium 收容抜 0.2 ml 를 加하여 강하게 混合한 후 $1 \% \mathrm{HgCl}_{2} 1$ vol．과 3.4% sulfanilamide $/ 0.4 \mathrm{~N} \mathrm{HCl} 9 \mathrm{vol}$ ．혼합을 $1 \mathrm{~m} \mathrm{\ell}$ 加 하였다．

그리고
0.1%
$\mathrm{N}-1$－naphthylethylenediamine $/ 0.4 \mathrm{~N} \mathrm{HCl}$ 落液 $1 \mathrm{~m} \ell$加하고 5 分 후 540 mm 에서 吸光度登 測运하였다標淮溶液으로서 125 nM glutathione 溶液을 使用部 였다．
（4）撉 組織中 glutathione의 足显
Gaitonde의 广法 ${ }^{32}$ 을 약간 變更하여 10% 路組織 1 ml 에 1 mM EDTA가 苢住된 5% trichloroacetic acid를 师하여 速心分離한 후 ！腾液 0.5 ml 를 收하여 0.5 ml ninhydrin 侙樂을 川한 후 10分間 加熱하여 冾水에 掵卸하고서 560 nm 에 세 吸废度豆 測运剠있다 이곳에서 non－protein－SH에서 cysteine을 제한값을 glutathione의 量으로 하였다．

8）腎臓中 酵素活性的 測定
（1）Xanthine oxidase의 活性 湘足：
Stripe와 Della Corte의 方法：${ }^{333}$ 에 淮하여 0.1 M potassium phosphate buffer $(\mathrm{pH}$ 7．5）에 器犋인 xanthine sodium 과 酵素源 및 货了收容醴인 NAD 를 加하여 $37^{\circ} \mathrm{C}$ 에서 反應 시킨 다음 20% trichloroacetic acid를 加하여 除蛋向 시키㒰 遠心分離하여 上騰液을 취한 후 生成到는 踏酸의 吸光度를 292 nm 에서 测定하여，xanthine dehydrogenase와 xanthine oxidase 活性度의 合ㅇ
酸의 量을 波長 292 nm 에서 읽은 값을 xanthine oxidase 의 江性度로 計算하였다．酵素의 活性度는
 nmole로 表示하였다．
（2）Aldehyde oxidase ㅇ 活性 湘定
Rajagopalan등의 方法 ${ }^{34)}$ 에 集하여 0.1 M potassium phosphate buffer： pH 7．5）에 器質인 n－methyl nicotinic chloride와 酵素液을 쌔하여 $37^{\circ} \mathrm{C}$ 에서 反應 시킨후 生城物인 2－pyridone을 波辰 300 nm 에서 吸光度의 변화悹 일고 检量線에 潐 하여 活性度资 算定㖕였다．酼素의 活性度泣 1 分間 1 mg 虫向質이 生成 시킨 2－pyridone을 nmole 로．表示하였다．
（3）Glutathione S－transferase 의 活性 測边
Habig등의 方法 ${ }^{35)}$ 에 準하여 反䧹液 3.5 ml 에 0.1 M potassiume phosphate buffer $(\mathrm{pH} 6.5)$ 에
$1 \mathrm{mM} \quad$ glutathione，$\quad 1 \mathrm{mM} \quad 1$－chloro 2．4－dinitrobenzene 및 0.1 ml 酵素液을 加하여 $25^{\circ} \mathrm{C}$ 에서 2 分間 反應 시킨 후 이때 生戊되는 thioether를 340 nm 에서 吸光度의 變化를 읽고 吸光計數 $9.6 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$ 을 利用하여 酵素의 活性度 를 算定하였다
（4） V －Glutamylcystein synthetase의 活性 測是
Meister와 Richman의 J法 ${ }^{36}$ ）에 準하여 汉㗹液 $3.5 \mathrm{ml} \ddagger \quad 0.1 \mathrm{M}$ tris HCl buffer $(\mathrm{pH} 8.0), 8.9 \mathrm{mM}$ L．－glutamic acid， 0.94 mM EDTA， 3.2 mM $\mathrm{MgCl}_{2} \quad 1.35 \mathrm{mM}$ ATP 와 酵素液 $(100-300 \mu \mathrm{~g}$蛋白質）을 加하여 $37^{\circ} \mathrm{C}$ 에서 10 分間必膲시킨 후 spectrophotometer를 利用하여 吸光度 600 nm 에서酵素의 活性을 測定하였다．
（5）Glutathione reductase의 活性 測定
Mize and Langdon의 方法 ${ }^{371}$ 에 潐하여 反應液 $3.0 \mathrm{ml} \mathrm{q}^{2} 0.1 \mathrm{M}$ potassium phosphate buffer $(\mathrm{pH}$ 7．5）， 0.94 mM EDTA， 4.6 mM oxidized glutathione， 0.16 mM NADPH 哭 酵素液： $400-600$ $\mu \mathrm{g}$ 蛋由質）을 川하여 $37^{\circ} \mathrm{C}$ 에서 10 分間 反進시킨 후 340 nm 에서 NADPH 의 淢少되는 量．을 測定站 옸다．

9）蛋白質 定量 및 統計處理
歪白質线 含量은 Lowry등의 方法 ${ }^{338}$ 에 准하여 bovine serum albumin（Sigma Fr．V）을 摽淮娟으 로 하여 測定하였으며，本 實驗에서 얻어진 結果
意性 檢證은 Duncan＇s multiple range test 를 利用

하였다

III．成 績

1．腎臟의 過酸化脂質 含量에 미치는 影響

 기 위한 像備 實羷兰克 用偖別（ $100,200,300,400$ $\mathrm{mg} / \mathrm{kg}$ ）로 1 週에서 4 週間 投興하卫ㅗㅅㅓ 老化 흰쥐 의 腎臟 脂質過酸化의 含量을 觀察하였다．全 sample群에서 2遇 후부 터 有意件 있는 孌化가 나 타나쏘，二㕽：및 以下의 濃度 및 期間에서는们意性 있는 㝈化는 없었다．단지 sample B에서만期品이 지날수록 有意性 있게 減少하였다（Table 1，Fig．1）이 結果를 上臺로하여 以後의 實驗에 서는 補腎丸 煎晹液苇 $100,200,300,400 \mathrm{mg} / \mathrm{kg}$ 씩 2週間 投興하였다．

Fig．1．Effect of water extract from Bosinhwan（BSH） on hepatic lipid peroxide content in eight month rats．

Table 1．Effect of water extract from Bosinhwan（BSH）on hepatic lipid peroxide content in eight month rats

Dose	Content（MDA nmole／g of tissue）				
Group（mg／kg）	0	1	2	3	4（week）
Normal	$14.3 \pm 8.6{ }^{\text {a }}$				
Control	$36.2 \pm 7.6^{\circ}$				
BSH A 100		$37.2 \pm 8.0^{\circ}$	35.6 ± 9.2^{6}	$32.4 \pm 6.8^{\circ}$	$31.7 \pm 8.2^{\text {b }}$
BSH B 200		$21.3 \pm 6.8{ }^{\text {c }}$	$20.7 \pm 7.3^{\text {c }}$	$18.6 \pm 7.9^{\text {c }}$	$22.4 \pm 5.3^{\text {c }}$
BSH C 300		$16.7 \pm 4.3^{\text {c．d }}$	$18.9 \pm 5.6^{\text {c }}$	17.2 ± 3.9^{c}	17.5 ± 3.8
BSH D 400		18.2 ± 5.6	$16.2 \pm 3.9^{\text {d }}$	$17.6 \pm 4.3^{\text {c }}$	16.8 ± 4.6

Rats were orally administered water extract from Bosinhwan $0,100,200,300$ ， $400 \mathrm{mg} / \mathrm{kg}$ ）daily for one to four weeks．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean \pm S．D．$(\mathrm{n}=8$ ）．Values sharing the same superscriyt letter are not significantly different each other（ $p<0.05$ ）by Duncan＇s multiple range test．

2．Blood urea nitrogen의 活性에 미치는 影響
Blood urea nitrogen의 活性을 測定한 結果 對照所은 $180 \%(58.7 \pm 4.87)$ 로 顛学히 增加한 것에
 （Table 2，Fig．2）．
Table 2．Effect of water extract from Bosinhwan BSH）on blood urea nitrogen（BUN）concentration in eight month rats

Duse Croup （mg／kg！	Concentration	\％of Normal
	mg ： ml	
Normal	32.6 ± 4.15	100
Control	$58.7 \pm 4.8 i^{\prime \prime}$	180
BSH A 100	42.3 ± 3.21^{1}	131）
BSH B 200	$39.8 \pm 6.17^{\text {c }}$	12 ？
BSH C 300）	37.2 ± 4.36^{6}	114
BSH D 400	$35.6 \pm 3.21{ }^{\text {² }}$	10.5

Rats were orally administered water extract from Bosinhwan（0），100，200．300． 400 mg kg ）daily for （wo weeks The amimals were decapitated ？ 2 hr alter admanstration of last treatment of extract． The assay procedure was described in the experimental methods．Values represent mean $\pm:$ S．D．$n=8$ ）Values shating the same superscript letter are not significantly different each other（ $p<0,05$ ）by Duncan＇s multiple range test．

Fig．2．Effect of water extract from Bosinhwan （BSH）on blood urea nitrogen（BUN）concentration in eight month rats．

3．尿中 lactate dehydrogenase의 活性에 미치는影響

冰吅 lactate dehydrogenase의 活性을 測定한

結果 對照宑과 至資驗群에서 有意情 있는 變化가 없었다（Table 3，Fig．3）．
Table 3．Effect of water extract from Bosinhwan （BSH）on urinaru lactate dehydrogenase activity in eight month rats

Dose Group （mg．kg）	Activity	\％of Normal
	［／ 24 hr urine	
Normal	$27.9=3.27^{116}$	1（x）
Contrul	$33.2=2.43$	119
BSH A 100	31.3 ± 5.36	121
B．${ }^{\text {H B } 200}$	29.9 ± 341	110
BSH C 300	31.7 ± 4.46	113
BSH D 400	30.6 ± 5.43	109

［hats were orally administered water extract from Bosinhwan（0， $100.200,300,400 \mathrm{mg} / \mathrm{kg}$ ）daily for two weeks．The animals were decapitated 24 hr after administration of last treatment of extract． The assay procedure was described in the experimental mechods．Values represent mean \pm S．D．$(\mathrm{n}=8)$ ．Values sharing the same superscript letter are not significantly different each other（p＜0）On hy Duncan＇s multrple range test ns：not simnificant

Fig．3．Effect of water extract from Bosinhwan（BSH）on urinaru lactate dehydrogenase activity in eight month rats．

4．氺中 γ－glutamyltransferase의 㕆性에 미치 는 影響

尿申 γ－glutamyltransferase 의 活性을 湘定한
 것에 比하여 $300 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 166%（ 36.2 士 3.12 ）， $400 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $174 \%(35.0 \pm 3.30)$ ， $200 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 182%（ 39.8 ± 4.27 ）， $100 \mathrm{mg} / \mathrm{kg}$ 을 投與故 群 $199 \%(43.2 \pm 3.19)$ 의 順으로 有意性

있는 減少를 나타내었다（Table 4，Fig．4）．
Table 4．Effect of water extract from Bosinhwan （BSH）on urinary γ－glutamyltransferase in eight month rats

Dose Group （mg／kg）	Activity	
	$\mathrm{U} / 24 \mathrm{hr}$ urine	
	$21.8 \pm 3.15^{\mathrm{a}}$	100
Control	$69.8 \pm 5.62^{\mathrm{h}}$	320
BSH A 100	$43.2 \pm 3.19^{\mathrm{c}}$	199
BSH B 200	$39.8 \pm 4.27^{\mathrm{c}}$	182
BSH C 300）	$36.2 \pm 3.12^{\mathrm{c}}$	166
BSH D 400	38.0 ± 3.30^{c}	174

Rats were orally administered water extract from Bosinhwan（ $0,100,200,300,400 \mathrm{mg} / \mathrm{kg}$ ）daily for two weeks The animals were decapitated 24 hr after administration of last treatment of extract． The assay procedure was described in the experimental methods．Values represent mean \pm S．D．$(\mathrm{n}=8)$ ．Values sharing the same superscript letter are not significantly different each other（ $\mathrm{p}<0.05$ ）by Duncan＇s multiple range test．

Fig．4．Effect of water extract from Bosinhwan（BSH） on urinary γ－glutamyltransferase in eight month rats．

5．Xanthine oxidase 의 活性에 미치는 影響

Xanthine oxidase 活性을 測定한 結果 對照群은 $300 \%(2.34 \pm 0.30)$ 으로 顯著히 增加한 것에 比하여 $300 \mathrm{mg} / \mathrm{kg}$ 울 投與한 群 $125 \%(0.98 \pm 0.33), 200 \mathrm{mg} / \mathrm{kg}$ 을 投與站 群 $140 \%(1.09 \pm 0.23), 400 \mathrm{mg} / \mathrm{kg}$ 을 投與 한 群 $143 \%(1.12 \pm 0.21), 100 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $155 \%(1.21 \pm 0.13)$ 의 順으로 有意性 있는 減少롤 나타내었다（Table 5，Fig．5）．

Table 5．Effect of water extract from Bosinhwan （BSH）on renal cytosolic xanthine oxidase activity in eight month rats

Dose Group $(\mathrm{mg} / \mathrm{kg})$	Activity *	$\%$ of Nommal
Normal	0.78 ± 0.25^{a}	100
Control	$2.34 \pm 0.30^{\mathrm{D}}$	300
BSH A 100	1.21 ± 0.13^{c}	155
BSH B 200	$1.09 \pm 0.23^{\mathrm{c}}$	140
BSH C 300	$0.98 \pm 0.33^{\mathrm{ca}}$	125
BSH D 400	1.12 ± 0.21^{c}	143

Rats were orally administered water extract from Bosinhwan（0，100，200，300，400mg／kg）daily for two weeks．The animals were decapitated 24 hr after administration of last treatment of extract． The assay procedure was described in the experimental methods．Values represent mean \pm S．D．$(\mathrm{n}=8)$ ．Values sharing the same superscript letter are not significantly different each other（ $\mathrm{p}<0.05$ ）by Duncan＇s multiple range test． ＊：uric acid nmole／mg protein／min

Fig．5．Effect of water extract from Bosinhwan （BSH）on renal cytosolic xanthine oxidase activity in eight month rats．

6．Aldehyde oxidase의 活性에 미치는 影響

Aldehyde oxidase 活性을 測远呫 結果 對照群 은 $276 \%(36.8 \pm 0.53)$ 로 顯著히 堦加한 것에 比하 여 $400 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $132 \%(17.6 \pm 0.37$ ）， 300 mg $/ \mathrm{kg}$ 을 投與立 群 $140 \%(18.7 \pm 0.42), 200 \mathrm{mg} / \mathrm{kg}$ 을 投與吡 群 $160 \%(21.35 \pm 0.49), 100 \mathrm{mg} / \mathrm{kg}$ 을 投與站 群 154%（ 20.5 ± 0.31 ）의 順으로 有意性 있는 減少를 나타내었다（Table 6，Fig．6）．

Table 6．Effect of water extract from Bosinhwan （ BSH ）on renal aldehyde oxidase activity in eight month rats

| Dose Group
 （mg：kg） | Activity | 2－pyridone nmole mg
 proteinimin |
| :---: | :---: | :---: | o\％of Nomal

Rats were orally administered water extract from Bosinhwan！ $0,100,200.300,400 \mathrm{mg} / \mathrm{kg}$ ）daily for two weeks．The animals were decapitated 24 hr after administration of last treatment of extract． The assay procedure was described in the experimental methods．Values represent mean \pm S． $1 \mathrm{H}, \mathrm{n}=8$ ．Values sharing the same superscript letter are not significanty different each atherip＜0ís）by Duncan＇s multiple range test．

Fig．6．Effect of water extract from Bosinhwan（ $B S H$ ）on renal aldehyde oxidase activity in eight month rats．

7．歪向結台 SH源度에 미치는 影響
蛋白結公 SH濃度至 測它站 結果 對照群은 52%（ $9.89=0.98$ ）로 䪶著히 減少한 것에 比하여 $400 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $93 \%(17.8 \pm 1.43), 300 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $88 \%(16.8 \pm 1.67) .200 \mathrm{mg} / \mathrm{Kg}$ 을 投與站
 $79 \%(15.3 \pm 1.37)$ 의 順으로 有意性 있는 渞加豆 나 타내었다（Table 7，Fig．7）．

Table 7．Effect of water extract from Bosinhwan （BSH）on renal protein－bound SH concentration in eight month rats

Dose Group （mg：kg）	Concentration	of of Normal
	μ mole／g of tissue	
Normal	$19.2 \pm 2.11^{\text {d }}$	1610
Control	$9.89 \pm 0.98^{\text {b }}$	52
ESH A 100	$15.3 \pm 1.3{ }^{\circ}$	79
BSH B $2(x)$	$17.2 \pm 2.01^{\prime}$	90
BSH C $3(0)$	$16.8 \pm 1.677^{\circ}$	88
BSH D 4（x）	$17.8 \pm 1.43^{\text {a }}$	93

Rats were urally administered water extract from Boganhwani0，100，200，300，400mg／kg）daily for two weeks．The animals were decapitated 24 hr after adminstration of last treatment of extract The assay procedure was described in the experimental methods．Values represent mean \pm S．D．$(n=8)$ ．Values sharing the same superscript letter are not significantly different each ，ther（p＜0．0．）by Duncan＇s multiple range ust．

Fig．？．Effect of water extract from Bxsinhwan：BSH）on renal protein－bound SH concentration in eight month rats．

非蛋白結合 SH濃度克 测是站 結果 對照群은 $34 \%(1.24 \pm 0.09)$ 로 影著히 洞少한 것에 比하여 $400 \mathrm{mg} / \mathrm{kg}$ 을 投閏한 群 $82 \%(2.98 \pm 0.41), 200 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $77 \%(2.78 \pm 0.29), 300 \mathrm{mg} / \mathrm{kg}$ 을 投閣한群 71%（ 2.59 ± 0.33 ）， $100 \mathrm{mg} / \mathrm{kg}$ 을 投與竨 根
 타내었다（Table 8，Fig．8）．

Table 8．Effect of water extract from Bosinhwan （BSH）on renal nonprotein－bound SH concentration in eight month rats

Dose Group （mg．kg）	Activity	${ }^{\circ} \mathrm{O}$ of Nurmal
	μ mole ${ }^{\text {g }}$ g of tissue	
Normal	$3.6 \pm+2.34^{4}$	101
Control	$1.24 \pm 0.09^{\prime \prime}$	： 4
BSEH A 104	$2.32 \times 0.18{ }^{\circ}$	64
BSH B 2001	$2.78 \cdots 0.29^{\text {d }}$	3
BSH C 300	$2.59 \pm 0.33^{\circ}$	71
BSH D $40 \times$	$2.98 \pm 0.41^{\text {d }}$	82

Rats were orally administered water extract from Businhwan（1）， $100,200,300,400 \mathrm{mg} \mathrm{kg}$ ）daily for two weeks．The animals were decapitated 34hr after administration of last treatment oi extract． The assay procedure was described in the experimental methods．Values represent mean 5 $\mathrm{S}[\mathrm{n}(\mathrm{n}=8)$ ．Values sharing the same superscript letter are not significandy，different each otherlpol（0）by Duncan＇s multiple range te－t．

Fig．8．Effect of water extract from Bosinhwan（BSH： on renal notuprotein－bound SH concentration in eight monith rats．

9．腎組織中 glutathione 의 定量에 미치⼆影響
照肺은 $44 \%(0.64 \pm 0.087)$ 로 显著严 減少한 것에比하여 $300 \mathrm{mg} / \mathrm{kg}$ 을 投與站 群 $87 \%(1.26 \pm 0.115)$ ， $400 \mathrm{mg} / \mathrm{kg}$ 을 投與站 群 $82 \%(1.19 \pm 0.098$ ），＇ $200 \mathrm{mF} / \mathrm{kg}$ 을 投興站 粦 $80 \%(1.16 \pm 0.156), ~ 100 \mathrm{mg} / \mathrm{kg}$ 을 投興 한 群 $74 \% 6(1.08 \pm 0.123)$ 의 順으로 有意性 있는 增 쎄를 나타내었다（Table 9，Fig．9）．

Table 9．Effect of water extract from Bosinhwan （BSH）on renal glutathione e concentration in eight month rats

Dose Group mg ／kg	Concentration	＂o of Normal
	μ mole mg protein	
Normal	$1.45 \pm 0.136^{\text {a }}$	101）
Control	0.64 ± 0.087^{6}	4
BSH A 100	$1.08=0.123^{\circ}$	74
BSH B 200	1.16 ± 0.156	80
BTH C 300	$1.26 \pm \pm 0.115^{2.4}$	87
BSH D 400	$1.19 \pm 0.09 \dot{x}^{2}$	8.

Rats were orally administered water extract from Bosinhwan（0，100，200．300， $400 \mathrm{mg} / \mathrm{kg}$ ）daily for two weeks．The animals were decapitated 24 hr atter administration of last trearment of extract． The asay procedure was described in the experimental methods．Values represent mean \pm SD． $\mathrm{n}=8$ ）．Galues sharing the same superscript letter are not significantly different each sher（o＜(1.05) by Duncan＇s multipl．ringe te：st．

Fig．9．Effect of water extract from Fiosinhwan（BSH）on renal glutathione e concentration in eight month rats．

10．Glutathione S －transferase의 活性에 미치는影響

Glutathione S －transferase의 话性을 测定한 結果 對照群은 66%（ 103.9 ± 9.93 ）로 欵亚히 减少한 것에 比하여 $300 \mathrm{mg} / \mathrm{kg}$ 을 投與한 遅 93%（ $145.7 \pm$ $13.6), 400 \mathrm{mg} / \mathrm{kg}$ 을 投與 한 群 $89 \%(138.7 \pm 10.7)$ ， $200 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $84 \%(1316 \pm 12.8), 100 \mathrm{mg} / \mathrm{kg}$ 을 投與站 群 77%（ 120.9 ± 10.1 의 順으로 有意性 있는 增加를 나타내었다（Table 10．Fig．10）．

Table 10．Effect of water extract from Bosinhwan （BSH）on renal glutathione S－transferse activity in eight month rats

Dose Group （mg／kg）	Activity nmole $/ \mathrm{mg}$ protein $/ \mathrm{min}$	\％of Normal
Normal	156.3 ± 146^{4}	100
Control	$103.9 \pm 9.23^{\text {b }}$	66
BSH A 100	120.9 ± 10.1^{6}	77
BSH B 200	131.6 ± 12.8^{6}	84
BSH C 300	145.7 ± 13.6^{6}	93
BSH D 400	138.7 ± 10.7	89

Rats were orally administered water extract from Bosinhwan（ $0,100,200,300,400 \mathrm{mg} / \mathrm{kg}$ ）daily for two weeks．The animals were decapitated 24 h ． after administration of last treatment of extract． The assay procedure was described in the expenmental methods Yalues represent man $=$ S．D． 1 8）．Values sharing the same superscript letter are not significantly different each other（p＜005）by Duncan＇s multiple range test．
＊： 1.2 dinito－ 4 －nitrobenzene

Fig．10．Effect of water extract from Bosinhwan（BSH） on renal glutathione S－transferse activity in eight month rats．

11． v －Glutamylcystein synthetase의 活性에 미文는 影響
γ－Glutamylcystein synthetase의 活性을 測定한結果 對照群은， 49%（ 6.48 ± 0.45 ）로 照著히 淢少한 것에 比하여 $300 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $88 \%(11.72 \pm$ $1.03), ~ 400 \mathrm{mg} / \mathrm{kg}$ 을 投與한 枰 $82 \%(10.92 \pm 1.38)$ ， $200 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $76 \%(10.07 \pm 1.20), 100 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $71 \%(9.36 \pm 1.42)$ 의 順으로 有意性 있는 增加를 나타내었다（Table 11，Fig．11）．

Table 11．Effect of water extract from Bosininwan （BSH）on renal v－Glutamylcystein synthetase activity in eight month rats

Dose Group （ $\mathrm{mg} / \mathrm{kg}$ ）	Activity	$\%$ of Normal
	Pi nmole／mg protein／min	
Normal	13.26 ± 1.23^{4}	100
Control	6.48 ± 0.45	49
BSH A 100	$9.36 \pm 1.42^{\text {r }}$	71
BSH B 200	$10.07 \pm 1.20^{\circ}$	76
BSH C 300	$11.72 \pm 1.03^{\text {c }}$	88
BSH D 400	10.92 ± 1.38^{r}	82

Rats were orally administered water extract from Bosinhwan（0， $100,200,300,400 \mathrm{mg} / \mathrm{kg}$ ）daily for two weeks．The animals were decapitated 24 hr after administration of last treatment of extract． The assay procedure was described in the experimental methods．Values represent mean \pm SD． $1 \mathrm{n}=8$ ）．Values sharing the same superscript Letter are not significantly different each other（p＜0．0．5）by Duncan＇s multiple range test

Fig．11．Effect of water extract from Bosinhwan（BSH） on renal i －Glutamylcystein synthetase activity in eight month rats．

12．Glutathione reductase의 落性에 미치는 影制

Glutathione reductase의 活性을 測定한 結果 對照群은 $92 \%(26.4 \pm 2.45)$ 로 願著히 减少한 것에 比 하여 $300 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $102 \%(29.5 \pm 2.03), 200$ $\mathrm{mg} / \mathrm{kg}$ 을 投與한 群 $101 \%(28.9 \pm 3.56), 100 \mathrm{mg} / \mathrm{kg}$ 을投與䎁 群 $97 \%(28.1 \pm 2.84), 400 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群 93%（ $26.7=3.31$ ）의 順으로 有意性 있는 塯加邕 나 타내었다（Table 12，Fig．12）．

Table 12．Effect of water extract from Bosinhwan （BSH）on renal glutathione reductase activity in eight month rats

Dose Group （mg／kg）	Activity	
	glutathione nmole／mg protein／min	\％of Normal
Normal	$28.7 \pm 3.23^{\mathrm{a}}$	100
Control	26.4 ± 2.45^{b}	92
BSH A 100	25.1 ± 2.84^{c}	97
BSH B 200	28.9 ± 3.56^{c}	101
BSH C 300	29.5 ± 2.03^{c}	102
BSH D 400	$26.7 \pm 3.31^{\text {c }}$	93

Rats were orally administered water extract from Bosinhwan $(0,100,200,300,400 \mathrm{mg} / \mathrm{kg}$ ）daily for two weeks．The animals were decapitated 24 hr after administration of last treatment of extract． The assay procedure was described in the experimental methods．Values represent mean \pm S．D．$(n=8)$ ．Values sharing the same superscript letter are not significantly different each other（ $\mathrm{p}<0.05$ ）by Duncan＇s multiple range test．

Fig．12．Effect of water extract from Bosinhwan （BSH）on renal glutathione reductase activity in eight month rats．

IV．考 察

老란＂늙는다＂는 뜻을 가진 自然現象으로 自然界에 속해 있는 모든 生命體는 老化過程을 밟게 된다 ${ }^{87}$ ．

人體는 出生，成長，成熟，老化의 過程으로 이어

지게 되는데，이충 老化는 人類의 주된 關心事로 이에 대한 研究가 持續的으로 進行되어 왔다 ${ }^{9.10,399}$ ．

이에 西洋智學에서는 老化의 원인에 대하여 정 확히 밝혀지지는 않았으나 ${ }^{43)}$ 一般的으로 西洋醫學 에서 보는 老化의 原因및 發生機轉에 대해서는 生物學的 原因說로 消耗說，新陳代谢速度䛊，队分泌説，生氣說，衝撃説，中毒説，裁器帾 原發性萎縮説，細胞學詋，突然變買說，細胞遗傅學認，白已免疫說等이 있고，生化學的 原因說로는 DNA觡，化學反侑說，Collagen의 老化説，Free radical説，䤀素作用障碍就等이 있으며，形態學的 原因挽只는 組織再生機能의 老化，紐胞数의 變化外 老化，核의 變化 와 老化，結合組織의 老化等이 있으며，生理學的原因으로는 恒常性：의 破綻，適應力给缺䧄，反應力 의 變化，臓器皆의 豫備力 減少䛊等이 있는데 ${ }^{48-51]}$ ，最近에는 Harman에 의해 提倡된 Free radical에 의 한 連䋹的인 有囊反㕍의 結果로 老化過程이 進行되는 것으로 報告되고 있다 ${ }^{501)}$ ．Free radical은 人體의 radiation에 의 한 露出인 内部醏素义㦄에 의하여 生成되는데，蛋白質의－ SH 기와 以䍜하여酵素의 活性을 잃게 되거나 假橋結台의 促進， DNA，RNA，酵素 및 membrane에 損傷을 일으켜細咆笠死를 誘弹站다 ${ }^{51)}$ 고 알려져 있다．
韓智學에서는《队經》의＜素間•上占天眞論〉 ${ }^{3}$ ，40 에＂女子……五七陽明脈衰，而始焦，髮始缯，六七二晹脈䒾于上，面皆焦，髮始白，七七任脈虚，太㣫脈衰少，天癸螘，地道小通，故形壇而無子也，丈夫……

養生办法㫜红는 먼저 四時에 顺佐犃며 陰婸의 法則에 따라야 한다고 하여＜素間•四氣調神大論〉 에서는＂陰陽四時者，萬物之䊉始也，死生之本也．逆之則㷋害生，從之師荷疾不起……從陰陽則生，逆之則死＂라 하였고，老人이 됨에 따라 陰陽兩氣가 不足 해지므로 이를 補하는 것을 原則으로 하였는데 ${ }^{41}$老人이 되면 疾病에 대한 免疫力㓌 低下되 42431
 져서 氣滯血癔가 招來되기 읍다고 하여 補氣補血

하는 방법으로 人體의 眞氣를 保養하여야 한다 12，4．i고 하였다．

이와 같이 韓醫學에서는 老化를 陰陽의 變化，

 의 盛爱與否에 의하여 洪定된다고 하였다．아울러

老化의 傆要 原벙이라고 하였다 ${ }^{20,531}$ 。

接近하포 있는 貫情으로 最近의 老化에 대한 汗究
的 国子量 相用站 研究 ${ }^{27}$ 등으로 臨分할 수 있는 더 그 중에서 補腎하는 楽物 및 處有 o ㅇ F 從을 이 루고 있었다．

이에 荐者는 實際臨床에서 가장 多川되는 醫菅 인《東驚寶鑑》 ${ }^{28}$ 에 收載된 代表的인 補腎澽力
尤는 發胃하지 못하였는데 이번에 補留丸이 老化 에 미치는 影響 및 機輔을 實驗的으로 紏明하였 다．補腎丸给 構成藥物에 대한 效能 ${ }^{56,57}$ 을 살珀보 면 龜板은 益腎滋陰，補心資智部ㄱ 黃栢은 除熱益
清金，潤腎滋陰㖕巫 乾喜은 除寒散結问陽通脈，湓絰止血한다。 이로 보아 補腎丸은 腎陰을 補하고抗老益壽에 活用할수 있음에 着眼하였다

補督丸의 前湯液이 老化 흰줘의 抗老化에 미치 는 影響을 觀察하는 實驗에서 老化에 따른 活性酸

素 生成能의 變化新 이에 對한 生體內 防鉩譏轉을
 dehydrogenase，承中 γ－glutamyl transferasde， Xanthine oxidase，Aldehyde oxidase와 抗酸化芽 이 glutathione，Glutathione S－transferase，V －Glutamylcystein synthetase，nonprotein bound－SH 및 protein bound－SH의 絉化를 楥討하 어 훈 나음고 간은 結果를 얻잇나

 입히고，科胞機能을 低下시키머 㙹死에 關倸：하며 여러가지 次脑，즉 alcohol性 倾肪肝，急性肝苳，慢

期間에서는 별 化가 없었다．톷히 sample B에서 츠 期間이 지날수록 有意性 ㅇㅆㄴ는 減少가 잇었따 （Table 1，Fig．1）．

 있어 對照詳에 比較하여 有意性있는 減少를 나타 내었다（Table 2，Fig．2）．
Lactate dehydrogenase는 lactic acid롤 酸化하 여 pyruvic acid를 生成하는 醏素 ${ }^{593}$ 로 反隹은 叮兴的이다．lactate dehydrogenase는 동물의 筋肉，心陮，血液，微生物 등에 널리 분포되어 있다．泾性： 촉정은 pyruvic acid 를 기질로 하여 NADH 의 酸化 또는 lactic acid를 기질로 하여 NAD의 還元을吸光发의 變化를 측정하여 調查하는데 實䮦群에 있어 對照群에 比較飒种 有意性있는 減少를 나타 내지 않았다（Table 3，Fig．3）．
γ－glutamyltransferasde가 組胞内의 glutathion 과 細胞外의 아미노산을 기질로 하여 生成한 γ －glutamyl 아미노산과 cysteinylgycine을 細胞內로敖茾하는 것에 의해 아미노산을 細䏴队로 蓮搬하 며 이 過程에서 3ATP가 소모되느데 實驗群에 있 어 對照群准 比較하여 有意性있느 䫘著한 減少意 나타내었다（Table 4，Fig．4）．
Xanthine oxidase는 肺臓，刵縅，形汹，腸 등에

含有하며 分子場酸素의 存在아래 크산틴，히포크 산틴의 酸化莌 䚥媒하여 尿酸으로 변하게 하는 酵素로 특히 우유중에 다량으로 함유되어 있는 효소 인데 貝驗帱에 있어 對照群에 比較하여 有意性있 는 歇者한 减少를 나타내었다（Table 5．Fig．5）

Aldehyde oxidase는 體內에 多量으로 存在하면 구니의 排泄이 增加하여 구리缺乏症이 發生하고快至되면 痛風이 發生하는데 實驗群에 있어 對照郡에 比較하여 付意性있는 減少를 나타내었고．톡 히 $400 \mathrm{mg} / \mathrm{kg}$ 을 投與한 群에서 더욱 縜著하였다 （Table 6，Fig．6）

抗酸化係인 protein－bound SH는 蛋白斦이－SH 기와 汉㗹하여 free radical의 活性을 잃게 하는 것으로 本 實驗에서의 腎㵴中 protein－bound SH 의 變化에 미치는 影響을 觀察한 結果 惯驗群은對照群과 比較하여 有意性있는 增加를 나타내어ㅆㅗㅗ投與量의 變化에서는 有意性이 없었다（「able 7， Fig．7）

또한 腎肠中 抗酸化倸인 nonprotein－bound SH 의 變化总 酭察한 結果 實驗群은 對照矿에 比站여 fi恶性있는 增加를 보였으며，投與㫣이 많을仝록 nonprotein－bound $\mathrm{SH}_{\text {濃度 } \text { 가 增加하였다 TTable } 8 \text { ，}, ~ \text { ，}}$ Fig．8）

Glutathione은 呼吸에 있어서 酸素의 傅達體로作用하는데，酸化型 glutathione은 vitamin E와 더 불어 不飽和 脂肪酸의 過酸化登 防止站吗，缺区症状与 vitamin E 缺乏症狀과 매우 答似하여 朋의
智裁吅 glutathione의 變化에 미치는 影響을 觀察 한 結果 實驗群은 對照群에 比郆여 有意性：있는 坲加를 토였다（Table 9，Fig．9）．

Glutathione S－transferase는 紐胞質 glutathione S－transferase外 mitochondria 및 小包體膜 glutathione S－transferase로 大別되는데 兩 glutathione S－transferase는 生體 全體組織에 含伃뒤어 있지만，肝에서 最高의 芌量을 나타내며副腎等에도 兩 glutathione S－transferase가 高濃度로 分布되어 있다 ${ }^{61!}$ ．細胞質 glutathione S－transferase의 體內 重要한 役割의 하나는 親電子性的 發癌性 活性代謝物解 解毒作用으로서 最終

的으로 N －acetyl conjugate로 冰中 排泄시키는 最
 알려져 있다 ${ }^{\text {ni } \text { ．따라서 肾臟中 glutathione }}$ S－transferase의 活性 變化에 미치는 影製을 觀察 한 結果 有意性：있는 增加를 나타내었다（Table 10，Fig．10）．

또한 抗酸化系인 V －Glutamylcystein synthetase 는 Glutathione의 細胞내 㕣量을 襍持시켜준는 因
 하여 有意性있는 增加胥 보였다（Table 11，Fig． 11）

Glutathione reductase는 睘元形 NAD또는 NAPP에 의해 酸化形글루타티놘을 還尤하여 클루 타터온으로 되는 反應으로 작종 動物組袐，植物，微生物에 널리 分布하는 酵素로 實驗群은 對照菲 에 比敨种 有意性있는 增加豆 보였으며 投與量의變伦利서는 有意性：이 없었다（Table 12，Fig． 12 。

以ト：의 結果를 總括해보면，肾縅队의 边酸化脂質 甹量：咢 Blood urea nitrogen，尿中y －glutamyltransferasde，Xanthine oxidase， Aldehyde oxidase 의 活性은 全貫駮群애서 有意性 있게 減少하였으며，glutathione，Glutathione S－transferase，v－Glutamylcystein synthetase， nonprotein bound－SH 및 protein bound－SH 筞은 f意性있게 增加하였다．

따라서 投與量의 變化에서는 有意性이 없었으나全般的으로 補腎丸的 前湯液虽 投與站 群이 老化 횐쥐의 腎臓의 酵素系 및 抗酸化의 過程에 有意性 있기 作用하므로 老化抑制作用以 있는 것으로 焽阆된다。

V．結 論

補腎丸 煎湯液이 老化횐쥐（淍踤 32梮，550土 10 g ）의 腎㓕內過酸化脂質 및 腎臟绊 代射酵素系에 미치는 影響을 實驗的으로 紏明하고자 老化誘發과防止에 關與站는 過酸化物，酸素傅達體 딫 酵素活性等을 觀察한 結果 다음과 같은 結論을 얻었다．

1．腎臟內 過酸化脂質的 含量은 2周以上投與

14 大田火學校 韓醟學研究所 論文集 第8然 第1號

한 實䮦羴이 對照群에 비해 有意性있게 堿少하였 다．
 에서 后意吽있게 减少하였다
 든 绊化가 없었다．

4．怺1中 $\%$－glutamyltransferasde，Xanthine oxidase，Aldehyde oxidase 의 拈性은 生苴驗群에 ․ㅓ 位意悩있게 減少하었다

5．protein－bound $S \mathrm{H}$ ，nonprotein－bound SH ． glutathione，glutathione S－transferase - ，ir 5_{5} 性．$\%$
 에서 if 意悩 있게 增加하였다．

 이 기대된다．

參考义獻

 1993，pp．13：5－1383．

2．다팍 초프라 ：사람은 늙지않는다，서울，정신 세계사，1994，pp．21－22，102－103．
 1983．pp．8， 28.
 1980．pp．196，397，415．
技垶出版所：，1986，pp．212－215，300－304．4
版高，1993，pp．405－407．
 pp．134－135
 pp．11－99，492－576．
9．김全희 外：노화，서울，민음사， 1995 ， pp．77－80．83， 94.

10．James D．Porterfield 外 ：노화와 건강，서

울，대한미더어，1995，pp．27－39．
种．1978，pp．241－246．
 pp．52－56．
 saponin解 扎酸化 作用，大州人學校大學院， 1997.

14．김성숙 외 ：老化防 1 ：를 위한 韓楽劑的 效能

15．문진잉 외 ：柴胡가 free radical에 의한 脂
 Ft學篇，1996，Vol．15．
影響。 서울，愛堅铻䣽大論文集，18（2），127－148， 1493

17．非…㕷：味地黄湯이 艺化 Rat의 师队過酸化脂貿 咬 代謝酪素采 에 미치는 影響，大田大臬校大案院1998

 미치는 影響，大蛅韓方内科學血記，16（1）：62－79。 1995.

 야 디치느 影響，人韓韓㙠學會諒，16（2）：348－364， 1995.

 에 龃它 什究，大韓韓醫學曾标，17（1）：21－36， 1996.

21．吅在原：定志丸이 老们에 미치는 影響。人

 관한 歽究，大韓鍼灭學鲁誌 1996， 13（2）：pp254－262

23．全永南 외：胡桃薬鍼液의 抗酸化 效果에 대 한 湖究，大韓鍼实學曾誌，1996，1711）：pp9－20．

潋的 酐究，大田大學校大學院， 1998 。
26．우상욱 ：益智仁 薬針의 抗酸化作闻에 관한嘪験的 研究，大田大學校大學院， 1998.

27．楊棟元：B．E．P．照射妓 老化 Rat의 肝內過酸化脂質 吴 代謝酵素系叺 미치는影響，大田人學校大學院 1998.

28．許浚 ：東䣽寶鑑，서울，大星文化欮，1990， pp． 368.

29．Chaney，A．L．，Marbach，E．P．：Modified reagents for determination of urea and ammonia， Clin．Acta，9：130－132， 1962.

30．Ohkawa，H．，Ohishi，n．and Yaki，K．：Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction．Anal．Biochem．， 1979，p．95，pp．351－358．

31．Higash，T．：Critical review on the determination of glutathione in biological preparations．Proteins，Nucleic Acid and Enzyme，1988，p．33， 1370.

32．Gaitonide，M．K．：A spetrophotometric method for the direct determination of cysteine in the presesce of other naturally occurring amino acids．Biochem．J．，1967，p．104， 627.

33．F．Strip and C．E．Della ：The regutation of rat liver xanthine oxidase conversion in vitro of the enzyme activity from dehydrogenase （Type D）to oxidase（Type O），J．Biol．Chem．24， 3855，（1969）．

34．K．V．Rajagoplan，I．Fridovich and P． Handler，Hepatic aldehyde oxidase，In ： Purification and properies，J．Biol．Chem，237， 922，（1962）．

35．Habig，W．H．，Pabst，M．J．and jakoby，W．B． ：Glutathione S－transferase．J．Biol．Chem．，1974， p．249， 7139.

36．A．Meister and P．G．Richman，Regulation of γ－Glutamylcystein synthetase by nonallosteric feedback inhibition by glutathion J．Biol．Chem， 250，1422， 1975.

37．C．E．Mize and R．G．Langdon，Hepatic
glutathione reductase．In ：Purification and general kinetic properties，J．Biol．Chem，237， 1589， 1962.

38．Lowry，O．H．，Rosebrough，N．j．，Farr，A．L．and Randall，R．J．：Protein measurement with folin phenol reagent．J．Biol．Chem．，1951，p．193， pp．265－275．

39．全光湖：東䂐豫防醫學，서울，慶檓大學校韓䃜科大學豫防醫學教室， 1995 ，pp．57－60，139－146， 240－244．

40．任潐秋 編：黃帝內經章的素引，서울，…中刑，1992，pp．22，325，410， 418 ．

41．献倶明 編：中醫雜誌 1994年 35卷，서울，中种，1994，pp．101－103．
42．서울大學校敌科大學：免疫學，서울，서울人學校出版局，1989，pp．223－228．
43．菊地浩志 外：最新免疫學！的色，集文堂， 1989，pp．346－351．

44．이영진 ：몸안의 활성산소를 제거하라，서울， KBS 문화사업단，1998，pp．222－225．
45．후지모토 다이사부로 ：老化는 왜 일어나는 가，서울，전파과학사， $1987, \mathrm{pp}$ 31－55．

46．中國中开㙠結合雜誌編輯委員鲁：中國中西醫結合雜誌，서울，‥中社，13（5）：101－102， 1993.

48．李啕兵 外：四大懷薬延緩变老作用的矿究， 서울，中西缶結合雜誌， 11 （8）：486－487， 1991.

49．林乾良：養生壽老集，上海科學技術出版社，上海，1982，pp．26－27，110－125，113，332－143， 190－191，194－209．
50．Cutler，R．G．：Antioxidants，aging and longevity．Free Radicals in Biology（ed．Pryor， W．），Academic Press，Vol．6，1984，pp．371－424．

51．Feher，J．，Csomos，G and Vereckei，A ：The free radical theory of aging．Free Radicals Reactions in Medicine，Springer－Verlag，Berlin， 1987，pp．57－59．

52．張錫泰 ：피부과학，서울，여문가，1994， pp．23－25．

53．王其飛：中醫長薵學，遼寧科學技術出版垪，
pp．50，53，54．332， 1989.
54．McCord，J．M．：Free radical and inflammation ：Protection of synovial fluid by superoxide dismutase．Science，1974，p．185， pp．529－531

55．Aebi，H．：La Catalase eryyhrocytaire，in ： Exposes Annuels de Biochamie Medicale， 29 ieme serie．Masson \＆Cie（eds），Paris．1969． pp．139－164．
 $383,482,508$
 $19 x^{2} 2$ ，pp．103，134，230，425．

 1994.
 pp． 189.

60．上男成記，佐藤清美 ：Glutathione S－transferase isozyme，glutathione i⿰亻⿱一𫝀口十 究 のエホ ン7．蛋言質，核酸，酵素，臨時增刊，1988，p．33， 1564.

61．Watabe．T．，Ishizuka，T．，Isobe，M．and Ozawa，N．：7－hydroxymethylsulfate ester as an active metabolic of 7 ， 13－dimethylbenz（a）anthracence．Science，1982， p．215， 403.

62．한승연 ：東洋㙠學에 있어서의 홀몬撩怯에

63．이거녕 外 ：임상병리파일，서울，의학문화 사， $1993, \mathrm{p} .138,139,241,348$.

[^0]: ＊大田大學校 韓㖪科大學 再活醫學教空

