# 老化過程의 흰쥐에서 補脾湯이 脾臟의 代謝酵素系에 미치는 影響 

李東䍍•哭收錫•穼泰几＊


#### Abstract

The effect of Bobitang（BBT）water extract on spleen metabolic enzyme system as to aging process in rats


Lee Dong－jun，Oh Min－suk，Song Tae－won<br>Dept．of Oriental Medicine<br>Graduate School，Taejeon University

Bobitang（BBT）is one of the most important prescription that has been used in oriental medicine（dongyibogam）for recovering spleen condition．The study was done to evaluate effects of BBT water extract on the spleen lipid peroxide content and metabolic enzyme system changes．

After pretreatment of BBT I（ $100 \mathrm{mg} / \mathrm{kg}$ ）．BBT II（ $250 \mathrm{mg} / \mathrm{kg}$ ），BBT III $(350 \mathrm{mg} . \mathrm{kg})$, BBT IV $(500 \mathrm{mg} / \mathrm{kg})$ for 1 week，lipid peroxide content and metabolic enzyme system changes of the spleen was measured in 8 manths rats．The results were obtained as follows

1．The content of spleen lipid peroxide was significantly decreased in all experimental groups as compared with control，and best in BBT III • IV treated groups．

2．The activity of spleen superoxide generation was significantly decreased in all experimental groups as compared with control，and best in BBT IV • III treated groups．

3．The activity of cytochrome $\mathrm{P}-450$ and aminopyrine demethylase wasnt significant change．
4．The activity of aniline hydroxylase was significantly decreased in BBT IV II treated groups， xanthine oxidase was significantly decreased in all experimental groups，aldehyde oxidase was significantly decreased in BBT IV treated group as compared with control．

5．The activity of antioxidant enzymes as superoxide dismutase，catalase，glutathione peroxidase was significantly increased in all experimental groups as compared with control．

6．The activity of glutathion S－transferase was significantly increased in all experimental groups， the concentration of spleen glutathione was significantly increased in BBT $N$ treated group as compared with control．
7．The activity of $\gamma$－glutamylcystein synthetase was significantly increased in BBT III IV • I treated groups as compared with control，the activity of glutathione reductase wasn＇t significant

[^0]change
From the above results，BBT is cosidered to have effect of remove peroxide content and free radical that was made during ageing process．

It is expected that treatment of $\mathrm{BBl}^{\circ}$ can be applied in future clinical study of delaying the ageing process．

## I．緒 論

人體는 仙生，成辰，成熟，老化의 過程으로 이어 지게 되는데 ${ }^{17}$ 이中老化란 生命體의 成侵㣉 時間經過에 矿技 進行되는 …連的 退行性 變化로 外部環境에 對한 適應力이 떨어져 形態的，機能的으로退縮되어 生命力이 战退되는 現象을 意味한다 ${ }^{2-41}$ 。

韓醫學에서는 老裹의 原因员 陰陽의 仆調和，形身変弱，氣血 哭 腎氣裏弱 等으로 說明部卫 生體
化，經絡의 變化 및 精神의 緌化五 보포 있다 ${ }^{1.5)}$ ．
子……五七，陽明脈裏，面始焦，髮始陏，车七，一陽



肝葉始薄，皱汁始減，日始不明。六1歲，心氣始童，……七蔵，脾氣虚，皮膚枯，八卜歲，肺氣变，……九十蔵，腎氣焦，四臟經脈空虚，画歲，无烥皆慮，帊



西洋䂕學에서는 老化에 對歼 原国 및 發生機轉 으로 生物學的，生化學的，生理學的 咬 形態學的
院의 하나인 free radical에 依해 誘導되는 脂捠의渦酸化反應이 老化現象覀 密接한 關係가 있는 것 으로 報告되고 있다 ${ }^{2,10-11)}$ ．

抗老化에 對한 韓醫學 分野의 研究들을 살펴보 면 單味劑 ${ }^{12-14)}$ ，複合處方 ${ }^{15-231}$ ，樂釷液 ${ }^{24-34)}$ 및 理學的 因子邕 利用站 研究 ${ }^{353}$ 等으로 區分衣良 수 있는 데，樂物이나 複合處方 等의 選擇에 있어서 歸經 이 腎経이거나 補腎하는 泉物 띷 處力이 卡從을
實情이다。 한편，脾臟은＂後大之本 氣血生化之源＂
 프 郡生의 恨本이며 人體의 生理活動을 維持하는重要한 臓腑中의 하나이니 ${ }^{361}$ ，老化와 關聯지어 脾臟機能을 살펴보는 것도 意味있는 일이라 생가한 나．

이에 著莴立，老化는 各臓腑绀의 相肳性이 緊密


表的인 補脾发 $f$ 으로 收載된 補脾湯을 選定하여，補脾湯前湯液의 老化抑制 效能을 賽驗的兰䛈 科明 하기 위해 老化向鼠（8個有齢， 550 g 队外）의 脾臓組織内過酸化脂复 台量 袈 代謝酵类采叺 미치는影響을 難察部 結果，有意性 있纪 成緽을 언덨기에


## I．實 驗

## 1．材料

## 1）試薬 哭 器具

試薬中 aminopyrine HCl ，aniline HCl ，xanthine sodium，hypoxanthine sodium，NMN，reduced glutathione，glutathione reductase，thiobarbituric acid，sodium dodecyl sulfate，glutathione，bovine serum albumin，NADP，NADPH． 1－chloro－2，4－dinitrobenzene，oxidized glutathione， cyanide，cytochrome $C$ ，hydroxylamine， hydrochloride，xanthine oxidase， naphthylethylenediamine은 Sigma社로부터， malondialdehyde，EDTA，trichloroacetic acid． ninhydrin，cysteine，glycerol，sodium cholate，

Triton $\mathrm{N}-101$ ，sodium dithionite，semicarbizide Tris． $\mathrm{HCl}, \mathrm{L}$－glutamic acid，ATP는 Aldrich勈．로 부터 購入하였으며，ㅡ 外 試樂은 特紋 또는…級試樂을 使用하였다．

鿓驗에 使用한 器機로는 Spectrophoto－meter （Shimadzu UV－240），High centrifuge（Hanil， HMR－1610V），Ultra centrifuge（Hitachi，695－7）， Cold Lab．Chamber（Korean Manhattan，KMC－ 8512）等을 使用하였다．

2）薬材
本 實驗에 使用站 薬材红 大由大學校 附蜀 韓方病院에서 嚴選한 것을 使用하였으며，處方 의 構战
 으로 1 䀡의 處方 內容과 分量은 다음과 같다．

Prescription of BOBITANG（BBT）

| 韓藥名 | 生 薬 名 | 重量（g） |
| :---: | :---: | :---: |
| 麥芽炒 | Hordei Fructus Germiniatus | 4.6 |
| 甘草我 | Glycyrrhizae Radix | 4.6 |
| 人 薏 | Ginseng Radix | 3.1 |
| 白获苓 | Hoelon Alba | 3.1 |
| 兑 果 | Tsaoko Fructus | 3.1 |
| 㷁畳炮 | Zingiberis Rhizoma | 3.1 |
| 哩 朴 | Magnoliae Cortex | 2.2 |
| 陳 皮 | Citri Pericarpium | 2.2 |
| 白 术 | Atractylodis Macrocephalae Rhizoma | 2.2 |
|  | Total amount | 28.2 |

## 3）動物

䔈驗動物로는 韓國實驗 動物開發로부터 分讓 받 은 雄性 Sprague－Dawley系 ${ }^{391}$ 正常횐주（2個月舲， $180 \pm 10 \mathrm{~g}$ ）및 老化횐저（8個月齡， $550 \pm 10 \mathrm{~g}$ ）로 實驗宗에서 1 異日 농안 適應시킨 後，…定한 條件（溫度： $20 \pm 2^{\circ} \mathrm{C}$ ，湝度： $50 \%$ ，明暗： 12 時間 light／dark cycle）에서 闰育한 後 使用하였다．實驗 始作前 24 時間 동안 물만 주고 絶食하였다。 이 때 酵素浵性의 日中 變動管 考慮하여 實驗動物足－－定時間（7）前 10：00－12：00）内에 處置하였다．

2．方法
1）檢液到 製造
補脾湯의 20 貼 分量 564 g 을 水洗하여 水溜水致

2回 8時間怂 3回 加熱 濃縮飒巫 吸入 濾過한 㴓液 을 rotary evaporator로 減幈 濃縮하여 秱粘状의抽出物올 冷涷 乾燥하여 䊉末 205.8 g 을 얻어 本
 하여 使用하였다．

2）檢液䄍 投與
檢液의 投與는 2個月齡의 正常횐줘 8마리 1 群과 8估月踰의 老化횐쥐 8마리를 5群으로 나누어，全期
 （Normal），老化횐쥐에 生理食覽水呫 投與咔 對照群 （Control），老化횐줘에 $100 \mathrm{mg} / \mathrm{kg}$ 의 補脾湯煎湯液을投與한 群（BBT I），老化횐쥐에 $250 \mathrm{mg} / \mathrm{kg}$ 의 補脾晹煎湯液을 投與站 群（BBT II），老化횐줘에 $350 \mathrm{mg} / \mathrm{kg}$ 의 補脾湯煎晹液을 投藇站 群（BBT III），老化환쥐에 $500 \mathrm{mg} / \mathrm{kg}$ 의 補脾激繠湯液을 投與한
投興，用星故 期間은 豫備實驗을 行하여서 補脾激煎湯液 $\quad 100 \mathrm{mg} / \mathrm{kg}, \quad 250 \mathrm{mg} / \mathrm{kg}, \quad 350 \mathrm{mg} / \mathrm{kg}$ ， $500 \mathrm{mg} / \mathrm{kg}$ 을 1 週間 經口投與하였다。

3）酵素源诸 調製
實驗動物을 $\mathrm{CO}_{2}$ gas로 㾭醉시킨 後 腹部 iF中1線을 따라 切開飒工腹部 大動脈에서 血液을 採取 하여 失白死 시키고，脾臟은 生理食疆水로 씻은 다음 濾紙로 血液 및 其他 異物質을 除去㖕巫 本量한 다음 組織 1 g 當 1 倍量의 0.1 M potassium phosphate buffer $(\mathrm{pH} 7.5)$ 를 加하여 glass teflon homogenizer로 革碎하였다．이 座碎液을 600 xg 에 서 10 分間 遠心分離하여 核 哭 未溇碎 部分을 除去한 上澄液을 $10,000 \mathrm{xg}$ 에서 20 分間 遠心分離하였 다．이 1 澄液을 $105,000 \mathrm{xg}$ 에서 1 時間 超遠心分離 하여 cytosolic fraction으로，ㄱ 沈澱物에 同 한量의 0.1 M potassium phosphate buffer를 加하여懸濁시킨 液을 microsomal fraction으로 하였다．麻碎液은 lipid peroxide와 glutathione의 含量을测定하였으며，cytosolic fraction은 superoxide dismutase，glutathione $S$－transferase，glutathione peroxidase，glutathione reductase 및 $\gamma$ －glutamylcystein synthetase，xanthine oxidase， aldehyde oxidase 活性의 酵素源으로，microsomal fraction은 cytochrome $\mathrm{P}-450$ ，aminopyrine


Scheme I．Preparation of mitochondrial，microsomal and cytosolic fractions
N －demethylase 및 anilline hydroxylase 活性 測 上의 모든 造作은 따로 規程이 없는 한 $4^{\circ} \mathrm{C}$ 以下에定에 使用하였다．한편 mitochondria 分劃은 서 施行하였다（Sheme I）．


Ohkawa等의 方法 ${ }^{40}$ 에 準部여 脾媙組織 1 g 當 9倍量의 生理食嚂水를 加하여 慗碎한 다음，이 麻碎液 0.4 ml 에 $8.1 \%$ sodium dodecyl sulfate 0.2 ml ， $20 \%$ acetate buffer $(\mathrm{pH} 3.5)$ 와 發色의 目的으로 $0.8 \%$ thiobarbituric acid를 加한 後 $95^{\circ} \mathrm{C}$ 에서 1 時間 돔안 反應시키고 室溫에서 冷却한 다음，蒸溜水 1.0 ml 와 $\mathrm{n}-\mathrm{BuOH}:$ pyridine（ $15: 1$ ） 5.0 ml 羙 源加 하여 잘 숴ㅇㅡㅡ 後 15 分間 遠心分離하여 $\mathrm{n}-\mathrm{BuOH}$ ： pyridine首을 取하여 波長 532 nm 에서 生成되는 紅
線에 準하여 算定하였으며，含量은 脾碚細織 1 g當 malondialdehyde nmole로써 表示하였다．

5）Superoxide의 生成能 測定 ${ }^{41-42}$ ，
Superoxide 遊離機의 生成은 superoxide dismutase를 抑制할 수 있는 ferricytochrome C의呬元되는 速度를 測定하였다．

죽， 0.1 mM EDTA를 含有한 phosphate buffer（ pH 7.8 ） $420 \mu \ell$ 에 cyanide의 濃度가 $50 \mu \mathrm{M}$ 이 되도록 20 mM cyanide 溶液을 加한 後 $37^{\circ} \mathrm{C}$ 에서 10分间 preincubation시켰다．이 溶液에 postnuclear fraction $300 \mu \ell$ 와 0.1 mM cytochrome C $50 \mu \mathrm{\mu}$ 를 넣어 spectrophotometer로 cuvette를 $37^{\circ} \mathrm{C}$ 로 維持시키면서 550 nm 에서 測定하였다．이 때 cytochrome C의 量은 分子吸光計數 $19,500 \mathrm{M}^{-1}$ $\mathrm{cm}^{-1}$ 로 計算하였다．

6）酵素活性 의 測定
（1）Cytochrome P－450의 活性 測定
Omura와 Sato 等의 方法 ${ }^{43}$ 에 準胡 計驗管에 1 mM EDTA， $20 \%$ glycerol， $0.5 \%$ sodium cholate 및 $0.4 \%$ Triton $\mathrm{N}-101$ 이 含有된 0.1 M potassium phosphate buffer（ pH 7．4）에 microsomal suspension（1mg protein $/ \mathrm{ml}$ ）을 添加한 後 sodium dithionite를 넣고 混合한다．다음 CO gas를 1分間 bubbling시킨다．Bubbling이 끝난 後 波長 $400-500 \mathrm{~mm}$ 에서 吸光度를 測定하고 $450-490 \mathrm{~nm}$ 에 서 吸光度 의 差異를 cytochrome P－4．50 CO complex에 依战 吸光最 吸光計數 $91 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$ 를利用하여 算定하였다．
（2）Aminopyrine demethylase 㓉泩 測定
Nash等의 方法 ${ }^{(4)}$ 을 宕干 變更幛여 及應液 2 ml

中 $0.1 \mathrm{M} \mathrm{Na} / \mathrm{K}^{+}$phosphate buffer（ $\mathrm{pH} \quad 7.5$ ）에 2 mM aminopyrine $\mathrm{HCl}, 0.5 \mathrm{mM} \mathrm{NADPH}, 10 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 150 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM}$ semicarbizide 哭酵素液（30－400 $\mathrm{\mu g}$ 의 蛋白質）을 加해 이 反應波을 $37^{\circ} \mathrm{C}$ 에서 30 分間 反應시킨 다음， $15 \% \quad \mathrm{ZnSO}_{4}$ 와 能和 $\mathrm{Ba}(\mathrm{OH})_{2}$ 量 加하여 反應을 終了시키고5分間 放置後 10 分間 遠心分離하여 여기서 얻은 1 ：澄液 5 ml 에 喭色의 目的으로 Nash reagent를 源加하고 $60^{\circ} \mathrm{C}$ 에서 30 分間 反應시킨 後 마시 遠心分離하여 1 澄波을 取㖕여 波長 415 nm 에서 二吸光度量 測

（3）Aniline hydroxylase of 湼性澌定
Bidlack等의 $j_{j}$ 法 $^{45}$ 에 潐站여 父権㖡 $2 \mathrm{ml中}$ 10 mM MgCl 斗 150 mM KCl 이 含有된 50 mM Tris． HCl 暚衝液 $(\mathrm{pH} 7.4$ ）에 基質인 1 mM aniline $\mathrm{HCl}, 0.5 \mathrm{mM}$ NADPH 品 酵素液 $(300)-400 \mathrm{gg}$ 의 蛋白質）을 加하여 이 液을 $37^{\circ} \mathrm{C}$ 에서 20 分間 反應시킨 다음，反應을 終了시킬 日的으로 $20 \%$ trichloroacetic acid를 加한 後 10分間 遠心分離站 여 上潠液에 發色의 目的으로 $10 \% \quad \mathrm{Na}_{2} \mathrm{CO}_{3}$ 와 $0.2 \mathrm{~N}-\mathrm{NaOH}\left(2 \%\right.$ phenol 含有）를 넣고 $37^{\circ} \mathrm{C}$ 에서 30分間反㦄시킨 後，波長 640 nm 에서 ㄱ 吸光度를 읽ㄱ 標凖曲線에서 活性度를 算管站였다．
（4）Xanthine oxidase의 活性 測安
Stripe斗 Della의 jij法 ${ }^{46}$ 에 凖하여 0.1 M potassium phosphate buffer（ pH 7.5 ） 3.0 ml 에 酵素液 0.4 ml 를 加하고 基質인 $60 \mu \mathrm{M}$ 의 sodium xanthine 0.1 ml 를 加하여 $37^{\circ} \mathrm{C}$ 에서 反㗹시킨 다음 $20 \%$ trichloroacetic acid를 加諒여 除蛋白시키고上澄液을 取胡 生成된 uric acid를 波辰 292 nm 에 서 吸光度를 測定䑙고 標準检量楾에 準하여 活性度를 算定郖였다．酵素活性牛 単位는 1 分當 1 mg protein이 生成하는 uric acid nmole로 나타내었다．
（5）Aldehyde oxidase经活泩測定
Rajagopalan等의 方法 ${ }^{477}$ 에 隼媇여 0.1 M potassium phosphate buffer（ pH 7.5 ）에 基質인 N －methylnicotinamide chlorideㅘㅘ 漖素液을 加하 여 反隼시킨 後 生成되는 2－pyridone을 波長 300 nm 에서 吸光度豆 測定학 標準檢量線에 準하 여 活性度量 算定하였다．酵素活性의 單位는 1 分

當 1 mg protein이 生成하는 2－pyridone의 量을 nmole로 表示하였다．
（6）Superoxide dismutase의 活性 測定 ${ }^{481}$
7.5 mM xanthine $50 \mu l$ 와 10 mM hydroxylamine hydrochloride $50 \mu \ell$ 에 濃度別 稀䆁試䊏 0.5 ml ， blank로서 65 mM phosphate buffer（ pH 7.8 ） 0.5 ml 를 取해 $37^{\circ} \mathrm{C}$ 에서 10 分問 preincubation시켰다． $0.42 \mathrm{unit} / \mathrm{m} \ell$ 의 xanthine oxidase 를 0.2 ml 加한 後 20分間 incubation시키고 sulfanilamide溶液 $1 \mathrm{~m} \mathrm{\ell}$ 와 naphthylethylenediamine 1 ml 를 加하여 室溫에서 20分間放置後 540 nm 에서 吸光度를 測运하여 總 SOD 活性을 구한 뒤 4 mM KCN 을 0.2 ml 넣고 測定한 $\mathrm{Mn}-\mathrm{SOD}$ 값을 除하여 $\mathrm{Cu}, \mathrm{Zn}-\mathrm{SOD}$ 값을 구 하였다．
（7）Catalase의 活性 測定49
50 mM phosphate $\operatorname{buffer}(\mathrm{pH} 7.0) 1.5 \mathrm{~m} \mathrm{\ell}$ 에 酵素源 $100 \mu \ell$ 를 加학 $30 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$ 溶液의 3 倍 稀䆁液吕하여 240 nm 에서 吸光度 曫化邕 2 分間 觀察하여 測定하였다．
（8）Glutathione peroxidase의 活性 湘定：
 peroxide 및 glutathione이 含有된 0.1 mM Tris． buffer（ pH 7．2）中에서 酵素液을 加하여 波長 340 nm 에서 吸光度䓃 測定학工ᅩ 標凖檢量線에 準하 여 活性度豆 算定하였다．酵素活性의 䇲位는 1 分當 1 mg protein이 生成郆는 NADP의 量을 nmole 로 表示하였다．
（9）Glutathione S－transferase의 活性 測定
Habig等의 万法 ${ }^{51}$ 에 準하여 反應液 3.5 ml 에 0.1 M potassiume phosphate buffer $(\mathrm{pH} 6.5)$ 에 $1 \mathrm{mM} \quad$ glutathione，$\quad 1 \mathrm{mM} \quad 1$－chloro 2，4－dinitrobenzene 및 0.1 ml 酵素液울 加하여 $25^{\circ} \mathrm{C}$ 에서 2 分間 又應시킨 後，이 때 生成되는 thioether 를 340 nm 에서 吸光度의 變化를 읽고 吸光計數 $9.6 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$ 를 利用하여 酵素의 活性度异 算定하 였다．
（10）脾荿組織中 glutathione의 定量
Ellamn의 方法 ${ }^{52)}$ 을 若干 變更하여 $10 \%$ 脾戦組織 1 ml 에 1 mM EDTA 가 含有된 $5 \%$ trichloroacetic acid를 加하여 遠心分離한 後，上澄

液 0.5 ml 를 取하여 0.5 ml ninhydrin 試楽을 加한後， 10 分間 加埃하여 泠水에 椧却하卫ㅗㅅㅓ 560 nm 에 서 吸光度를 測定하였다．이 곳에서 non－protein－SH에서 cysteine을 除한 값을 glutathione의 量으로 하였다．
（11）$\gamma$－Glutamylcystein synthetase의 活性 測足

Meister와 Richman의 方法 ${ }^{53}$ 에 準하여 反應液 $3.5 \mathrm{ml} 中 0.1 \mathrm{M}$ Tris． HCl buffer $(\mathrm{pH} 8.0), 8.9 \mathrm{mM}$ L．－glutamic acid， 0.94 mM EDT＇A， $3.2 \mathrm{mM} \mathrm{MgCl}_{2}$ ．
 하여 $37^{\circ} \mathrm{C}$ 에서 10 分間 反携시킨 後 spectrophotometer를 利用하여 吸光度 600 nm 에서酵素의 活性을 測定하였다。
（12）Glutathione reductase 의 活性 測远
 3.0 ml 中 0.1 M potassium phosphate buffer pH 7．5），$\quad 0.94 \mathrm{mM}$ EDTA， 4.6 mM oxidized glutathione， 0.16 mM NADPH 洖 酵素液（ $400-600 \mu$ g 蛋向稘）을 加하여 $37^{\circ} \mathrm{C}$ 에서 10 分間 反碓시킨 後 340 nm 에서 NADPH의 減少되는 量을 測定하였다．

7）蛋白兵 是倝 및 統計處理
 bovine serum albumin（Sigma Fr．V）을 標準茹으

住想證은 Duncans multiple range test를 利用午 였다．

## III．成 績

1．補脾湯线 用量別 投與计 횐쥐의 脾 脂質過酸化 含量에 미치는 影響

補脾燙煎湯液减 投與 用量 및 期間을 設定飒기 위한 像備實驗으로 用量別（100，250，350， $500 \mathrm{mg} / \mathrm{kg}$ ）로 1 週에서 4 週間 投與하고서 老化흰쥐 의 脾 脂質過酸化 含量（單位：MDA nmole／g of tissue）變化总 觀察하였다．ㄱ 結果，各 實驗群에 서 1 週 投與 啳早터 有意性 있게 減少하였고 特히

Table 1．Effect of water extract from Bobitang（BBT）on spleen lipid peroxide content in eight months rats

| Dose <br> Group（mg／kg） | Content（MDA＊nmole／g of tissue） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4（week） |
| Normal | $3.04 \pm 0.42^{\text {a }}$ |  |  |  |  |
| Control | $7.56 \pm 0.34^{\circ}$ |  |  |  |  |
| BBT I 100 |  | $7.36 \pm 0.32^{\circ}$ | $7.13 \pm 0.28{ }^{\text {b }}$ | $6.39 \pm 0.49^{c}$ | $6.42 \pm 0.36^{\text {c }}$ |
| BRT［ 250 |  | $6.83 \pm 0.27^{10,5}$ | $6.32 \pm 0.33^{\text {b }}$ | $5.98 \pm 0.38^{\text {c }}$ | $5.77 \pm 0.51^{\text {c，}}$ |
| BBT III 350 |  | $3.17 \pm 0.46^{1}$ | $5.08 \pm 0.20^{4}$ | $5.23=0.30^{\text {d }}$ | $4.92 \pm 0.46{ }^{\text {e }}$ |
| BBT IV 500 |  | $5.36 \pm 0.21^{1}$ | $5.19 \pm 0.19^{4}$ | $5.01 \pm 0.22^{\text {de }}$ | $5.11 \pm 0.31^{\text {a }}$ |

Rats were orally administered water extract from Bobitang $(0,100,250,350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one to four weeks．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean $\pm$ S．D．（n 8）．Values sharing the same superscript letter are not significantly different each other（ $\mathrm{p}<0.0$ ）$)$ by Duncan＇s multiple range test．
＊：malondialdehyde
 에 따른 才i意性은 없었다（Table 1，Fig．1）

이 結果를 土臺로 하여 以後의 實驗에서는 補脾湯禀湯淮을 $100,250,350,500 \mathrm{mg} / \mathrm{kg}$ 씩 1 週間 投與하였다

2．Superoxide 生成能에 미치는 影㗽
Superoxide 生成能（笚位： $\mathrm{nM} / \mathrm{mg}$ protein）예 미 치는 影響을 觀察한 結果，正常群의 $100 \%(23.8 \pm$


Fig．1．Effect of water extract from Bobitang （BBT）on spleen lipid peroxide content in eight months rats．
$2.28)$ 에 對하여 對照群이 $163 \%(38.9 \pm 3.36)$ 로 有意性 있게 增加한 것과 比較하여，全 賽驗群에서 有意性 있게 減少하였고 特히 BBT IV 非에서 $106 \%$（25．3二2．30），BBT II 㸷에서 $111 \%(26.4 \pm$ 3．27）로 䋶著하였다（Table 2，Fig．2）

3．Cytochrome $\mathrm{P}-450$ 의 活性에 미치는 影響
Cytochrome $\quad \mathrm{P}-450$ 의 活性（單位：nmole／mg protein）에 미치는 影響을 觀察한 結果，II常群의 $100 \%$（0．145土0．027）에 對하여 對照群은

Table 2．Effect of water extract from Bobitang（BBT） on spleen superoxide generation in eight months rats

| Dose Group <br> （mg／kg） | Activity |  |
| :---: | :---: | :---: |
|  | $\mathrm{nM} / \mathrm{mg}$ protein | $\%$ |
|  | $23.8 \pm 2.28^{\mathrm{a}}$ | 100 |
| Control | $38.9 \pm 3.36^{\mathrm{b}}$ | 16.3 |
| BBT I 100 | $32.5 \pm 2.30^{\mathrm{b}, \mathrm{c}}$ | 137 |
| BBT II 250 | $33.7 \pm 3.42^{\mathrm{C}}$ | 142 |
| BBT II 350 | $26.4 \pm 3.27^{\mathrm{a}}$ | 111 |
| BBT IV 500 | $25.3 \pm 2.30^{\mathrm{a}}$ | 106 |

Rats were orally administered water extract from Bobitang（ $0,100,250,350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean $\pm$ S．D．$(n=8)$ ． Values sharing the same superscript letter are not significantly different each other $(\mathrm{p}<0.05)$ by Duncan＇s multiple range test．


Fig．2．Effect of water extract from Bobitang（BHT） on spleen superoxide generation in eight mont
$101 \%(0.147 \pm 0.050)$ 로 若干의 增加를 나타내었으 나 有意性은 없었고 BBT III 群에서 $96 \%(0.139$ 工 0.034 ）로 19意性 있게 減少하였다（Table 3，Fig． 3）．

Table 3．Effect of water extract from Bobitang （BBT）on spleen microsomal cytochrome $\mathrm{P}-450$ activity in eight months rats

| Dose Group （ $\mathrm{mg} / \mathrm{kg}$ ） | Activity | \％of Normal |
| :---: | :---: | :---: |
|  | nmole／mg protein |  |
| Normal | $0.147 \pm 0.050^{4}$ | 100 |
| Control | $0.147 \pm 0.050^{\text {a }}$ | 101 |
| BBT I 100 | $0.142 \pm 0.036^{\text {a，}}$ | 98 |
| BBT II 250 | $0.150 \pm 0.049^{\text {c }}$ | 103 |
| BB＇T III 350 | $0.139 \pm 0.034^{\text {a }}$ | 96 |
| BBT C 500 | $0.143 \pm 0.056^{*}$ | 99 |

Rats were orally administered water extract from Bobitang（ $0,100,250,350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean $\pm$ S．D．$(\mathrm{n}=8$ ）． Values sharing the same superscript letter are not significantly different each other $(p<0.05)$ by Duncan＇s multiple range test．


Fig．3．Effect of water extract from Bobitang（BBT） on spleen microsomal cytochrome $P-450$ activity in eight months rats．

4．Aminopyrine demethylase 의 压性에 미치는影響
 nmole／mg protein／min）에 미치는 影響을 觀察한結果，鉴常群의 $100 \%$（ $0.411 \pm 0.025$ ）에 對하여 對照科이 $109 \%(0.448 \pm 0.016)$ 로 多多 增加된 것과 比較하여，BBT III 群에서 $97 \%(0.399 \pm 0.019)$ 로 住总中1 있게 減少하였다（Table 4，Fig．4）．


Fig．4．Effect of water extract from Bobitangn（BBT）on spleen aminopyrine N －demethylase activity in eight months rats．

Table 4．Effect of water extract from Bobitangn（BBT） on spleen aminopyrine N －demethylase activity in eight months rats

| Dose Group （ $\mathrm{mg} / \mathrm{kg}$ ） | Activity | \％of Normal |
| :---: | :---: | :---: |
|  | HCHO nmole／mg protein／min |  |
| Normal | $0.411 \pm 0.025^{\text {a }}$ | 100 |
| Control | $0.448 \pm 0.016^{\text {a，}}$ | 109 |
| BBT I 100 | $0.449 \pm 0.030^{11}$ | 109 |
| BBT［I 250 | $0.440 \pm 0.028^{\text {ab }}$ | 107 |
| BBT III 350 | $0.399 \pm 0.019^{\text {a }}$ | 97 |
| BBT V 500 | $0.442 \pm 0.021^{\text {ab }{ }^{\text {a }}}$ | 99 |

Rats were orally administered water extract from Bobitang（0，100，250， $350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean $\pm$ S．D．$(\mathrm{n}=8)$ ． Values sharing the same superscript letter are not significantly different each other $(\mathrm{p}<0.05)$ by Duncan＇s multiple range test．

## 5．Aniline hydroxylase의 活性에 미치는 影響

Aniline hydroxylase ㅇ 活性（單位 ： p －amino －－phenol nmole／mg protein $/ \mathrm{min}$ ）에 미치는 影響을觀察한 結果，IE常群의 $100 \%(0.178 \pm 0.020)$ 에 對하 여 對照群은 $120 \%(0.213 \pm 0.014)$ 로 有意性 있게 增加한 것과 比較하여，全 實驗群에서 有意性 있게 減少하였다（Table 5，Fig．5）．


Fig．5．Effect of water extract from Bobitang（BBT）on spleen aniline hydroxylase activity in eight months rats．

Table 5．Effect of water extract from Bobitang（BBT）on spleen aniline hydroxylase activity in eight months rats

| Dose Group <br> $(\mathrm{mg} / \mathrm{kg})$ | Activity | p－aminophenol <br> nmole $/ \mathrm{mg}$ <br> protein $/ \mathrm{min}$ |
| :---: | :---: | :---: |
|  | $0.178 \pm 0.020^{\mathrm{a}}$ | $\%$ of Normal |
|  | $0.213 \pm 0.014^{\mathrm{D}}$ | 100 |
| BBT I 100 | $0.193 \pm 0.031^{\text {a，}}$ | 120 |
| BBT II 250 | $0.189 \pm 0.026^{\mathrm{a}}$ | 108 |
| BBT II 350 | $0.201 \pm 0.022^{\text {a，}}$ | 106 |
| BBT IV 500 | $0.182 \pm 0.018^{\mathrm{a}}$ | 113 |

Rats were orally administered water extract from Bobitang（0，100， $250,350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods，Values represent mean $\#$ S．D．$(\mathrm{n}=8)$ ． Values sharing the same superscript letter are not significantly different each cther（p＜0．05）by Duncan＇s multiple range test．

## 6．Xanthine oxidase의 活性에 미치는 影響

Xanthine oxidase의 活性（単位：uric acid nmole／ng protein $/ \mathrm{min}$ ）에 미치는 影響을 觀察한結果，开常群의 $100 \%(0.35 \pm 0.028)$ 에 對하여 對照群은 $114 \%(0.40 \pm 0.037)$ 로 有意性 있게 增加한 것 과 比較竔여，全 寛驗群에서 有意性 있게 減少하 였다（Table 6，Fig．6）．


Fig．6．Effect of water extract from Bobitang（BBT）on spleen xanthine oxidase activity in eight months rats．

Table 6．Effect of water extract from Bobitang（BBT）on spleen xanthine oxidase activity in eight months rats

| Dose Group |  |  |
| :---: | :---: | :---: |
| （mg／kg） | Activity <br> uric acid nmole／mg <br> protein／min | \％of Normal |
| Normal | $0.35 \pm 0.028^{\mathrm{a}}$ | 100 |
| Control | $0.40 \pm 0.037^{\mathrm{b}}$ | 114 |
| BBT I 100 | $0.38 \pm 0.032^{\mathrm{a}, \mathrm{b}}$ | 109 |
| BBT I 250 | $0.33 \pm 0.021^{\mathrm{a}}$ | 94 |
| BBT III 350 | $0.32 \pm 0.029^{\mathrm{a}}$ | 91 |
| BBT IV 500 | $0.36 \pm 0.033^{\mathrm{a}}$ | 103 |

Rats were orally administered water extract from Bobitang（0，100，250， $350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean $\pm$ S．D．$(n=8)$ ． Values sharing the same superscript letter are not significantly different each other（p＜0．03）by Duncan＇s multiple range test．

7．Aldehyde oxidase의 活性에 미치는 影響
Aldehyde oxidase 의 活性（业位： 2 －pyridone nmole $/ \mathrm{mg}$ protein $/ \mathrm{min}$ ）에 미치는 影響을 觀察한結果，正常群의 $100 \%(2.17 \pm 0.20)$ 에 對하여 對照群 이 $110 \%(2.39 \pm 0.24)$ 로 有意性 있게 堨加한 것과比較하여．全 惯驗群에서 減少하였고 特하 BBT IV 群에서 $102 \%(2.21 \pm 0.26)$ 로 存意性 있게 減少 하였다（Table 7，Fig．7）．
Table 7．Effect of water extract from Bobitang $(\mathrm{BBT})$ on spleen aldehyde oxidase activity in eight months rats

| Dose Group （ $\mathrm{mg} / \mathrm{kg}$ ） | Activity | \％of Normal |
| :---: | :---: | :---: |
|  | 2－pyridone nmole／mg protein／min |  |
| Normal | $2.17 \pm 0.20^{\text {a }}$ | 100 |
| Control | $2.39 \pm 0.24^{\text {D }}$ | 110 |
| BBT I 100 | $2.27 \pm 0.15^{\text {a，b }}$ | 105 |
| BBT II 250 | $2.31 \pm 0.18^{\text {ab }}$ | 106 |
| BBT $⿴ 囗 十$ 350 | $2.30 \pm 0.31^{\text {a，b }}$ | 106 |
| BBT IV 500 | $2.21 \pm 0.26{ }^{\text {a }}$ | 102 |

Rats were orally administered water extract from Bobitang（0， $100,250,350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean $\pm$ S．D．$(n=8)$ ． Values sharing the same superscript letter are not significantly different each other（p＜0．05）by Duncan＇s multiple range test．


Fig．7．Effect of water extract from Bobitang（BBT） on spleen aldehyde oxidase activity in eight months rats．

Superoxide dismutase의 佔性（單位：unit $* / \mathrm{mg}$ protein $/ \min$ ）에 미치는 影響을 觀察한 結果，（F常群의 $100 \%$（ $10.51 \pm 0.23$ ）에 對하여 對照群은 $52 \%(5.43 \pm 0.36)$ 로 有意性 있게 减少하 것과 比較 하여，至 貝驗群에서 有意性있쎄 增加하였고 特하 BBT IV 群에서 $89 \%(9.36 \pm 0.55)$ ，BBT III 群에서 $79 \%(8.27 \pm 0.30)$ 로 顯著하였다（Table 8，Fig．8）．
Table 8．Effect of water extract from Bobitang（BBT）on spleen superoxide dismutase activity in eight months rats

| Dose Group <br> （mg／kg） | Activity |  |
| :---: | :---: | :---: |
| Normal | $10.51 \pm 0.23^{\mathrm{a}}$ | 100 |
| protein／min |  |  |$\quad \%$ of Normal

Rats were orally administered water extract from Bobitang（0， $100,250,350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean $\pm$ S．D．$(\mathrm{n}=8)$ ． Values sharing the same superscript letter are not significantly different each other $(\mathrm{p}<0.05)$ by Duncan＇s multiple range test．
＊unit ： 1 unit of superoxide dismutase activity was defined as the which inhibited the reduction of alkaline DMSO－mediated cytochrome C by $50 \%$


Fig．8．Effect of water extract from Bobitang（BBT）on spleen superoxide dismutase activity in eight months rats．

9．Catalase 및 glutathione peroxidase의 活性에 미치는 影響

Catalase의 活泩（單位：hydrogen peroxide decreased $\mu$ mole $/ \mathrm{mg}$ protein $/ \mathrm{min}$ ）및 glutathione peroxidase 의 活性（單位：oxidized NADPH nmole／mg protein $/ \mathrm{min}$ ） 에 미치는 影響을 觀察한 結果，正常群各各의 $100 \%$（ $1.41 \pm 0.027$ 및 $13.07 \pm 0.23$ ）에 對하여對照群品 各各 $55 \%(0.78 \pm 0.014)$ 및 $48 \%(6.27 \pm$ 0．14）로 有意性 있게 減少한 것과 比較하여， catalase는 BBT III 群 $83 \%(1.17 \pm 0.020)$ ，BBT $N$群 $77 \%(1.09 \pm 0.025)$ ，BBT II 群 73\％（1．03 $\pm$ （0．024）의 順으로，glutathione peroxidase는 BBT IV群 $92 \%$（ $11.97 \pm 0.22$ ），BBT III 群 $89 \%$（ $11.65 \pm 0.16$ ），

Table 9．Effect of water extract from Bobitang（BBT）on spleen catalase and glutathiopne peroxidase activities in eight months rats

| Dose Group （ $\mathrm{mg} / \mathrm{kg}$ ） | Activity（\％of Normal ） |  |
| :---: | :---: | :---: |
|  | Catalase ${ }^{\text {c }}$ | Glutathiopne peroxidase ${ }^{*}$ |
| Normal | $1.41 \pm 0.027^{\mathrm{a}}(100)$ | $13.07 \pm 0.23^{\text {a }}(100)$ |
| Control | $0.78 \pm 0.014^{\text {b }}(55)$ | $6.27 \pm 0.14^{\text {D }}$（48） |
| BBT I 100 | $0.95 \pm 0.018^{\text {b，c }}(67)$ | $8.39 \pm 0.10^{c}(64)$ |
| BB＇ 11250 | $1.03 \pm 0.024^{\text {c }}$（73） | $10.20 \pm 0.18^{\mathrm{c}, \mathrm{a}}(78)$ |
| BBT III 350 | $1.17 \pm 0.020^{\text {d }}$（83） | $11.65 \pm 0.16^{\text {a }}$（89） |
| BBT IV 500 | $1.09 \pm 0.025^{\text {dc }}(77)$ | $11.97 \pm 0.22^{\text {d }}$（92） |

[^1]BBT I 群 $78 \%(10.20 \pm 0.18)$ ，BBT I 群 $64 \%(8.39 \pm 0.10)$ 의 順으로 有意性 있게 增加하였다 （Table 9，Fig．9）．


Fig．9．Effect of water extract from Bobitang（BBT）on spleen catalase and glutathiopne peroxidase activities in eight months rats．

10．Glutathione S－transferase의 活性에 미치는影響

Glutathione S－transferase의 活性（單位：nmole $/ \mathrm{mg}$ protein）에 미치는 影隌을 觀察한 結果，正常群의 $100 \%(7.58 \pm 0.41)$ 에 對하여 對照群이 $83 \%(6.29 \pm 0.30)$ 로 有意性 있게 減少한 것과 比較 하여， BBT III 群에서 $96 \%(7.30 \pm 0.35)$ ，BBT $\Pi$群에서 $94 \%(7.12 \pm 0.22)$ 로 有意性 있게 增加하였

다（Table 10，Fig．10）
Table 10．Effect of water extract from Bobitang（BBT） on spleen glutathione $S$－transferse activity in eight months rats

| Dose Group （ $\mathrm{mg} / \mathrm{kg}$ ） | Activity | \％of Normal |
| :---: | :---: | :---: |
|  | nmole／mg protein |  |
| Normal | $7.58 \pm 0.41^{\text {a }}$ | 100 |
| Control | $6.29 \pm 0.30^{\circ}$ | 83 |
| BBT I 100 | $6.98 \pm 0.29^{\text {n．c }}$ | 92 |
| BBT［II 250 | $7.12 \pm 0.22^{\text {c }}$ | 94 |
| BBT III 350 | $7.30 \pm 0.35^{\text {c }}$ | 96 |
| BBT IV 500 | $6.83 \pm 0.37^{\circ}$ | 90 |

Rats were orally administered water extract from Bobitang（0， $100,250,350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean $\pm \mathrm{SD} .(\mathrm{n}=8)$ ． Values sharing the same superscript letter are not significantly different each other $(\mathrm{p}<0.05)$ by Duncan＇s multiple range test．


Fig．10．Effect of water extract from Bobitang（ $\left.\mathrm{BB}^{\prime} \mathrm{f}\right)$ on spleen glutathione S－transferse activity in eight months rats．

11．脾臟組織中 glutathione의 含量에 미치는 影響
脾嘰組織中 glutathione 의 含量（單位：$\mu \mathrm{mole} / \mathrm{mg}$ protein）에 미치는 影響을 觀察한 結果，正常群의 $100 \%(1.78 \pm 0.33)$ 에 對하여 對照群이 $75 \%$（ $1.34 \pm$ 0．37）로 有意性 있게 減少한 것과 比較하여，BBT II 群을 除外站 全 實驗群에서 全般的으로 增加되 었고 特히 BBT NV 群에서 $88 \%(1.56 \pm 0.47)$ 로 有意性 있게 䯓加하였다（Table 11．Fig．11）
Table 11．Effect of water extract from Bobitang（BBT） on spleen glutathione concentration in eight months rats

| Dose Group （ $\mathrm{mg} / \mathrm{kg}$ ） | Concentration | \％of Normal |
| :---: | :---: | :---: |
|  | $\mu \mathrm{mole} / \mathrm{mg}$ protein |  |
| Normal | $1.78 \pm 0.33^{\text {a }}$ | 100 |
| Control | $1.34 \pm 0.37^{\circ}$ | 75 |
| BBT I 100 | $1.48 \pm 0.21^{\text {a，b }}$ | 83 |
| BBT II 250 | $1.27 \pm 0.25^{\text {b，c }}$ | 71 |
| BBT III 350 | $1.43 \pm 0.22^{\text {a．b }}$ | 80 |
| BBT IV 500 | $1.56 \pm 0.47^{\text {a }}$ | 88 |

Rats were orally administered water extract from Bobitang（ $0,100,250,350,500 \mathrm{mg} / \mathrm{kg}$ ）daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods．Values represent mean $\pm$ S．D．$(\mathrm{n}=8)$ ． Values sharing the same superscript letter are not significantly different each other $(p<0.05)$ by Duncan＇s multiple range test．


Fig．11．Effect of water extract from Bobitang（BBT）on spleen glutathione concentration in eight months rats．

12．Glutathione 生成系의 活性에 미치는 䠌響
 nmole／mg protein $/ \mathrm{min}$ ）에 미치는 影響을 苟客한
 여 $92 \%(299 \pm 0.20)$ 로 任意性 있게 娍少한 것과 比車하여，BBT III 파에서 97\％（3．17土0．19），BBT N
 I．glutathione reductase（Wivglutathione nmole／mg protein／min）에서는 별다른 變化가 없었 Ll（Table 12，Fig．12）．

Table 12 Effect of water extract from Bobitang（Bl＇S）on spleen glutabione biosynthesis system in eight months rats

| Dose Group （mg．kg） | Activity（\％of Nommal） |  |
| :---: | :---: | :---: |
|  | $\gamma$（ilutamylcystei <br> n synthetase＊ | Glutathione <br> reductase＊＊ |
| Vommal | $326=0.18^{4}(100)$ | $8.75 \pm 0.333^{100)}$ |
| Control | $2.99-0.20^{\prime \prime}(9 ?)$ | $8.43 \pm 02996$ |
| B3BI I 100 | $3.06 \pm 0.22^{12}(94)$ | $8.93+0.40(102)$ |
| BHE 11250 | $297=0.13^{\prime \prime}(91)$ | $8.12 \pm 0.42933$ |
| F3BI III 300 | $3.17=0.19^{4}(97)$ | $8.70 \pm 0.38$（0） |
| 13B「 N 500 | $3.12 \pm 0.16^{1}(96)$ | $8.62=0.30(39)$ |

Kats were orally administered water extract frem hoblang（0， $100,250,350,500 \mathrm{mg} \mathrm{kg}$ ）daily for one wock．The animals were decapitated $34 h r$ after administration of last treatment of extract．The assay procedure was described in the experimental methods． Talues represent mean－S．D．$n=8)$ ，Values sharing the same superscript letter are not significantly different each other $(p<005)$ by Duncan＇s mothiple range test．
＊：Pi nmole／ng protein／nin
＊＊：glutathone nmole／mg protein／min
ns：not significant
N. 考 察
 른 速結的인 现像으로 生物罗的 過程인，濑進的이 고 队的인 退行性 變化至住 満造的，機能的 變化

力이 減退되는 现像을 意味하는 것으로 ${ }^{2-4)}$ ，人周的
 한 䭪加乐记 있는 貫情이다 ${ }^{56}$－581．





Fig．12．Effect of water extract from Bobitang（BBT）on spleen glutathione biosynthesis system in eight months rats．

等의 形態的 變化 및 知的，人格的 機能 低下，心押的變化 筞이 나타난다 ${ }^{148.591}$

韓笶學에서는《队經》＜素問•上古天眞論＞${ }^{6}$
晹哌变於 6 ，面皆焦，鬆始白。七七，任脈虚，太衝



零樞•大年篗＞＂에＂叫卜歳……腠理始疏，榮華頽落，




對해 乱述하고 있다．

老化의 原因 및 發生機轉을 살巩보면，西洋智學 에서 生物學的，生化學的，生理學的 品 形態學的


話，細胞溃傳學話，自己免疫詋 等이 있工，生化學
化誰，free radical誰，酵素作用障碍詋 等이 있으며，形態學的 䅫因說只는 組織再生機能，結合組織，親胞數 및 核의 老化 等이 있으며，生理楽的 原因轱
化。眓器들의 豫備力 減少詋 等이 있는데 1．48－10．56．58．60－621，最近에는 䚾性酵素와 關聯된 學說이注日을 받고 있는 바，이는 定常的인 細胞队 代谢過程에서 生産되는 遊離基（free radical）皆이 濑進的으로 細胞內에 蓄積되뗜서 細胞內醏絭，細胞膜，蛋白質，脂肪，DNA를 損摥시킨다는 學說이다 10，63－64）．

Free radical이란 分子 或은 原子 最外角 電子軌道에 附帶電子（짝지어지지 않은 電子）롤 가진 不安定한 化合物을 말하는데，生體內에서 問題가 되는 것은 代谢過程에서 附隨的으로 생기는 洰性酸素로 superoxide $\left(\mathrm{O}_{2}{ }^{\circ}\right)$ ，過酸化水素（hydrogen peroxide， $\mathrm{H}_{2} \mathrm{O}_{2}$ ），hydroxy radical（－OH）等이 該當되고 이들

은 細胞队 顆粒 및 cytosol에서 生成되며 또한 machrophage，白血球에서도 生成된다 ${ }^{481}$ 。여러 酳素乐에 依해 生成되는 superoxide radical은 金属이온仔在下에 여러 hydroperoxides와 反應하여 反惟性 이 큰 alkoxyl radical（RO－）이나 hydroxyl radical 이 되어 生體 分了色 攻撃하여 維織 損傷을 일으키 게 된다．이러한 汇䍀酸絜는 macrophage의 殺䔵作月1，오래된 题门兒의 除去 管에 刑用되는 物質이나，

朋을 抑制部고 活性酸素의 霑性으로부터 組䅧을 保謢학工ᅩ 怕常性을 維持하려는 防掣役割을 하는 superoxide dismutase（SOD），catalase， glutathione（GSH），glutathione peroxidase， glutathione reductase，glutathione S －transferase， protein－SH，nonprotein－SH，비타민 E 等의 扎酸化系가 仔什한다 그러나 ⿰ㅡㄶ임없이 生战되는 酸素 라다칼의 一部는 綳胞機能을 低下시汽 老化過程을誘砍할 것으로 推测되고 있다 ${ }^{\text {53 }}$ 。





情情이다．

蟓䣽臬에서의 抗老化에 對한 軍驗的 例究로서， 첫双 單味劑胥 利用한 論文으로 高麗人蔘，高麗紅落 ${ }^{122}$ ，熱地黃，黃艺，鹿華 ${ }^{(31}$ ，柴胡 ${ }^{149}$ 等이 있工，둘

 ${ }^{19,203}$ ，平補湯 ${ }^{21)}$ ，更年 1 號丸 ${ }^{221}$ ，聰明湯 ${ }^{231}$ 等이 있으朋，ㅅㅆㅆㅉㅐ 藥針製劑吾 利用한 論文으로 杜冲 ${ }^{24)}$ ，白

 있고，넷姏 理學的 因了豆 利用新 論文으로 B．E．P．${ }^{337}$ 가 있는 바，以上에서 使用된 紧劑 및 複

老化种 關聯된 補劑线 活用을 通胡 抗酸化效能을

料明하려는 試圖로 解釋할 수 있으나 다른 臓腑终 관련된 研究는 不足한 實情이다．

이에，著者는 老化와 各臟腑综의 相關性이 緊密 하고 ${ }^{71}$ 老化의 原因이 各臓腑의 變化에 따른 곳 ${ }^{1.51}$ 이라는 理論에 着眼하여，人體의 生理活動을 維持 하는 重要한 臟俯中의 하나로＂後天之本 氣血生化之源＂이라고 한 ${ }^{36)}$ 脾臟機能을 살펴보는 것도 意味 있는 일이라 생각한다．

脾臓呈 中央土로서 萬物生長의 母體이며 發生의根本이기 때문에 脾胃를 五行中에 土에 蹋螣시켜 눟았으며，人體의 生理活動을 維持하는 重要한 臟胕中哖 하나로서＂脾胃爲後天之本 氣血生化之源＂
解剖學的인 形象은 鸢踤 또는 刀鐮斗 類似하며 胃脘에 队包되어 土型을 象徵한다고 하였고，脾는

 고 있다 ${ }^{3(3)}$ ．

補脾湯은 陳의 《 三 因極一病證方論》 ${ }^{677}$ 에 처음 으로 收錄된 以後，許의《東䣽寶鑑》에서 脾慮에宜用站다 하였고 ${ }^{38)}$ 脾臓虛冷 嘔吐：泄溤 俗食不消腹满 氣逆 心煩不得臥 腸鳴 虛脹 勞倦 虚褤 喜噫叫肢厥逆 多閃少起 情意不樂 等 의 症狀을 治燎歼吗 麥芽炒 け草我 人蓼 白茯苓 草果 乾嗑炮 厚朴
 파 《三因極‥病證力論》 ${ }^{677}$ 에서 構成樂物의 種類 만 一致할 뿐 㭼量과 服用法에 있어서는 다른 鄗述을 학 있다。《東醫賽鑑》 ${ }^{381}$ 에서는 麥芽炒 甘草我 各一兩年，人蔘 白茯苓 草果 乾瞢炮 各 一兩，原朴 陳皮 白术 各七錢半으로 記述되어 있는 区面，《三因極一病證方論》 ${ }^{677}$ 에서는 麥芽炒 山草我人笭 白获苓 草果 乾兽炮는 同量이나 厚朴 陳皮向尤은 各二分으로 減量되어 記述하고 있고，《東檠寶鑑》 ${ }^{387}$ 에서는＂右挫 无錢 水前服＂이라 되어 있는 反面，《三因極一病證方論》 ${ }^{677}$ 에서는＂右爲挫散 每服四錢 水一墭丰 煎七分 去涬 食前服＂이라 되어 있어 服用法에서도 差異邕 보이고 있다．本實驗에서는 《東醫寶鑑》 ${ }^{38}$ 에 準하여 薬量을 算定 하였는데，五錢씩 하루 3 回 服用한다고 假定하고 －般的으로 2貼이 하루 服用量이니 五錢씩 3回 服

用量을 2 로 나누어 1 貼의 藥量으로 算定하였다．
脾虑에 宜用하는 補脾湯煎湯液의 老化에 따른活性酸素 生成能의 變化와 이에 對한 生體內 防禦機轉을 實驗的으로 紏明하기 위하여，2個月齢（180 $\pm 10 \mathrm{~g}$ ）의 正常횐쥐를 正常群，8佃月齡（ $550 \pm 10 \mathrm{~g}$ ）의老化횐쥐를 對照群으로 設定하고 實驗群으로는 8湖月齢의 老化흰쥐에 各各 $100 \mathrm{mg} / \mathrm{kg}, 250 \mathrm{mg} / \mathrm{kg}$ ， $350 \mathrm{mg} / \mathrm{kg} .500 \mathrm{mg} / \mathrm{kg}$ 의 補脾湯前晹液呈 投與雨 後，抗老化測定指標인 superoxide 生成能，cytochrome P－450，aminopyrine demethylase，aniline hydroxylase，xanthine oxidase，aldehyde oxidase， superoxide dismutase，catalase 및 glutathione peroxidase，glutathione S－transferase，glutathione生成采䊈 活性斗 脾臟組織中 glutathione 含量의 變化를 檢討하여 다음과 같은 結果를 얻었다．

過酸化脂質은 活性酸素의 及㷳物로 自動酸化反應에 低한 多價不飽和脂肪酸에 酸素가 附加된 生成物의 總榉인데，生體內脂質酸化에서 重要한 것 은 B酸化头 過酸化（自動酸化）로 $\beta$ 酸化는 生體羽에 서 없어서는 안돼는 것이며 에너지（ATP）生産에關興站는 反隹이고，過酸化는 高度呈 不飽和된 脂肋酸의 二重結合에 炭化水緐에서 水系를 빼내어 free radical이나 活性酸素가 생기는 磼이다 ${ }^{681}$ ．過酸化脂質의 生成은 病態生理現象이나 組織의 損傷 程度롤 나타내는 指標로，紐胞膜의 透適性을 䒕進시킬 뿐만 아니라 全般的인 細胞毒性을 招夾하 여 細胞機能을 低下시키며 壞死에 關係하어 老化现象이나 이에 따른 여러 가지 疾患의 病理現象을誘發하여 發癌過程에도 關與할 것으로 생각되고 있 다．그러나 生體內에서는 superoxide dismutase， glutathione peroxidase，vitamin E 等에 传한 過酸化反應 防禦機構计 있기 때문에 通常은 過酸化脂質이 大量으로 蓄積되지는 않으나 年粪 增加에 따 른 血管壁㐿 退行性 病變이나 肝疾患，粡梂病 等에 서는 過酸化脂質이 增加한다고 報告되어 있다 ${ }^{68)}$ 。

이에 補脾湯의 過酸化脂質에 對站 抗酸化作用을 알아보고 또한 補脾湯煎湯液의 投與 用量 및 期間 을 設定하기 爲呫 豫備實驗으로，補脾湯前湯液이老化횐쥐의 脾 脂質過酸化 含量에 미치는 影響을實驗하였는데，投與 用量（ $100 \cdot 250 \cdot 350$－
$500 \mathrm{mg} / \mathrm{kg}$ ）과 投與 期用（1－2•3•4㯰）을 다로게

 있게 減少하였고 特히 BBT III，N 辟에서 더욱







解茅하였다．





 catecholamine．ferrohemoprotein．thiols．

 xanthine oxidase， $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ oxidase y 간은

 로 mitochondria，microsome，核酸 管缕 相胞小然


 하는 것은 아니지만 人部分的 境遇에서 有务部다

反隹性이 높은 hydroxyl radical（ -OH ）을 生成시키


Superoxide 生成能에 미치는 影響을 制察站 䇆

 （Table 2，Fig．2），이로 미루어 볼 때 補脾湯鴯晹液은 活性酸秦를 能動的으로 娍少价키지만 ㅡ 投與 濃度가 $350 \mathrm{mg} / \mathrm{kg}$ 以 1 에서 優秀한 것으로 나타

나 臨不隹用時 이를 其復으로 하는 것이 败果的이 라고 刑聯된다．







 는 機情足 크제 두 가지로 초앤 cytochrome







 －다＂为。

 이 일이난다．이 재 F 로 cytochome $\mathrm{P}-40$ 의 㷋侣



 애 任胡乐도 代时办 일어나나 $\because$ 外 NADPH．



結分飒는 形態 및 乍在組織에 마라 다른 spectrum 을 나타내는 TypeI 과 Type扫로 나누어신다 ${ }^{69721}$ ．

 aminopyrine demethylase AD ） 01 虽，Typen 系의䑁物을 代射하는 瞵絜는 anilinin HCl 을 其库致 하 여 P－aminopyrine을 生吸하는 anilinin hydroxylase（AH）이다 ${ }^{6972)}$ ．

第二段階 反應은 보다 水溶性으로 만들기 위한抢合反應으로，異物質 또는 異物質中 第 一段階豆 거친 代謝産物로서 hydroxyl，amino，carboxyl， epoxide，halogen 等의 機能氣를 갖는 物質들은 抱合反應으로 代表되는 生合成的 過程을 거침으로姆 보다 水浴性이 높아지고，脂溶性이 減少되녀，보다
傮換됙工ᅩ 있다．이러한 抱合反應은 異物㙁 또는二 代谢㧞物이 體内에서 生成되어 있는 䅜䫝， polypeptide 또는 sulfer化合物经 誘導體들卌 抱合 을 이루며，一般的으로 energy를 消耗하여，高에너 지 ㄴ间體总 媒介體로 하여 이루어진다．여기에는 glycoside抱合，sulfate抱台，methyltransferase文雔， glutathione S－transferase反㷳，acylation反應 等이 있다 ${ }^{\text {i8．73）}}$ ．
 cytochrome P－450의 活性은 in常群예 比하여 對照群이 芹干의 增加总 하였고 BBT III 群刖서 有意性 있게 滅少하였다（Table 3，Fig．3）．그리고 Type I 采의 䊾物을 代謝하는 酵素인 aminopyrine demethylase의 活性은 正常群에 比㦠照群이多少 增加하였ㄹ BBT II 群에㶡 有意性 있게 減少하였다（Table 4，Fig．4）．또한，Typell系의 綵物을 代謝하는 䣲素인 aniline hydroxylase의 活性 은 全 寛驗群에서 有意性 있게 減少하였다（Table 5，Fig．5）．따라서 補脾湯이 酸化酵素豆 抑制시키 는데에 어느 程度 關與한다는 事實을 알 수 있 다．

肝에서 일어나는 解毒作用은 위에서 及 $\overline{\bar{B}}$ 及하였듯 이 第一段階 反應（phase I）과 第二，段階 反應 （phaseII）으로 나눌 수 있으며 ${ }^{(99)}$ ，ㄱ 中 第 ‥段階反應에 關閣하는 cytochrome $\mathrm{P}-450$ 은 mixed function oxidase로서 microsomal protein의 約 $20 \%$ 量 차지하며 生體內 異物質을 包含한 外因性物實을 酸化시키는 酵素이고 ${ }^{72,74-75)}$ ，또 다른 第一段階 反應에 關與部는 酵素系인 non－microsomal oxidation 酵素로서 free radical을 生成하는， xanthine oxidase와 aldehyde oxidase는 cytosol
素로서，生體内数 遊離基는 大部分이 酸化物質이

므로，生化學的 反應을 觸媒竍는 過程에서 反應液中의 酸化分子总 電子 受容體로 換用하여 superoxide anion，hydrogen peroxide 및 最終的으 로 hydroxyl radical을 生成한다 ${ }^{77 \% 77}$ ．

本 貝驗咞付 xanthine oxidase의 活性을 測运한結果，全 實驗群和肴意性 옸게 減少하였으吸特히 BBT III 群斗 BBT ㅁ 样예서 더욱 顈渚하 였다（Table 6，Fig．6）．그리고 aldehyde oxidase의活性을 測定한 結果，全 惯驗群에서 減少하였으며特히 BBT IV 㗑에서 有意性 있게 減少하였다 （Table 7，Fig．7）．이것으로 보아 老化에 依한 活性酸素의 生成增加는 non－microsomal oxidation에關興犃는 酵素系를 活性化시켜 나타나는 結果로，
 로 推起된다。

또한，glucuronic acid나 sulfate를 抱合시킴으로
 로 轉換시켜 體外 排出을 促進시키는 第二段階 反應의 媒介酵素로 superoxide dismutase（SOD）와 catalase 및 glutathione peroxidase 等이 있는데 69－71．78－741），superoxide dismutase（ SOD ）는 人體內에過酸化反墅 防禦機具（抗酸化 機具）中 하나이며 生體 異物質로 因하여 生成된 xanthine oxidase， aldehyde oxidase 等의 䤊素 反㦄의 結果로 生成 되어진 superoxide anion radical를 $\mathrm{H}_{2} \mathrm{O}_{2}$ 로 쉽게愽換시키는 것으로 活性酸素를 除尘站느 作用을 가지고 있고 ${ }^{681}$ ，catalase는 $\mathrm{H}_{2} \mathrm{O}_{2}$ 를 $\mathrm{H}_{2} \mathrm{O}$ 와 $\mathrm{O}_{2}$ 로 分解하는 酵素中에 强力한 것으로 알려져 있고 脂肪酸이나 alcohol의 酸化에도 關與하고 있으머 SOD， glutathione peroxidase와 더불어 效果가 있는 것 으로 생각되고 있고 ${ }^{(8)}$ ， Se 가 $\ddagger$ 注素로 되어 있는 glutathione peroxidase 亦是 free radical을 $\mathrm{H}_{2} \mathrm{O}$ 로變換시켜 生成된 活性酸素를 體外空 排洲시키는解瑇系 酵素이다 ${ }^{681}$ 。

本 㶳驗에서 superoxide dismutase의 活性은 $\mathbb{E}$常群에 對해 對照群이 減少한 것과 比較하여 BBT IV 群，BBT III 群，BBT 口 群，BBT I 群 의 順으로 有意性 있게 增加하였으며 特히 BBT IV 群斗 BBT III 群에서 顯著하였다（Table 8， Fig．8）．Catalase의 活性은 正常群에 對해 對照群

이 䠞少한 것과 比較하여 BBT III 群，BBT IV群．BBT II 群의 順으로 有意性 있게 增加하였으 며 glutathione peroxidase의 活性은 全 實驗群에 서 行意性 있게 增加하였다（Table 9，Fig．9）。이로 보아 補脾晹㓱湯液的 投與 가 過酸化反應 防禦機構 에 能動的으로 作用한 것으로 생각된다．

Glutathione $S$－transferase는 內因性 glutathione 올 利用하여 ${ }^{801}$ 以外의 다른 解毒系에 關興站여 痤性을 減少刘키고 ${ }^{813}$ ，glutathione의 含量은 glutathione S－transferase의 活性에 必然的으로要求되며이，$\quad \gamma$－glutamylcystein synthetase는 glutathione의 細胞內 含量을 維持시킨 作用을 가지고 있고 ${ }^{822}$ ，glutathione reductase는 酸化悲 glutathione을 還元시키는 作肘을 가지고 있다 ${ }^{821}$ ．

Glutathione $S$－transferase $\frac{2}{2}$ 組胞店 glutathione S－transferase\＆mitochondria 및 小胞體膜 glutathione S－transferase로 人別되는데，巫 glutathione S－transferase는 生體 全體竩織에 含有되어 있지만，肝에서 最高의 含量을 나타내며 副腎等에도 兩 glutathione S－transferase가 高濃度 로 分烃되어 있다 ${ }^{83 \prime}$ 。 細胞質 glutathione S－transferase의 體内重要한 役割의 하나는 親電子性의 㕹癌性 活性 代謝物的 解青作用으로서 最終的으로 N －acetyl conjugate로 决中 排抴시키는
 알려져 있다 ${ }^{84}$ ．

따라서 glutathione S－transferase를 活訨化시켜抗老化作用이 있ㄷㅏㅗㅗ 할 수 있는 바，本 賃驗에서 glutathione S－transferase의 活性에 미치는 影製
意性 있게 增加하였다（Table 10，Fig．10）
Glutatione（GSH）은 哺乳動物의 細㭌队에서 가 장 豊言站 非蛋白質인 thiol을 지니며 트리펩타이 드를 包含하고 있는 시스테인이다．Glutathione은 glutathione transferase와 glutathione peroxidase 를 위한 基質로서 알려졌으며，異物質性 化合物의脫毒性을 위한 反㣹을 促進하며 역시 及應酸素들 이나 free radical의 抗酸化劑总 위한 反應을 觸媒 한다．細胞內 還元劑로서 觸媒라든가 物質代謝를包含해서 細胞內 輸送이나 貯藏，細胞 酸化還元의

均衡調節，DNA 合成，免疫機能 및 細胞增殖에서 매우 重要하다 ${ }^{827}$ ．Glutathione은 모든 組織에서 分布하며 glutathione peroxidase의 作用을 받아 過酸化水素䓃 無毒衣女 물로 緻換시키는 대신 白身은酸化辈이 되포 肝에서는 glutathione S－transferase의 作用을 받아 外部로부터 온 化合
 으로는 mercapturic acid로 排出한다 ${ }^{87)}$ ．

本 翼驗에서 脾荡組織中 glutathione의 含量에 미치는 影響을 嚾察한 結果，BBI 】 群울 除外한
 IV 碀에서 有意性 있게 增加하였다（Table 11，Fig． 11）．

Glutathione 生成采의 活性에 미치는 影響을 觀然站 結果로，glutathione의 細胞內含量喜 維持시 키는 作用을 가지고 있는 $\gamma$－glutamylcystein synthetase ${ }^{827}$ 는 對照群이 減少한 것가 比較하여 BBT III 群斗 BBT N 群에서 有意性 있게 增加 하였다．한편，酸化型 glutathione을 還元시키는 作朋을 가지고 있는 glutathione reductase ${ }^{(2)}$ 는 별다 른 變化가 없었다（Table 12，Fig．12）．
投與는 $350 \mathrm{mg} / \mathrm{kg}$ 以上을 投與㪟을 叫 特列 效果的 인 것으로 思虑利呩，生體队 E 常 代謝過程에서 생긴 free radical이 biomolecule斗 这隼하여 細胞 에 摸鲭을 주게 되는 過程에 作用하여，抗酸化醏
 픗으로 생각된다．또한 老化過程에서 쌓이게 되는 老發物의 除去에도 有意性이 있음을 볼 때被脾湯은 老化의 抑制 및 老化의 過程冽서 생기게 되는 老疫物的 除去에 效果的인 것으로 생각되며， 이는 老化泋 單純히 警嘰機能의 愎下 뿐만 아니라脾藏機能의 低下와도 關聯되며 追後 他 臓腑㘰의聯關性에 對하여도 研究가 必要할 것으로 思慮된 다．

## V．結 論

補脾湯이 老化의 抑制 및 恢復에 미치는 效果를

寅驗的으로 紏明하고자，補脾湯煎湯液이 老化白鼠 （8個月齢， $550 \pm 10 \mathrm{~g}$ ）의 脾臓內 過酸化脂質 含量과代謝酵素系에 미치는 㷧響을 살펴본 結果 다음과 같은 結論을 얻었다．

1．脾蔵丙 過酸化脂質의 含量은 全 實驗群에서有意性 있게 减少하였고 特히 BBT III， N 群에서顯著하였다．

2．Superoxide 生成能은 全 實驗群에서 有意性 있게 減少하였고 特히 BBT IV，III 群에서 顯著하 였다．

3．Cytochrome $\mathrm{P}-450$ 과 aminopyrine demethy －lase는 별다른 變化가 없었다．

4．Aniline hydroxylase는 BBT IV，II 群에서， xanthine oxidase는 全 菑驗群에서，aldehyde oxidase는 BBT IV 群에서 有意性 있게 滅少하였 다．

5．抗酸化系 酵素인 superoxide dismutase， catalase，glutathione peroxidase는 全 賽驗群에서仿意性있게 增加하였다．

6．過酸化反碓 防禦機具인 glutathione S－transferase는 全 實驗群에서，glutathione은 BBT IV 群에서 有意性있게 增加하였다．

7．$\gamma$－Glutamylcystein synthetase $\frac{2}{2}$ BBT II， N，I 群의 順으로 有意性 있게 增加하였으나， glutathione reductase는 별다른 變化가 없었다．

以上의 結果豆 보아 補脾湯㓱湯液의 投與는 老化의 過程中的 發生하는 過酸化物과 活性酸素의抑制冽 關與함을 알 수 있으며，向後 이에 對한臨床的 研究가 必要하리라 思慮된다．

## 參考文獻

1．杜鎬京：東醫腎采學，서울，東洋醫學矿究院，1991， pp．1093－1100，1325－1383．

2．張錫泰 ：피부과학，서울，여문각，1994， $\mathrm{pp} .23-25$ ．
3．디팍 초프라 ：사람은 늙지 않는다，서울，정신세계 사，1994，pp．21－22，102－103．

4．徐舜圭 ：成人病•老人病學，서울，高麗醟學， 1992，pp．9－18，28－30，33－35，73－77，p．107，pp．251－254，

277－280，343－344，p．402，pp．475－477，505－506．
5．柳然英 ：東醫精神科學，서울，南山堂，1988， pp．116－120．

6．洪元植：校勘直譯黃帝內經素問，서울，専統文化研究曾，1993，pp．19－20．

7．河北醫學院：靈樞經校釋（下册），北京，人民衛生出版社，1982，p．126， 160 ．

8．리정복 ：浸壽學，서울，醫聖堂，1987，pp．11－99， 492－576．

9．李吉相：世界 長壽村 探訪，서울，大光文化枅， 1978，p．200，pp．234－235，241－242，p． 248.

10．김숙희，김화영 ：老化，손울，민음사， 1995 ， pp．77－80，83－84，p．94．

11．李䰙平 外：町大懐楽延緩裏老作用的研究，서울，中出復結台雜誌，1991，11（8）：pp．486－487．
 saponin의 抗酸化 作用，大田大學校大學院， 1997.

13．김정숙 外：老化防止总 위한 韓薬劑의 效能研究，韓國韓醫學矿究所， 1995.

14．문진영 外：柴胡가 free radical에 의한 脂質過酸化物 生成呗 미치는 效果，東國論集 自然科學篇，1996，Vol．15，pp．361－375．

15．蘇敬順 外：鹿㰸地黃湯이 抗老裏에 미치는影響，서올，屡㠘大學校諭文集，1995， 18（2）：pp．127－148．

16．尹一智：六味地黃湯이 老化 RAT의 肝內過酸化脂質 및 代謝酵素系에 미치는 影響，大田大學校大學院， 1998 。

17．河在原：定志丸이 老化에 미치는 影響，大田大學校大學院， 1996 。

18．朴載痒：延年丸이 老化에 叫豆 免疫機能低下 에 미치는 影響，大田大學校大學院，1992．

19．郧智天：左歸飲과 右歸飲에 의한 活性酸素類 의 消去作用斗 抗酸化 酵素系의 洰性增加效果에 대 한 磁究，大韓韓䣽學會誌，1996，17（1）：pp．465－477．

20．井哲浩外：左歸飲斗 右歸做이 老化 RAT의䐉 過酸化脂質 生成 哭 活性酸素生成采 酵素活性에 미치는 影響，大韓韓醫學會誌，1995， 16（2）：pp．348－364．

21．金潤子：平補湯이 老化에 미치는 影響，東國

大學校大學院， 1996.
22．이헌숙：更年 1 號丸의 抗酸化 活性에 관한 砰究，東或論集，1996，Vol 15，pp．343－357．

23．徐敏華：聰明湯이 老化白鼠 脑組織의 生化學
學校大學院， 1996 ．

24．成口焕 ：抗酸化作車에 對站 杜沖荣 紧針의費䲆的研究，大田大學校大學院， 1996 。
产 存驗的 砛究，大田大學校大學院， 1997.
 한 研究，大韓韓䝷學會搃，1997，17（2）：pp．8－18．

27．开哲沿外：횐쥐의 肝組織에서 鹿華薬針製
 1996，17（2）：pp．191－202．
 관한 研究，大韓鍼负學會站，1996，Vol．13，No．2， pp．254－262．

29．林呙秀外：苟茲藥釷液给抗酸化效能에 관한 研究，大韓鍼㚐學鲁読，1997，Vol．14，No．2， pp．191－198．
30．박태간：桂枝 樂針의 抗酸化作月에 관한 惯䮦的 研究，大田大學校大學院， 1998.

31．이종무：巴戟 榤針诸 抗酸化作用에 관한 费驗的护究，大訓大學校大學院， 1998.

32．우상욱 ：益智1．樂針의 抗酸化作川에 하한實驗的 研究，大田大學校大學院， 1998.

33．박겨울 ：滛羊荣 䙪針의 抗酸化作用에 판한實驗的 研究，大田大學校大學院， 1998.

34．朴煜宣：山苯莫 纅針의 抗酸化作用에 관한實驗的研究，大田大學校大學院，1998．

35．楊棟元：B．E．P．照射가 老化 RAT의 肝队過酸化脂質 및 代謝酵素系听 미치는 影響，大田大學校大學院， 1998.

36．全國韓焱科大學脾系內科學教授：脾系队科學， 서울，그린文化社，1991，p．3．

37．김동일 外：동의학사전，서울，駪江出版社， 1989，pp．222－223．

38．許 浚：東醫璸鑑，大星文化社，서울，1990，内景篇 p .353 。

39．White，B．A．：the use of chang in capillary permeability in mice to distinguish between norcotic \＆nonnarcotic analgesic，british J．pham．，1964，p．22， pp．246－258．

40．Ohkawa，H．，Ohishi，N．and Yaki，K ：Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction，Anal．Biochem，1979，p．95，pp．351－358

41．McCord，J．M．and Fridovich，I．：Superoxide dismutase．An enzymatic function for erythro cuprein，J．Biol．Chem．，1969，p．244， 6049.

42．Chan，P．C．and Bielski，B．H．J．：Enzyme catalyzed free radical reactions with nicotinarmide adenine nucreotide，J．Biol．Chem．．1974，p．249， 1317.

43．F．Omura and R．Sato ：The carbon monoxide binding pigments of liver microsomes，In ：Evidence for its hemoprotein nature，J．Biol． Chem．，1964，p．239， 2370.

44．T Nash ：The colorimetric estimation of formaldehyde by means of the hentisch reaction，J． Biol．Chem． 1953, p． $55,416$.
45．W．R．Bidiack and G．L．Lowery ：Multiple drug metabolism ： p －mitroanisole reversal of acetone enhanced aniline hydroxylation，Biochem． pharmacol，1982，p．31， 311.

46．F．Strip and C．E．Della The regutation of rat liver xanthine oxidase conversion in vitro of the enzyme activity from dehydrogenase（Type D）to oxidase（Type O），J．Biol．Chem．，1969，p．24， 3855.

47．K．V．Rajagopalan，I．Fridovich and P．Handler
Hepatic aldehyde oxidase，In ：Purification and properies，J．Biol．Chem．，1962，p．237， 922.

48．Oyanagui，Y．：Reevaluation of assay methods and establishment of kit for superoxide dismutase activity，Anal．Biochem，1948，p．42， 290.

49．Chance，B．and Maehly，A．C．：Assay of catalase and peroxidase，Vol．II．Academic Press．， 1995，pp． $764-775$.

50．E．D．Paglia and W，N，Valentine ：Studies on the quantitative and qualitative charaterization of erythrocytes gluathion peroxidase，J．Lab．Clin．

Med．，1967，p．70， 158.
51．W．H．Habig，M．J．Pabst and W．B．Jakoby ： Glutathione $S$－transferase ：The first enzymatic step in mercapture acid formation，J．Biol．Chern．，1974， p．249， 7130.

52．G．I．Ellman ：Tissue sulfhydryl group，Arch． Biochem．B．O．physis．，1959，p．30， 2409.
53．A．Meister and P．G．Richman ：Regulation of $\gamma$－Glutamylcytein synthetase by nonallosteric feedback inhibition by glutathione，J．Biol．Chem，， 1975，p．250， 1422.
54．C．E．Mize and R．G．Langdon ：Hepatic glutathione reductase，In ：Purification and general kinetic properties，J．Biol．Chem．，1962，p．237， 1589.

55．O．H．Lowry，N．J．Rosebrough，A．L．Farr and R．J．Rendall ：Protein measurement with folin phenol reagent，J．Biol．Chem．，1951，p．193， pp 265－275．

56．金光湖：東笡豫防復學，서울，慶異大學校韓䣽科人學像防䣽學教空，1995，pp．57－60，139－146，240－244．
57．이근후 外 ：최신임상정신의학，서울，하나의학 사， 1988, p．138，pp．216－228．
58．李聰苚：傳統老年䣽學，湖南，湖南科學技術出版列，1988，pp．212－215．

59．Gaitonide，M．K ：A spetrophotometric method for the direct determination of cysteine in the presesce of other naturally occurring amino acids，Biochem．J．， 1967，p．104， 627.

60．林漧良：養生壽老集，上海，上海科學技術出版社， 1982，pp．26－27，110－125，p．113，pp．132－143，190－191， 194－209．

61．Cutler，R．G．：Antioxidants，aging and longevity，Free Radicals in Biology（ed．Pryor，W．）， Academic Press．，Vol．6，1984，pp．371－424．

62．Feher，J．，Csomos，G．and Vereckei，A．：The free radical theory of aging，Free Radicals Reactions in Medicine，Springer－Verlag，Berlin，1987，pp．57－59．

63 오유진 ：활성산소가 질병의 원인이었다．，서울，이화 문화출판사， $1997, \mathrm{pp} .57-67$ ．

64．이영돈 ：생로병사의 비밀，서울， KBS 문화사업

단，1997，pp．224－247．
65．中國中西醫結合雜誌編輯委員會：中國中仾醫結含雜誌，서울，‥中刑，1993，13（4）：p．14，pp．17－18， 13（5）：pp．101－102．

67．陳仵擇：二因極一病登方論，서울，一中柿，1992， p． 95.

68．이귀녕 外：임상병리파일，서울，의학문화사， 1993，p．138，139，241，348， 349.

69．全或韓醫科大學肝系队科學敎授：肝采队科學，代 울，束洋醫學啡究院，1989，pp．182－184．

70．J．R．Gilette ：A perspective on the chemically reactive metabolism．$\Pi$ ．Alteration in kinetics of covalent binding，Biochem．Pharmacol．， 1986，p．23，292， 610.

71．S．R．Howell，G．A．Hazelton and C．D． Klassen ：Depletion of hepatic UPD＝glucuronic acid by drugs that are glucuronidated，J．Pharmacol． EXP．Yher．，1986，p．236， 610.

72．J．B．Schenkman，H．Remmer and R．W． Estabrook：Spectral studies of driug interaction with hepatic microsomal cytochrome，Mal．Phamacol．， 1967. p．3， 113.

73．P．A．Routledge and D．G．Shand Presystemic drug elimination，Annu．Res．Pharmacol． Toxicol．，1979，p．19， 447.

74．R．P．Murilyn and E．C．David ：Effect of diabetes on rat Liver cytochrome P－450，Biochem． Biophys Res．Commun．，1982，p．31， 3329.

75．V．Leonard and J．B．Schenkman ：Decrease in the levels of a constitutive cytochrome P－450 in hepatic microsomes of diabetic rats，Biochem． Biophys．Res．Commun．，1987，p．142， 623.

76．V．Massey，S．Strickland，G．S．Mayhew，L．G． Howell and P．C．Engel ：The production fo superoxide anion radicals in the reation of reduced flavins and flavoproteins with molecular oxygen， Biochem．Biophys．Res．Commun．，1969，p．36， 891.

77．D．N．Granger and D．A．Parks ：Role of oxygen radicals in the pathogenesis of intestinal
ischemia，The Pharmacologist，1983，p．25， 159.
78．J．R．Dawson and J．W．Bridge ：Guinea pig intestinal sulfotransferase ：An investigation using the cytosol fraction，Biochem．Pharmacol．，1981，p．30， 2409.

79．L．A．Reike，M．J．Meyer and K．A．Notley ： Diminished rates of hlucuronidation and sulfation in perfused rat liver after chronic ethanol administration，Biochem．Pharmacol．，1986，p．35， 439.
80．J．T．Ahokas，F．A．Nichollas，P．J． Ravenscroft and B．T．Emmerson ：Inhibition of purified rat liver glutathione S －transferase isozymes by diuretic drugs，Biochem．pharmacol．，1985，p．34， 2157.

81．W．B．Jakoby ：The glutathione S－transferase， A group of multifuntional detoxication proteins，Adv． Enzymal．，1978，p．46， 383.

82．金永坤 外：프리라디칼，서울，麗文閣，1997， p．455， 564.

83．土田成詋，作藤清美：Glutathione S－transferase isozyme，glutathione 酎究 のエホシワ，蛋白質，核酸，酵素，臨時場刊，1988，p．33， 1564 ．

84．Watabe，T．，Ishizuka，T．，Isobe，M and Ozawa， N ：7－hydroxymethylsulfate ester as an active etabolic of 7，12－dimethylbenz（a）anthracence，Science，1982， p． $215,403$.

85．徐廷旭 ：老化促進 마우스에서 加臈에 따른 抗酸化能 및 生理的，血波學的 變化，忠南大學校大學院， 1994.


[^0]:    ＊大田大學校 韓㙠科大學 再活嫛學数室

[^1]:    Rats were orally administered water extract from Bobitang $(0,100,250,350,500 \mathrm{mg} / \mathrm{kg})$ daily for one week．The animals were decapitated 24 hr after administration of last treatment of extract．The assay procedure was described in the experimental methods． Values represent mean $\pm$ S．D．$(\mathrm{n}=8)$ ．Values sharing the same superscript letter are not significantly different each other（ $p<0.05$ ）by Duncan＇s multiple range test．
    ．．：hydrogen peroxide decreased $\mu$ mole $/ \mathrm{mg}$ protein／min
    －：oxidized NADPH nmole／mg protein／min

