四物湯과 四物湯 構成藥物이 血球減少症에 미치는影響에 關한 研究

林鵭䬺＊
ABSTRACT
A study on Effects of Samultang and Samultang Composition on Lucopenia，Thrombocytopenia and Anemia

In order to inverstigate interactive effects of Samultang（SMT）and SMT composition and the principle of prescription，I examined the effects of SMT and combination of three components of SMT，In C57BL／6 mouse with oral administration of SMT and cyclophosphamide（CTX）treatment， white blood cells，platelet were counted．Also，those were anti－anemia effect for rat which have hernolytic anemia induced by phenylhydrazine．The results were summerized as follows ：

1．In vivo analysis of the effect of the SMT by orally administrated C57BL／6 mice with the SMT and was treated with cyclophosphamide（CTX）．When the number of white blood cell．platelet was counted，there was ameliorative effects of leucopenia or thrombocytopenia as a protection to CTX．

2．It was acknowledged that SMT and its composition increased RBC count and hemlytic significantly in rat which have hemolytic anemia．

3．Among SMT composition Angelicae gigantis Radix and Cnidii Rhizoma solution and among the combination group Rehmanniae Radix and Cnidii Rhizoma combination and SMT solution showed significant effects for hemoglobin and weight of spleen in mouse which have hemolytic anemia．Thus it was acknowledged that Rehmanniae Radix and Cnidii Rhizoma combination had effect to improve hemoglobin and weight of spleen．

From above these results it was acknowledged that SMT has effects that ameliorative effects of leucopenia or thrombocytopenia as a protection to CTX and anti－anemic effect for the rat which have hemolytic anemia induced by phenylhydrazine and these effects depend upon its combination of SMT composition．Especially it was acknowleged，though there are the slight difference according to combination，that Paeoniae Radix Alba combination had improving effect for physical change．So it is though that Paeoniae Radix $A l b a$ is main material for this kind of disease and continuous study is needed．

[^0]
I．緒 論

四物湯은 宋代 陣 ${ }^{52)}$ 의＜太平惠民和别局方〉 에最初承 收錄된 以來 血病의 代表的 治方으로 알려 져 있다．이 處方은 血中的 主薬으로 辛溫한 性味 의 當歸种，陰分薬으로 酸寒歼 性味의 白药薬，血中的 血薬으로 甘塞한 性味의 熟地黃과 血中의 血薬으로 辛散한 性味의 川䒓 等의 四腫의 薬物로構成되어 補血，造吕，活血 및 調血하는 效能이 있 으며，四氣五味㥙中和郆䖝 調益管衛 滋養氣血의作用을 한다 ${ }^{12,15,47,50)}$ ．主治證은 血과 關聯된 一切의疾病을 治療하나，臨床에서 原方만으로 使用되는境遇는 극히 드물고，病症에 따라 多様하게 加減活用되고 있으며，톡히 血虚，血熱，血燥 等의 血病證斗 婦人衝任脈虚損，婦人經病，産後病 等 婦人科 疾患 治療時의 基本方으로 廣範圍하게 應用되 어 지고 있다 ${ }^{2,12.43,52,533}$ ．

이제까지의 四物湯에 對한 實驗的 研究䛈는 黃 ${ }^{35)}$ 은 氣血에 미치는 影響에 對하여，洪 ${ }^{34}$ 은 赤血球象에 미치는 影響에 對하여，金 ${ }^{19}$ 은 造血作用에 미 치는 影響에 관하여，배 ${ }^{221}$ 는 Rat의 성장에 관하여， 하 ${ }^{321}$ 는 Endotoxin으로 誘發된 血栓症에 미치는 影響에 관하여，姜 ${ }^{16)}$ 은 가토의 血歴降下에 대하여， 이는 渺少摘出로 誘發된 骨多孔症에 미치는 影響 에 대하여，安 ${ }^{251}$ 은 抗癌濟 副作用 抑制效果에 대하 여 報告하였고，최근에는 四物湯의 造血，血流改選，物質代謝促進，免役기능의 增進，消化，抗癌 및鑟痛鎮痤 둥의 效能이 밝혀진 바 있다 ${ }^{39,40,45,501}$ ．韓薬은 配合應用하는 方法에 따라서 薬物과 薬物間 에 相互作用이 나타나게 된다．즉 어떤 薬物들은相好協同함으로써 治療의 效能이 增强되지만，어 떤 薬物들은 相互對抗하여 본래부터 가지고 있는不良한 作用을 减少시킴으로써 樂物의 效能을 더 욱 효과적으로 발휘할 수 있게 하기도 하며，본래 부터 가지고 있는 毒性이나 副作用을 輕減 또는解洕시키거나，혹은 相豆作用하여 毒害를 發生시 키는 것도 있게 된다．${ }^{7}$ 이렇게 方蒥의 構成樂物들 은 相互作用을 促進하고 沮害하여 抽出率이나 樂效의 상대적인 增加와 滅少를 夜氣시킨다．따라서

處方構成의 原理䓃 紏明하기 위하여 부인과 영역 에서 다용되고 있는 四物湯 構成藥物 組合에 따른薬物相互作用에 대한 研究가 필요하다．

이에 필자는 四物湯의 構成薬物 組合에 따른 薬物 相互作用에 대한 硏究의 일환으로 四物湯과四物湯 構成薬物중 한 가지를 제거하고 3 가지 薬物을 組合한 韓薬을 製造하였다．Cyclophos－ phamide를 생쥐에 注射한 후 出血球减少症 및 血小㤆减少症을 誘發하여 四物湯을 投與한 후 白白价
用하여 phenylhydrazine으로 認發된 貿血에서 血液申의 赤血球 數，hematocrit 치，hemoglobin， Fe含量 및 脾臓线 重量을 測定하여 비正 檢討하여 유의한 結果를 얻었기에 發表하는 바이다．

П．實 驗

1）薬材
本 實驗에 사용한 韓薬材（Table 1）는 大田大學校附屬韓方病院에서 購入한 후 精選하여 使用하 였다．
Table I．List of Korean traditional medicine used in this study

	韓薬名	
薬物名	學	名
當 歸	Angelioae gigantis Radix	AGR
憅地黄	Rehmanniae glutinosa	REG
白灼薬	Paeoniae lactiflora	PAL
II 泀	Cnidii officinale	CNO

2）試薬 哭 機器
Heparin，Dulbecco＇s phosphate buffered saline （D－PBS），formaldehyde，phenylhydrazine HCL， cyclophosphamide（CTX）ᄂ 는 Sigma 社（USA）製品 을 사용하였으며，기타 一般 試樂은 特級 試䊾을 사용하였다．本 實驗에 使用된 機器는 血球測程器 （MINOS，France），ICPS 1000－III 유도결합 플라 즈마 발광 분석기（Shimadzu，Japan），Gamma counter（Willac，Swiss），UV－Vis spectro－ photometer（UV－160A，Shimadzu，Japan），减壓濃

縮幾（Rotary evaporator，BUCHI B－480，Switzer land）를 使用하였다．
2．動物
實驗動物은 韓國化學研究所에서 購人한 C57 $\mathrm{BL} / 6$ 4주령 숫컷 생쥐와 Sprague－Dawley계의 숫컷 횐줘를 분양 받아 實驗에 앞서 2 주간 實驗室環境에 適應시킨 후 사용하였다．動物飼有實의 條件은 conventional system으로 $22 \pm 2^{\circ} \mathrm{C}, 1$ 일중 12 시간은 200－300 Lux로 照明하고 12 시간은 모든 빛을 遮斷午였다．鲇料는 固形铝料（조단백질 22.1% ，조지방 8.0% ，조섬유 5.0% ，조회분 8.0% ， 칼슙 0.6% ，인 0.4% ，삼양사，항생제 무침가）와 물 울 충분히 供給하였다．
3．方法
1）韓業（Koran Tradition Medicine，KTM）의調剖

四物湯 3 첩 分量 48.0 g ，四物湯에서 當歸를 제 거한 韓集 A（白灼藥＋熟地黃＋川芦，KTM－A） 30 g ，四物湯에서 白妁藥总 제거한 韓藥 B（常蹛＋熟地黃＋川莒，KTM－B） 30 g ，四物湯에서 榇地黄邕 제
四物湯에서 川䒓를 제거한 韓薬 D（當歸＋熟地黄＋白灼薬，KTM－D） 30 g 에 각각 蒸溜水 2000 ml 을加하여 熱湯抽出器에서 3 시간 抽出하여 얻은 液을吸入 濾過하여 이를 减壓 蒸溜装置（Rotary evaporator，BUCHI B－480，Switzerland）로 漕縮站 여，이를 다시 凍結 㫽燥機（Freeze dryer， EYELA FDU－540，Japan）를 이용하여 완전 건조 하여 粉末하였다．각각의 凍結乾燥 粉末을 本 實驗에 必要로 하는 濃度로 稀燡하여 使用하였다．

2）四物湯이 CTX로 誘發䚾 白血球减少症斗 血小板减少症에 미치는 影響

（1）薬物 投與

CTX 를 처리한 $\mathrm{C} 57 \mathrm{BL} / 6$ 생쥐 10 마리씩을 한군 으로 하여 正常群，CTX處理한 對照群，四物湯 投與样（ $534 \mathrm{mg} / \mathrm{kg}$ ）등 2 개 군으로 나누어 四物湯抽出液을 10 일간 1 일 1 회씩 經口 投與하였다．經口投與 6 일째 CTX（ $100 \mathrm{mg} / \mathrm{kg}$ ）을 腹堔 注射하였 다．
（2）血球計數

CTX를 처리한 후 각 $1,3,5,7,9$ 일째 心臟穿刺（cardiac puncture）로 採血한 血液을 自動血球測程器（MINOS－Roche，France）로 白血球，血小板 의 數를 計數 하였다．

3）四物湯 構成弼物 및 四物湯에서 각각의 構成藥物을 除去站 纅物 및 四物湯이 phenylhydrazine 으로 誘發된 貧血에 미치는 影響
（1）負血誘發
횐줘 6마리를 1군으로 하여 正常群， phenylhydrazine 처리 對照群 및 phenylhydrazine 처리 薬物投與群으로 區分하여 phenylhydrazine虎理群은 phenylhydrazine $\mathrm{HCl}(20 \mathrm{mg} / \mathrm{kg})$ 을 횐 줘의 꼬리정맥에 注射하여 貝血을 誘發시켰다．
（2）藥物 投與
薬物은 四物湯 抽出物 $534 \mathrm{mg} / \mathrm{kg}$ ，回物湯에서當躴豆 즐 저한 韓薬 A （白灼薬－熟地黄＋川蒙），四物湯에서 白灼薬를 제거한 韓薬 B （當歸＋熟地黃＋川菅），四物湯에서 熟地黄量 제거한 韓藥 C（當涠 + 包枃楽 + 川莒），四物湯에서 川䒮를 제거한 韓楽 D （冨蹄 + 熟地黄＋白灼薬）각각의 抽出物 $225 \mathrm{mg} / \mathrm{kg}$ 으 로 나누었다．Phenylhydrazine 처리군은 phenyl－ hydrazine으로 貧血을 誘發시킨 후 각 韓樂을 1일 1회 7일간 經口投與 하였다．韓弽 최종 投與 후節食시키고，ether로 靡醉시킨 产 心臟穿刺㖕여 探血郆고 赤血球 數，hematocrit 値，hemoglobin 含量을 測定㖕缋比較觀察 하였다．또한 血中 Fe 含量을 測定하였으며，採血 후 脾蔵给 무게를 測定 하여 比較觀察 하였다．
（4）血液中 赤血球數 計算
赤血球數의 計算은 Fonio法에 準하여 Minos－ ST 로 測定하였다．
（5）血液中 hemoglobin 含量 測定
hemoglobin 含量은 Fonio法에 準하여 Minos－ ST 로 測定하였다．
（6）血液中 hematocrit値 測定
hematocrit値는 Fonio法에 準하여 Minos－ST 로 測定하였다．
（7）血清中 Fe 含量 測定
血清中 철（ Fe ）含量의 測定은 血清 $100 \mu \mathrm{l}$ 를 취하여 試驗管에 옮기고 蒸溜水 $900 \mu \mathrm{l}$ 를 加하여

잘 회석시킨 다음 유도결합 풀라즈마 발광분석기 （ICPS）를 이용하여 철 標準液의 檢量線으로부터 시로중의 철（ Fe ）含量올 算出하였다．

4．統計處理

다양한 責驗으로부터 얻은 結果는 mean士 standard error로 기록하였다．유의성 檢證은 Student＇s t－test 分析 方法을 利用하여 泱定하였 다．

III．成 績

1．四物湯抽出物 投與 후 CTX에 의한 血液 變化

四物湯을 경구 投與한 C57BL／6 생쥐에 CTX （ $100 \mathrm{mg} / \mathrm{kg}$ ）를 주사한 경우에서는 白血球減少症 （leucopenia）과 血小板減少症（thrombocytopenia） 을 䛷炥하였다．CTX를 복강에 주사한 다음 1,3 ， $5,7,9$ 일째에 각각 採血하여 白血球绛 血小板의數를 計數 하였다．

1）白血球 數의 變化
Fig．1에서 처럼 CTX，CTX와 四物湯（534 $\mathrm{mg} / \mathrm{kg}$ ）處理群으로 나누어 실헙한 결과로，정상 생쥐에서는 白血球 수가 $7.73 \pm 0.37\left(\times 10^{3} / \mathrm{mm}^{3}\right)$ 이 었고， CTX 를 주사한 후의 생쥐에서는 각각 2.55 $\pm 0.13,1.23 \pm 0.33,4.54 \pm 0.34,5.94 \pm 0.31,6.74 \pm$ 0.28 으로 감소하였다．四物湯 投與군에서는 $4.82 \pm$ $0.29,3.31 \pm 0.22,6.36 \pm 0.35,7.43 \pm 0.32,7.03 \pm 0.21$ 의 변화를 나타내어 CTX군에 비하여 白血球 수 의 중가를 나타내었다．생쥐에 CTX처리 3 일째 이 후부터 四物湯 投與군에서 CTX군에 비하여 白血球의 수가 회복되는 것올 관찰할 수 있었다 （ $\mathrm{p}<0.001$ ）．톡히 四物湯 投與㐾에서는 3일에서 5 일 째에 급격히 白血球 수가 중가되는 것을 볼 수 있 었다．

2）血小板 數의 變化

Fig．2에서 보는 것같이 正常 생쥐의 血小板數는 $718 \pm 24\left(\times 10^{3} / \mathrm{mm}^{3}\right)$ 이고 CTX를 주사한 후 에는 $601 \pm 15,297 \pm 13,455 \pm 19,615 \pm 31,654 \pm 21$ 로 減少하였다．四物湯 投與군에서는 $546 \pm 20,372$
$\pm 15,576 \pm 29,655 \pm 27,745 \pm 19$ 로 增加를 나타나 었다（ $\mathrm{p}<0.001$ ）．CTX 處理群에서도 처리 3 일 이 후에 血小板 數의 回復올 보였지만，叫物湯 投與群에서는 급격한 血小板 數의 丁丁復 현상이 있었다 （ $\mathrm{p}<0.001$ ）

3）血球數의 變化
Fig．3에서 보는바와 같이 正常 생쥐에 10 일간四物湯을 投與하여 白血球，赤血球，血小板 數䓃 관찰한 結果 그 數가 增加됨이 확인되었으나 통계 학상 유의성은 없었다．그러나 CTX를 주사하여 면역기능이 가장 저하된 3 일째에는 四物湯 投與로血球數가 현저히 回復되는 것을 觀察할 수 있었 다．
2．Phenylhydrazine으로 誘發된 萯血 白鼠에 대 한 影響

1）赤血球 (RBC) 數의 變化
Phenylhydrazine 投與에 의하여 誘發된 貧血 흰 쥐의 혈액중 赤血球 數에 미치는 韓薬 四物湯，四物湯의 각 구성약재중 한 가지를 제거한 韓樂 A （白灼樂＋熟地黃＋川芎），韓薬 B （當歸 + 熟地黄 + 川
地黃＋白灼薬）의 조합인 각 韓薬에 대한 효과를 Table Π 에 나타내었다．Phenylhydrazine 비처리正常群解 赤血球數는 $203.8 \pm 8.3\left(\times 10^{4} / \mathrm{mm}^{3}\right)$ 이었 고，phenylhydrazine 처리 對照群은 156.0 ± 6.1 $\left(\times 10^{4} / \mathrm{mm}^{3}\right)$ 으로 감소되어 貣血。이 誘發되있다．四
 $\left(x 10^{4} / \mathrm{mm}^{3}\right)$ 로 對照群에 비하여 유의한 赤血球數 감소억제 효과를 관찰 할 수 있었다（ $\mathrm{p}<0.05$ ）．또한四物湯올 구성하는 構成藥材중 한 가지를 제거한調合群인 韓薬 A（白灼薬＋熟地黄＋川莒），韓薬 B
韓薬 D（當歸＋熟地黄＋白灼薬）의 모든 조합에서 對照群에 비하여 유의한 赤血球數 감소억제효과가 관찰되었으며 가 군에 있어서 다소의 차이는 있음 을 알 수 있었다．

2）Hematocrit 치의 변화

Phenylhydrazine 投與에 의하여 誘發된 負血 훤 줘의 혈액중 hematocrit 치에 미치는 韓藥 四物湯，四物湯의 각 構成藥材중 한 가지를 제거한 韓樂

A（白灼藥＋熟地黃＋川芎），韓楽 B（當歸＋熟地黃＋川芳），韓薬 C（當歸＋白灼薬＋川莒），韓薬 D（當歸＋熟地黄＋白灼藥）의 조합인 각 韓湶에 대한 효퐈를 Table III에 나타내었다．Phenylhydrazine 비처리沾常群의 hematocrit 치는 41.5 ± 1.1（ \because ）이었고， phenylhydrazine 처리 對照群은 36.3 ± 0.3（\％）으로 감소되었다．四物湯 投與군（ $534 \mathrm{mg} / \mathrm{kg}$ ）에서는 39.3 ± 0.7（\％）로 對照群에 비하여 유의한 hematocrit 치의 감소억제 효과를 관찰 할 수 있었다 （ $\mathrm{p}<0.001$ ）또한 四物湯을 구성하는 構成薬材중 한 가지를 제거한 調合群인 韓薬 A（白虳樂＋勲地黄＋川蚂），韓薬 B （當歸＋熟地黄＋川䒓），韓薬 C（當蹄＋
 든 조합에서 對照群에 비하여 유의한 hematocrit 치의 감소억제효과가 관찰되었으며 각 단에 있어 서 다소의 차이는 있음을 알 수 있었다．

3）Hemoglobin 합량의 변화
Phenylhydrazine 投與에 의하여 誘炥된 負血 횐 쥐의 혈액중 hemoglobin 함량에 미치는 韓薬 四物湯，四物湯의 각 構成樂材중 한 가지를 제거한韓藥 A（白灼藥＋熟地黃＋川蒙），韓薬 B（當歸＋熟地黃＋川莒），榦薬 C（當站＋白灼薬＋川莒），韓薬 D（當韩＋熟地黃＋白灼楽）의 조합인 각 韓藥에 대한 초과 를 Table N 에 나타내었다．Phenylhydrazine 비처 리 正常群의 hemoglobin 함랑는 12.9 ± 0.1（ g id ） 이었고，phenylhydrazine 처리 對照群은 11.0 ± 0.3 （ g / d ） ）으로 감소되었다．四物湯 投與군 $(53.4 \mathrm{mg} / \mathrm{kg}$ ） 에서는 $12.0 \pm 0.2(\mathrm{~g} / \mathrm{dl})$ 로 對照群에 비하여 유의 한 hemoglobin 함량의 감소억제 효과롤 관찰 할仝 있었다 $(\mathrm{p}<0.01)$ ．또한 四物湯을 구성하는 構成薬村중 한 가지를 제거한 調台群인 韓薬 A（白付弽＋熟地黄＋川䒓），韓薬 B（當歸＋熟地黃＋川芎），韓薬 C（當歸＋白灼薬＋川莒），韓薬 D（當歸＋熟地黄＋ I^{2} 枃樂）의 노든 조합에서 對照群에 비하여 유의한 hemoglobin 함량의 감소억제효과가 관찰되었으며 가 군에 있어서 다소의 차이는 있음을 알 수 있었 다．

4）혈청중 Fe 함량의 변화
Phenylhydrazine 投與에 의하여 誘發된 負血 횐 쥐의 혈청중 Fe 함량에 미치는 韓薬 四物湯，四物

湯의 각 構成薬材중 한 가지를 제거한 韓楽 A （白枃藥＋熟地黃＋川莒），韓薬 B（當踣＋熟地黄＋川芌），韓藥 C（當歸＋兒灼薬＋川䒓），韓樂 D（當歸＋熟地黃＋白㚬藥）의 조합인 각 韓薬에 대한 효과를 Table V 에 나타내었다．Phenylhydrazine 비처리 IF：常㷙의 혈청중 Fe 합량는 242.7 ± 15.2（ $\mu \mathrm{g} / \mathrm{de}$ ）이 었고，phenylhydrazine 처리 對照群은 327.7 ± 25.6 （ $\mu \mathrm{g}$＇ d ） ）으로 증가되었다．四物湯 投與促 （ $534 \mathrm{mg} / \mathrm{kg}$ ）에서드 249.2 ± 19.8（ $\mu \mathrm{g}$ ． d ）로 對照群에 비하여 유의한 혈청중 Fe 함량증가의 억제효퐈를 관찰 할 수 있었다 $(\mathrm{p}<0.05)$ ．또한 姆物湯을 구성하 느 構成薬材중 한 가지를 제거한 調令群인 韓薬
 d（）으로 對照群에 비하여 유의한 상승 억제효과를 나타내었고（ $\mathrm{p}<0.05$ ），韓薬 B（當歸＋熟地黄＋川芎）淍公群에서는 對照群에 비하여 약간 억제시켰으나 유의성은 없었다．또한 와 韓薬 C（當歸＋白枃藥＋川势）와 韓薬 D （當歸＋熟地黃＋日灼薬）에서는 혈청 중 Fe 함량이 증가되는 경향을 보여 주었다．

5）脾挋 重量의 變化
Phenylhydrazine 投與에 의하여 誘發된 負血 횐 쥐의 秘藏 重量에 미치는 韓樂 四物湯，四物湯의 각 構成藥材중 한 가지를 제거한 韓薬 A （乍昫薬＋熟地黄＋川芎），韓薬 B（當歸＋熟地黄＋H芌），韓薬 C（當歸＋白灼薬＋川荣），韓薬 D（當㱕＋熟地黄＋ F虳㭼）의 調合인 각 韓薬에 대한 효과를 Table VI에 나타내었다．Phenylhydrazine 비처리 正常群 의 脾臟 重量은 3．04 ± 0.24（ g ／mouse）이었고， phenylhydrazine 처리 對照群은 1.81 ± 0.09 （g／mouse）으로 감소되었다．四物湯 投與군 （ $5.34 \mathrm{mg} / \mathrm{kg}$ ）에서는 3.91 ± 0.31（ $\mathrm{g} / \mathrm{mouse}$ ）로 對照群 에 비하여 유의한 脾藏 重量의 減少抑制 效果률觀察 할 수 있었다 $(\mathrm{p}<0.001)$ ．또한 四物湯을 構成 하는 構成藥材중 한 가지를 除去한 調分群인 韓薬 A（白虳薬＋熟地黄＋！苟）와 韓薬 B（當歸＋熟地叀＋川劳）의 調合群에서 對照群에 비하여 유의한 脾臓重量의 減少抑制效果计 觀察되었으며，韓薬 C（當歸＋白枃薬＋川荣）와 韓薬 D（當歸＋熟地黄＋白灼薬）調合에서는 脾㵴 重量에 影響올 주지 않았다．

Fig. I. Effects of SMT on the number of white blood cells (WBC) in mice treated with cyclophosphamide (CTX).

In C57BL/6 mice with oral administration of SMT ($534 \mathrm{mg} / \mathrm{kg}$) for 10 days and CTX (100 $\mathrm{mg} / \mathrm{kg}$) was injected intraperitoneally. CTX was injected in mice 6 days after SMT administration. Peripheral blood was obtained from the mice time interval $1,3,5,7,9$ days and counted the WBC numbers as described in Materials and Methods. Four to six weeks- and sex- matched mice were analyzed at each interval. Data is represented by the mean \pm SEM. *: Statistically significant value compared with CTX data by T test ($*: \mathrm{p}<0.05 ; * *: \mathrm{p}<0.01 ; * * *: \mathrm{p}<0.001$)

Fig. 1. Effects of SMT on the number of platelet in mice treated with CTX.
In C57BL/6 mice with oral administration of SMT ($534 \mathrm{mg} / \mathrm{kg}$) for 10 days and CTX (100 $\mathrm{mg} / \mathrm{kg}$) was injected intraperitoneally. CTX was injected in mice 6 days after SMT administration.

Peripheral blood was obtained from the mice time interval $1,3,5,7,9$ days and counted the platelet numbers as described in Materials and Methods. Four to six weeks and sex- matched mice were analyzed at each interval. Data is represented by the mean \pm SEM. * : Statistically significant value compared with CTX data by T test ($*: \mathrm{p}<0.05 ; * *: \mathrm{p}<0.01 ; * * *: \mathrm{p}<0.001$)

Fig. III. Effects of SMT on blood numbers change in mice treated with CTX.
In C57BL/6 mice with oral administration of SMT ($534 \mathrm{mg} / \mathrm{kg}$) for 10 days. CTX ($100 \mathrm{mg} / \mathrm{kg}$) was injected or non-injected in mice 6 days after SMT administration. Peripheral blood was obtained at the 4 days after intraperitoneal injection of CTX and at the 10 days after SMT administration, and counted the for blood numbers change as described in Materials and Methods. Control is normal C57BL/6 blood numbers change. Four to six age-and sex-matched mice were analyzed at each time point. Data is represented by the mean \pm SEM.

Table II. Effects of Samultang (SMT) and Combination of Three Components of Samultang on the Red Blood Cell (RBC) in Phenylhydrazine HCl induced Anemia Rats

Group	KTM Dose $(\mathrm{mg} / \mathrm{kg}$. p.o. $)$	No. of animals	RBC $\left(\mathrm{x} 10^{4} / \mathrm{mm}^{3}\right)$	Increment $(\%)$
Normal		6	203.8 ± 8.3^{31}	-
Control	534	6	$156.0 \pm 6.1^{*}$	-23.5
SMT	225	6	$182.3 \pm 6.4^{*}$	16.9
KTM-A	225	6	$179.5 \pm 6.2^{\circ}$	15.1
KTM-B	225	6	$192.0 \pm 6.3^{* *}$	23.1
KTM-C	225	6	$187.8 \pm 7.5^{* *}$	20.4
KTM-D	225	$180.2 \pm 4.7^{*}$	15.5	

a) : Data is represented by the mean \pm SEM.

* : Statistically significant value compared with Control data by T test ($*: \mathrm{p}<0.05 ; * *: \mathrm{p}<0.01 ; * * *: \mathrm{p}<0.001$)

KTM（Korean Traditional Medicine）－A：Paeoniae lactiflora（PAL）＋Rehmannia glutinosa（REG） ＋Cnidii officinale（CNO），KTM－B：Angelioae gigantis（AGR）＋Rehmannia glutinosa＋Cnidii officinale，KTM－C：Angelioae gigantis＋Paeoniae lactiflora＋Cnidii officinale，KTM－D：Angelicae gigantis＋Paeoniae lactiflora＋Rehmannia glutinosa．

Table III．Effects of Samultang（SMT）and Combination of Three Components of Samultang on the Hematocrit in Phenylhydrazine HCl induced Anemia Rats

Group	KTM Dose $(\mathrm{mg} /$ kg．p．o．$)$	No．of animals	Hematocrit $(\%)$	Increment $(\%)$
Normal		6	$41.5 \pm 1.1^{\text {a }}$	-
Control		6	36.3 ± 0.3	-12.5
SMT	534	6	$39.3 \pm 0.7^{*}$	8.3
KTM－A	225	6	$39.7 \pm 0.9^{* *}$	9.4
KTM－B	225	6	$38.5 \pm 0.8^{*}$	6.1
KTM－C	225	6	$40.0 \pm 1.0^{* *}$	10.2
KTM－D	225	6	$40.2 \pm 1.1^{* *}$	10.7

a）：Data is represented by the mean \pm SEM．
＊：Statistically significant value compared with Control data by T test
（ $*: \mathrm{p}<0.05 ; ~ * *: \mathrm{p}<0.01 ; * * * \mathrm{p}<0.001$ ）
KTM－A：PAL＋REG＋CNO，KTM－B：AGR＋REG＋CNO，KTM－C：AGR＋PAL＋CNO， KTM－D：AGR＋PAL＋REG

Table IV．Effects of Samultang（SMT）and Combination of Three Components of Samultang on the Hemoglobin in Phenylhydrazine HCl induced Anemia Rats

Group	KTM Dose $(\mathrm{mg} /$ kg．p．o．$)$	No．of animals	Hemoglobin $(\mathrm{g} / \mathrm{d} \ell)$	Increment $(\%)$
Normal		6	$12.9 \pm 0.13^{\text {a }}$	-
Control	534	6	1.0 ± 0.28	-14.7
SMT	225	6	$12.0 \pm 0.16^{* *}$	9.1
KTM－A	225	6	$12.2 \pm 0.28^{*}$	10.9
KTM－B	225	6	$12.4 \pm 0.15^{* *}$	12.7
KTM－C	225	6	$11.5 \pm 0.24^{-}$	4.5
KTM－D	6	$11.2 \pm 0.07^{\circ}$	1.8	

a）：Data is represented by the mean \pm SEM．
＊：Statistically significant value compared with Control data by T test
（ $*: \mathrm{p}<0.05 ; * *: \mathrm{p}<0.01 ; * * *: \mathrm{p}<0.001$ ）
KTM－A：PAL＋REG＋CNO，KTM－B：AGR＋REG＋CNO，KTM－C：AGR＋PAL＋CNO， KTM－D：AGR＋PAL＋REG

Table V．Effects of Samultang（SMT）and Combination of Three Components of Samultang on the Serum Fe Levels in Phenylhydrazine HCl induced Anemia Rats

Group	KTM Dose $(\mathrm{mg} / \mathrm{kg}$. p．o．$)$	No．of animals	Serum Fe levels $(\mu \mathrm{g} / \mathrm{d} \ell)$	Inhibition $(\%)$
Normal		6	$242.7 \pm 15.2^{\text {a）}}$	-
Control	534	6	327.7 ± 25.6	-35.0
SMT	225	6	$249.2 \pm 19.7^{*}$	24.0
KTM－A	225	6	$249.7 \pm 22.3^{-}$	23.8
KTM－B	225	6	$335.0 \pm 13 . .^{-}$	-2.2
KTM－C	225	6	$371.3 \pm 27.0^{-}$	-13.3
KTM－D		$300.5 \pm 41.6^{-}$	8.3	

a）：Data is represented by the mean \pm SEM．
＊：Statistically significant value compared with Control data by T test （ $*: \mathrm{p}<0.05 ; * *: \mathrm{p}<0.01 ; * * *: \mathrm{p}<0.001$ ）
KTM－A：PAL＋REG＋CNO，KTM－B：AGR＋REG＋CNO，KTM－C：AGR＋PAL＋ CNO，KTM－D：AGR＋PAL＋REG

Table VI．Effects of Samultang（SMT）and Combination of Three Components of Samultang on the Spleen Weight in Phenylhydrazine HCl induced Anemia Rats

Group	KTM Dose $(\mathrm{mg} / \mathrm{kg}$. p．o．$)$	No．of animals	Spleen Weight $(\mathrm{g} /$ mouse $)$	Increment $(\%)$
Normal		6	3.04 ± 0.24^{9}	-
Control		6	1.81 ± 0.09	-40.5
SMT	534	6	$3.91 \pm 0.31^{* *}$	116.0
KTM－A	225	6	$2.77 \pm 0.30^{\circ}$	53.0
KTM－B	225	6	$2.93 \pm 0.19^{* *}$	61.9
KTM－C	225	6	$1.92 \pm 0.13^{-}$	6.1
KTM－D	225	6	$1.96 \pm 0.10^{-}$	8.3

a）：Data is represented by the mean \pm SEM．
＊：Statistically significant value compared with Control data by T test
（ $*: \mathrm{p}<0.05 ; * *$ p $<0.01 ; * * *: ~ p<0.001$ ）
KTM－A：PAL＋REG＋CNO，KTM－B：AGR＋REG＋CNO，KTM－C：AGR＋PAL＋ CNO，KTM－D：AGR＋PAL＋REG

IV．考 察

四物湯은 一切의 血虛外 血不化로 인한 諸症 및婦人의 經病올 治療하는 대표적인 方㮍 ${ }^{8,15,466}$ 로서宋代 陳 ${ }^{52}$ 의＜太平惠民和剤局方＞에 最初求 記载 되었으며， 尹 $^{26)}$ 은＜金厙要略〉의 䒓䄳膠艾湯이 그

始初로서 阿膠，艾葉，甘草䓃 除去하여 變方된 處万이라고 하였다．四物湯은 物質液體，內分泌，血液，營養物質 等의 意味邕 포함하는 血을 補하고調節하는 補血과 活血의 通治方으로 널리 알려져 있다．${ }^{8,10,20)}$ 等 ${ }^{15,42,46,52)}$ 은 調益營衛 滋䓹氣血하여衝任虚損 月水不調豆 인한 湾腹痛 崩中漏下와 胎動不安 血下不止杵 産後乘䖒 風寒內搏斗 惡露不下等에 使用하였다．四物湯은 婦人病의 要薬으로서婦人科 方面에 널리 活用되어，＜東㙠瓔鑑＞에 收

錄된 方蚉 가장 높은 使用頻度를 보였고，그 중 34.9% 가 婦人科疾患에 應用되었다．現代的인 薬理作用을 살펴보면，血液과 心䄾에 作用하여 抗血烃，血柱溶解作用，腦血流改善，血厌降下，消炎，抗菌作用과 鎮痛，鎮靜作用，抗腫瘍機能이 있음이 밝혀졌 다．${ }^{16,39,40,45 \prime}$ 또한 造血機能을 改善하며，結合組織가脂質经 代謝豆 促進하고，免役機能을 增進시키는 데 四物湯이 補血效果를 나타낼 때에는 細胞免授反應을 促進시키고，活血作用을 發揮할 때에는 貴食細胞의 貧食機能을 促進시킨다고 하였다．${ }^{14,38,50)}$時代量 거치면서 四物湯 構成薬物线 用量은 多樣外變化邕 보였다．初期에는 四腫의 各 䊾物이 等分 으로 構成되었으나 ${ }^{51,521}$ ，明代以後에는 昌追体使의理論에 따라서 各 薬物用量에 差異률 두어 汪 等 37，43，77）은 熟地黃과 當歸를 많은 양으로，川1芎을 가 장 적은 量으로 構成하였다．그러나 陳 ${ }^{541}$ 은 熟地黄
 올 當歸보다 優位로 構成하였다．近來의 文獻에서 는 尹 81 ，康 ${ }^{29}$ 과 金 ${ }^{201}$ 은 當䄳를 君薬으로，李 等 ${ }^{12,491}$ 은 熟地黃을 君薬으로 하였다．張 等 ${ }^{48,53}$ 은＂四物湯을 補血哑 應用할 경우 滋陰補血踤는 熟地黄이主薬이 되고 補血養血䇇는 當歸，白灼藥이 補助藥 이며，活血과 調經에 應用할 경우에는 마땅히 和血行血 調經止痛竔는 當歸가 主薬이 되포 川䒓으 로 補助한다＂라 하여 補血엔 熟地黃이，調經에 는 當歸가 主가 됨을 說하였다．＜東醫寶鑑〉 等 ${ }^{15.371}$ 에서는 四物湯의 應用올 四季節에 따라 달리 하여，各 樂物을 等分投與하되 春에는 信 川䓅 加防風攱ㄱ 夏에는 倍 芶薬 加 黃苓하며，秋에는 倍地黄 加 天門冬하며，冬에는 倍 當歸 加 桂枝하였 다．四物湯 構成薬物의 性味头 效能 및 薬理作用 올 살펴보면，當踊（Angelicase gigantis Radix）는溫無毒하고 甘辛微苦한 性味로 破惡血 生：新血하여補血㖕믈 一切线 血虚 血濁과 女子 ㅇ 諸不足올治한다．當歸의 精油成分은 大䐉活動을 鐄静시키 고 血壓 體溫올 下降시키며 脈搏올 緩慢하게 하는作用 및 抗菌作用이 있다．衤한 子宮平滑筋을 興雷시키고 抑制시키는 두 가지 作用과 抗 Vit．E缺乏作用 및 性腺에 대한 刺戟作用이 있어 調經止痛의 效能올 발휘한다．${ }^{1,4,11,14,39,55)}$ 白灼薬（Paeoniae

Radix Alba）은 微寒無毒하고 酸苦한 性味로，潟肝火安神，和血脈，收陰氣，緩中去水飒므로 養血 散瘀 清熱 利腸의 功效泋 있語 止腹通飒止 胎前産後 의 諸病을 治療한다，最近에는 抗莉，利尿 및 筋肉性 弛緩作用이 있어 痙攣을 鎮呼시키고 止痛하는效果가 있으며，늑히 Paeoniflorin은 鏔痛 錤痙作肘
 이 確認되었다 10．12．36．50．55）熟地黄（Rehmanniae Radix Preparat）은 溫無毒하고 甘微苫하여 嵫腨養

利尿作用 等이 있는 것으로 밝혀졌다．${ }^{111.15,3 \times .42 .551}$川芳（Cnidii Rhizoma）은 溫無毒하로 落年呫 吽味
心腹痛 腰脚痛斗 頭痛 哭 婦人病을 治療犃虽，！
硫痺作用覀 来㭇比管 擴張作用斗 抗菌，血埿降下 및 解毒作用 等이 있다．${ }^{14,15,20.5(.55 \%}$ ）이렇게 四物湯 및 四物湯을 構成攱고 있는 楛個饿 薬物에 對한薬理作用에 對해서 이미 많은 研究가 進行되⼯ㅗ 있 으며 有效成分의 一部巫 밝혀지고 있다 ${ }^{35.45 .5 \% 1}$ 反面에 韓䠓學에서 利用되고 있는 樂物은 辇味饾 利用하기보다 主로 2 種 以上 數種의 藥物이 租合되 어 辨證과 處方을 構成하여 疾病을 治療하저나 健康을 維持 堦進시키고 있다．따라서，處方을 構成 하는 個㧽 薬物의 相互作用에 의하여 薬效를 增强 시키거나 副作用을 防止하거나 예기치 못하는 作用을 楾防衣良 수 있도록 하는 特徵을 가지고 있 ㄴ․ ${ }^{10,11:}$

本 研究의 目標는 婦人病에서 多用되어지며 韓醫學에서 가장 基本的인 處方이라고 할 수 있는四物湯을 選定姑宗 四物湯의 效能을 바탕으르 이處方을 構成하는 薬物들의 役割을 糾明하고자 하 든砸究의 一環으로 着手하였다．우선 区物湯이
着眼하여 CTX로 白血球隇少症东 血小板减少症이誘發된 생쥐모델과 phenylhydrazine으로 誘發된溶血性 賀血 病態모델의 횐쥐와 臫睋로 만든 다음再給食으로 인한 生體內 生理現象의 樊化에 미치 는 四物湯의 效能은 물론 四物湯 構成薬物解 調合

에 의한 個個 薬物의 作用 等에 關한 實驗을 한結果를 考察한 바 다음과 같다．

四物湯을 생쥐에 경구投與하고 抗癌劑로 알려 진 CTX를 주사하여 白血球減少症 또는 血小板減少症을 誘發시킨 후에 白血球，血小板 수가 회복 되는지를 臨床的 차원에서 觀察하고자 하였다． AS101이 몇가지 화학치료 요법제를 생쥐에 投與 한 후 造血性 損偒（hematopoietic damage）에 대 하여 保護 作用이 있음을 보고하였다 ${ }^{68)}$ 또한 IL－1 수용제는 CTX에 의해 誘發된 骨膸毒性誘發 （myelotoxicity）생쥐의 colony 形成細胞悹 保護하 며 또한 血球形成過程中 陰性調節因子로 作用하여初期 골수 조상세포를 보호한다는 연구 결과를 발 표하였다．${ }^{67)}$ 이와 관련하여 FLAC（5－Fluorouracil， Leucovorin，Doxrubicin，CTX）를 처리한 유방암환 자에 $\mathrm{IL}-3$ 와 $\mathrm{GM}-\mathrm{CSF}$ 를 병행 投與하여 만성혈액 학적 毒性을 改善시켰다는 結果도 보고되었다 ．${ }^{66)}$本 硏究 結果에서는 四物湯을 10 일간 경구投與하 였고 CTX를 腹腔에 주사한 후 各各 $1,3,5,7,9$ 익째에 \mathfrak{H} 血球 血小板득의 斯克 計断㖕여 四物湯投與군이 CTX 處理群에 비하여 白血球와 血小板數가 增加됨을 확인하였다．이는 CTX를 주사하여免没機能이 低下된 생쥐에 区物湯抽出物을 投與하 였을 경우 현저한 免疫機能 회복 현상이 있음이 증뗭되었고 더 나아가 抗癌劑나 방사선 치료에 의 한 부작용올 보호하는 薬材로서도 가능하리라 생 각된다．貧血（anemia）은 血液中에 赤血球數 또는血色素（hemoglobin）의 量이 正常보다 적은 常態总 말하고，그 原因으로서 赤血球의 生産能低下 또는破壞亢進，出血 等에 의하여 赤血球의 生産과 崩壞에 관련된 恒常性（homeostasis）에 影響을 줌으 로서 誘發되는 것으로 알려져 있다．${ }^{58)}$ 峟血을 誘發 시키는 方法으로는 轢物投與로 赤血球를 破懐시키 거나 鴎血 等의 出血에 의하여 病態모델을 作成할 수 있음이 報告되어져 있으며 ${ }^{18,28,29,33)}$ 톡히，藥物에 의한 溶血性 貧血을 誘發시키는 것으로는 phenylhydrazine이 利用되고 있다．phenyl－ hydrazine은 赤血球를 破壞시키는 作用을 갖고 있 어 實驗動物에 注射하면 溶血性 負血을 誘發시킬 수 있으며 ${ }^{651}$ ，여러 硏究者들에 의하여 溶血性 觬血

의 모델이 作成될 수 있음이 報告된 ${ }^{33)}$ 바 있어，本實驗에서도 횐쥐에 phenylhydrazine을 꼬리정맥으 로 投與한 후 檢液을 投與하고 血液中 赤血球 數， hematocrit 値，hemolobin 含量，철 含量 및 脾臟重量 等에 미치는 影響을 檢討하였다．횐쥐에 phenylhydrazine을 投與한 후 일 주일간 檢液을經口投與하고 血液을 採取하여 血液中 赤血球 數， hematocrit 値，hemoglobin 含量，철 含量 및 脾臟重量은 phenylhydrazine 非處置 正常群에 比하여各各 有意하게 減少됨이 認定되었다．우선 赤血球數에 미치는 影響을 살펴보면 四物湯을 構成하는薬物中 한 가지 薬物을 除去한 調合에서 白灼薬＋熟地黃＋川芦，當歸＋熟地黄＋川芦，當歸＋白灼薬＋川摴 및 當歸＋白灼樂＋熟地黃의 포든 調合에서 各各有意站 赤血球 數의 減少抑制效果를 보여 주었으
 보다 강한 減少抑制效果가 認定되었다．그리고，四物湯 處直群에서도 phenylhydrazine 處置 對照群 에 比하여 16.9% 의 有意한 赤血球 數의 減少抑制效果가 認定되었다．Hematocrit 值는 血球와 血漿 의 容積比를 말하며 正常 常態에서는 거의 일정하 지만 貧血의 境遇 血液의 容積은 貧血의 정도에 따라 減少되며 血球嵱積은 賏血의 尺度가 되고 있으며，本 實驗에서 使用한 phenylhydrazine 處置 에 의한 容血性 貧血의 病態모델에서도 phenyl hydrazine 處置 對照群은 正常群에 比竔여 12.5% 의 有意한 减少效果를 보여 주었다．回物湯 構成 하는 薬物中 하나를 除去한 調分에서는 모든 調合 에서 phenylhydrazine 處置 對照群에 比하여 有意 한 hematocrit 値 減少의 抑制效果가 諗定되었고，四物湯 處置群에서도 8.3% 의 有意站 減少抑制效果가 認定되었다．Hemoglobon 含量은 phenyl－ hydrazine 處置 對照群은 正常群에 比飒여 14.7% 의 有意한 減少效果가 認定되었고，세 가지 薬物 의 調合에서는 白灼藥＋熟地黃＋川莒 및 當歸＋熟地黃＋川芎 調合의 處置群准付만 phenylhydrazine 處置 對照群에 비하여 各各 10.9% 와 12.7% 의 有意 한 hemoglobin 含量의 減少抑制效果가 認定되었 다．또한，四物湯 處置群에서는 phenylhydrazine處置 對照群에 比하여 9.1% 의 有意한 减少의 抑

制效果가 認定되었다．體內 철의 總量은 $4,000 \mathrm{mg}$ 전후이며，그 $2 / 3$ 는 赤血球의 hemoglobin에 있고， 나머지는 眝藏철으로서 肝腸，脾臓，骨㵦 및 其他 의 組織에 存在하고 있으며 血清철의 總量은 불과 $3-4 \mathrm{mg}$ 이지만 1 일 30 mg 전후의 철이 組織에서 血清철로 되어 血流를 通해 骨髓에 이르러 造血에利用된다．血清철의 㵋度는 赤血球의 生成斗 崩壞 의 定度에 따라 左右되어지며 骨榑㖇서의 造血이淢退하면 血清철의 흐름은 停滞하여 向清철의 濃度는 L；升하고，반대의 경우는 低下ㅎㅏㅣㅣ 때문에血清철의 湄度가 造血器의 㙨能을 反影하는 것으 로 알려져 있다．${ }^{631}$ 따라서，本 惯驗에서 使用한 phenylhydrazine으로 處置한 對照群에서의 血清철 의 濃度는 正常群에 比하여 35.0% 의 有意战 畄加 가 있어 phenylhydrazine에 의한 赤向梂의 破壞 등 造血器의 機能에 影響을 줌을 알 수 있었다．四物湯 構成薬物中 한 가지 薬物을 栃青就 調会에 서는 的约楽＋熟地黄＋川芎 調合에柎 phenyl－ hydrazine 處置 對照群에 比하여 23.8% 의 有意한䒩清철의 增加抑制效果豆 보인 反面에 赏蹛＋熟地黄＋川芎 및 當歸 + 白灼薬 $+川$ 莒의 調分에서는 다소措加시키는 경향을 보여 주었고，四物湯 處置群에 서는 phenylhydrazine 處置 對照群에 比하여 24.0% 의 有意한 血清철의 增加抑制效果가 認定되 었다．이러한 實驗浢 結果로 보아 檢體에 따른檢液의 投與가 血清철 濃度를 增加시키는 경향과 抑制시키는 경향의 兩面的인 實驗結果를 얻어 이 結果로 미루어 보아 榆體中의 철 含量과도 密接한關聯이 있을 것으로 使料되며 앞으로 계속 检討하 고자 한다．脾酸의 瀑重量에 대한 檢液解 影響을 살펴보면 phenylhydrazine 處置 對照群은 正常群 에 比하여 40.5% 의 有意한 脾臟 重量의 減少를 보여 주었으며，檢樂 個個의 樂物 處置群에서는 별다른 영향을 미치지 못함을 알 수 있었고，四物湯에서 한 가지 絜物을 除去한 調合에서는 白灼檪
 phenylhydrazine 處置 對照群에 比하여 有意한 减少의 抑制效果가 認定되었고，四物湯 處置群에서 도 116.0% 의 有意한 减少抑制效果를 나타내며 正常群에 比하여 增加된 結果를 얻었다．

以上의 phenylhydrazine 處置로 誘發된 容血性媍血 횐쥐에 있어서 四物湯 處置군은 血変中 赤血球 數，hematocrit 値，hemoglobin 含量에 대하여有意飒게 減少를 抑制시키는 效果가 認定되었으 며，血清철의 含量增加에 대해서는 抑制效果讣認定되었으며，이러한 結果는 本 ${ }^{38}$ 의 實験結果와－致함을 알 수 있었다．四物湯의 率血性 頒血에 대

 하는 것이었으며，톡히 中燹學에서는 赏蹛斗 川芳
止栾」이라고 하고 있으 中ㅕ 611 佃個 樂物의 調分에 의한 頒血经 改善效果总 檢討就 바，各 parameter 에 따라서 다소의 차이가 있기는 하지만 전체직으

 으로 미루어 보아 中醫學에서 말하고 있는 熟地黄，白虳薬이 「補血之正薬，${ }^{61}$ 이라고 하는 점 等과 도 相關性이 있는 것으로 보뎌지며，이들 棐物의調合이 重要한 役割을 하고 있는 것으로 使料되나 그 作用 機轉 및 役割에 대해서는 추후 계속하여檢討하고자 한다．韓㙠學의 處方構成은 數種의 幽物이 調台되어 疾病의 症斗 結合시켜 疾病冾 治療
 을 利用站는 것과는 달리 수많은 成分늘이 複雑攱 고 多樣한 方法으로 上升，上加 및 指抗作用에 의
 ㄴ 生理的 话性을 充分히 解明하기에 매우 困難하 경우가 있다．本 頁驗에서도 四物湯을 構成㖕는個個 苝物이 單獨으로 作用하기보다는 主로 이들薬物约 組合에 의한 相互作用에 의하여 薬效가 發㙷되는 것을 알 수 있어서 보다 持績的인 研究가必要하다고 思料된다．

V．結 論

娽人科 疾患에 多用되고 있는 四物湯의 方剤構成率物의 相互作用과 方髙構成原理를 研究하고자四物湯과 四物湯의 構成蔡物中 한 가지 樂物을 除

去한 組合이 CTX에 의해 誘發된 白血球減少症 또는 血小板生成滅少症의 回復 效果가 있었는지와 phenylhydrazine으로 誘發된 溶血性 貧血 횐쥐에 대하 方昌而效里 민 䬣艥白自经 生理紼化에 대하恢復效果에 미치는 影響에 대하여 實驗한 結果 다 음과 같은 結論을 얻었다．
1 生體水準에서의 整效륶 박히기 위하여 C57BL／6 생쥐에 四物湯抽出物을 經미投與하고 CTX를 處理战 후 白血球，血小板 數量 測定한結果 四物湯抽出物 投與群이 CTX에 대한 保護作用으로 白血球減少症 또는 血小板生成減少症 의 回復 效果가 있었다．
2．溶血性 貧血 횐쥐에서 赤血球 數 및 hematocrit値에 대해서 四物湯 및 回物湯 構成薬物의 調合에서 모두 有意한 改善效果가 認定되었다．
3．溶血性 貧血 횐츄에서 血色素量（hemoglobin） 및 脾栈의 重量에 대하여 四物湯 構成藥物의調合에서는 熟地黄斗 川芎䄈調合處置群에서 有意한 效果가 4타내었고，四物湯 處置群에서도 이러한 效果가 認定되어 四物湯의 構成薬物中 에서 熟地黃斗 川芨의 調合에서 血色素量 및脾臟의 重量에 대한 改善效果가 認定되었다．
4．創娥後 再給食時에 나타나는 生理變化吁 體重減少에 대하여 四物湯 處置群 및 四物湯 構成薬物中에서 白灼薬斗 熟地黃 調合이 體重減少 의 改善效果에 關與外을 알 수 있었다．
以上의 實驗結果에서 四物湯은 phenylhydrazine 으로 誘發된 溶血性 貧血에 대한 亢貧血效果 및飢餓豆 誘發된 生理變化에 대하여 改善效果가 認定되었으며，四物湯 構成薬物中에서 이러한 效果 는 構成薬物의 調合의 의하여 發顯되는 것으로 思料되어 진다．특히 薬物의 配合에 따라 다소 差異 는 있지만 生理變化에 대한 改善效果는 主로 白灼楽을 包含하는 調合에서 發顯되는 것으로 認定되 고，이러한 疾患에 效果률 나타내는 것은 四物湯構成樂物中 白灼藥이 主藥으로 作用하는 것으로 생각되어 앞으로 䌒續的인 硏究가 필요할 것으로思料된다．

參考文獻

1．康秉秀，金永坂：臨床配合本草學，서울，永林社，pp．151～157，158～161，408～411， 1994.

2．康舜洙：方劑學，서울，癸井文化刑，pp．115～ 118， 1984.

3．具本泓：새漢方處方解詋，서울，保健新報，pp． 241－244， 1985.

4．東醫學資料室 編輯 ：東醫科學研究所論文集， 서울，麗江出版社，pp．83～85，287－288， 1993.

5．宋丙基：漢方婦人科學，서울，杏林出版社，p． 48，51， 1984.

6．서덕규，나종석，이건섭，김철웅 공편저 ：혈 액학실기，서울，高文社，pp．125～128， 1979.

7．辛民教 ：原色臨床本草學，永林型，서울，p． $118,223,300,1991$.

8．尹吉榮：東醫方劑學，서울，高文垪，pp．48～ 51，73～74，p．169， 1971.

9．이삼열 ：임상병리검사법，서울，연세대출판 부，p．74， 1978.

10．李向公，安德均，辛民教，虜昇鉉，李映鍾，金善熙：漢薬臨床應用，서울，成輔社，pp．267～269， $354 ~ 355,357 ~ 362,1986$.

11．李尚仁：本草學，서울，書苑堂，pp．101～ 109，407～409， 1997.

12．李向仁：天惧處方解說，서울，成輔社，pp． 5 3～57， 1987.

13．李善宙•李容柱 ：生藥學，서울，東明社，p． 114， 1978.

14．최태섭 ：韓國의 補薬，서울，열린책들， pp ． $164 ~ 200,423 ~ 427,1990$.

15．許浚 ：東醫寶鑑，서定，南山堂，p． 76,106 ， 1974.

16．姜昌洙，李昊警 ：四物湯 煎湯液이 家兎의血嶎降下에 미치는 影響，圓光韓醫大論文集，5（2）： 145～158， 1984.

17．權在龍 ：四物湯哭 季節別活用方이 血液听 미치는 影響，東西醫學， $13: ~ p p .34 ~ 53,1988$.

18．김경림，신민규，이학인，김완희，이상인 ： 4種의 鹿茸이 實驗的 貧血 家鬼凃 赤血球象에 미치 는 影響，慶黙韓醫大論文集， $2: ~ p p .33 \sim 42,1979$ 。

19．金世吉：四物湯이 質血家有线 造血作用听 미치는 影響，賁光大學校 學位論文集，Vol．4，pp． 235～239， 1982.

20．金完熙：四物湯에 대한 考察，서울，大漢韓䣽學會報， 1 （2）：35～41， 1966 。

21．박시원，이현아 ：飢鋨를 일으킨 횐줘의 生命延長에 미치는 天然薬物의 效果，薬學會誌， 39（1）：14～22， 1995.

22．䗸種局：四君子湯과 四物湯 Extract 投與가 Rat의 成長冽 미츤 影響，慶然韓醫大論文集，4： 751～754， 1978.

23．申玟圭，金完照：飢餓白鼠血漓中 電解質 哭代謝機質의 變動에 對한 八味元의 效果，慶哭韓㙠大論文集，5：147～159， 1982 。

24．安泰亨：東醫寶繿에서의 四物湯의 活用，方劑學會誌， 1 （ 1 ）：87～99， 1990 。

25．安然直：四物湯의 抗癌劑 副作用 抑制训 關 한 實驗的 研究，東醫病理學會誌，9（2）：341～359， 1995.

26．尹四源 ：四物湯에 對한 小考，서울，㙠林誌， 104：7～12，1974．

27．李相坤：四物湯과 六味地黃湯이 郋巢摘出로誘發된 白鼠의 骨多孔症에 미치는 影響，東醫生理學會誌，12（1）： $1 \sim 18,1997$.

28．이상현：四物湯 構成樂物의 配台이 白鼠의溶血性 貧血吅 口ᄆㅣㅊ는影響，虽光韓醫大論文集， 14 ：132～151， 1993.

29．조보선，노영수，홍남두，김신규 ：녹반의 抗貧血作用에 관한 研究，生薬學會誌，19（2）：111～ 119， 1988.

30．車奉五，宋炳基 ：補慮湯의 效能에 관한 矿究，慶菛嫛學， $8(1): 22 \sim 35,1992$ ．

31．최영주，이미경，손여원，이홈숙，김영중，민
學會誌，4（3）：271～274， 1996.

32．河智容：四物湯및 四君子湯이 Endotoxin으 로 誘發된 血栓症에 미치는 影響，麇興韓醫大論文

集， 11 ：113～122， 1988.
33．홈남두，이경섭，황의완，김남재 ：四物安神湯이 순환기계 및 phenylhydrazine으로 誘發된 家鬼頒血에 대한 影響－생약복합제제의 약효연구（제 19보），생약학회지， $15(4)$ ： $188 \sim 193,1984$.

34．洪茂昌：四物湯 投與가 家犬裖 赤血球象에 미치는 影響에 대한 研究，慶感韓醫大論文集， 1 ： 117～120， 1978.

35．黄淳旭：氣血에 미치는 口马物湯•補中益氣湯 의 影響에 관한 實驗的 研究，大韓東醫生理學會誌， 4（1）：55～67， 1989.

36．柯明清：中藥有效成分理化與薬理特性，湖南，湖南科學技術出版社，pp．306～307， 1982.

37．龔廷賢：萬病回春上卷，臺北，大中國圖書公间，p．189， 1983.

38．駱和生著，安德均 譯 ：면역과 한방，서울， 열린책들，pp．62～65，213～219，235～242， 1994.

39．白剛，尙洪淋 主編：中薬方劑研究與應用大全，北京，中國科學技術出版社，pp．324～328， 1995.

40．謝遠明，馬畏民，孫本川：中樂方劑近代研究及臨床웅용，西安，陜西科學技術出版社，pp．165～ 178， 1989.

41．上海中醫學院薬學系 ：常用方藥類編，上海，上海科學技術出版社，pp．314～315， 1978.

42．吳謙：粞宗金鍳（中），서울，대성문화사，pp． $31 ~ 32$ ，p．433， 1983.
 서울，大星文化盖，pp．256～263， 1984.

44．汪昂：本草備要，서울，高文社，pp．144～ 145， 1974.

45．李向中：中醫方劑的樂理及臨床應用，北京，人民衛生出版社，pp．126～131， 1992 。

46．李梴：䣽學入聞，서울，南山堂，pp．1613～ $1665,1985$.

47．張介賓 ：景岳全書，臺北，大聯國風出版社， pp． $918 \sim 920$ ， $926 \sim 927$ ， 1985.

48．張錦清：賔用中㙠方劑學，臺北，樂群出版社， pp．383－388， 1983.

49．鄭津车：中國處方解說•臨床•應用，서官，癸丑文化社，pp．63～68， 1986.

50．宗全和 主編：中醫方制通釋，河北，河北科學技術出版社，卷三，pp．63～68， 1986.

51．陳無擇：三因力，臺北，旋風出版刑，p．213， 1973.

52．陳師文：太平惠民利劑局方，臺泓，旋風出版到，卷9，p．4， 1975.

53．陳偉，路一平：方劑學，서울，醫聖堂，pp． 205－208， 1994.

54．陳自明：婦人良方大全，香淃，文光圖書公司， 24卷，p． $42,1986$.

55．黃唄輯 編：神農本草經，北京，中醫古籍出版社，p．35，169，172， 1991.

56．侯大平，張魏，康天濟：論川爫薬性與臨床應用，中䣽學會報，p．104：44～45， 1996 。

57．金并泉，金井正光 編著（高文社 編輯部 譯）：臨床檢査法提要，서울，高文社，p．221， 1983.

58．不橋丸應：圖詋 病態牛理 藥 作用，東京，南山堂，p．239， 1988.

59．Clark，W．G．，Brater，D．C．and Johnson， A．R．：Medical Pharmacology，The C．V． Moshy Company，St．Louis，p．171， 1988

60．Colnson，H．E．，Drenick，E．T．，Chopra，I． J．and Hershman，J．M．：Alteration of TRH－stimulated level of thyrotrophin，prolactin and thyroid hormone in starved rats．J．Clin． Endocrinol．，p．45，707， 1977.

61．Gao，Z．ed．：＂Fangji Tuxi（方劑圖析）＂， Zhonyi Guji Chuban（中醫古出版），Peijing（北京）， p．111， 1989.

62．Gornall，A．G．，C．J．Bordawill and M．D． Maxima ：Determination of serum proteins by means of the biuret reaction．J．Biol．Chem．，p． 177，751， 1949.

63．Guyton，A．C．：Textbook of Medical Physiology 8th，ed．Wonsiewiez，M．J．and Hallowell，R．（eds），W．B．Saunders Company， Philadelphia，p．782， 1991.

64．Ismail，A．A．A．et al．：The role of testosterone measurements in the inverstigation of androgen disorders．Ann．Clin．Biochem．，p．

23，113， 1986.
65．James E．F．Reynolds，edit．：Martindale The Extrapharmacopoeia 21th．Edition．London． The Pharmcoceutical Press．p．1740， 1982.

66）Chudgar，U．H．，C．H．Rundus，and V．M． Peterson．1995．Recombinant human interleukin－1 receptor antagonist protects early myeloid progenitors in a murine model of cyclophosphamide－induced myelotoxicity．Blood 85：2393－2401．

67）Joyce，A．O．，D．J．Venzon，M．Gossard， M．H．Noone，A．Denicoff，A．Tolcher，D． Danforth，J．Jacobson，P．Keegan，L．Miller，and C．Chow．1995．A phase I study of sepuential versus concurrent interleukin－3 and granulocyte－macrophage colony－stimulating factor in advanced breast cancer patients treated with FLAC（5－fluorouracil，leucovorin， doxorubicin，cyclophosphamide）chemotherpy． Blood 86：2913－2921．

68）Kalechman，Y．，M．Albeck，M．Oron，D． Sobelman，M．Gurwith，G．Horwith，T．Kirsch， B．Maida，S．N．Sehgal，and B．Sredni． 1991. Protective and restorative role of AS101 in combination with chemotherapy．Cancer Res．51： 1499－1503．

[^0]: ＊大田大學校 附屬韓方病院

