Journal of the Korean Institute of Industrial Engineers

Vol. 25, No. 2, pp. 233-239, June 1999.

A Scheduling of Switch Ports for IP Forwarding®

Chae Y. Lee' - Wang Hwan. Lee’ - Hee K. Cho'

'Department of Industrial Engineering, Korea Advanced Iastitute of Science and Technology /
*Broadband Communications Dept., ETRI

P 9L 98 294 L& 2A|FY

o]’ - ol %

. 239

With the increase of internet protocol (IP} packets the performance of routers became an important issug in

internetworking. In this paper we examined the matching algorithm in gigabit router which has inpur queue

with virtual output queueing. Port partitioning concept is employed to reduce the compurational burden of

the scheduler within a switch. The inputr and outpur ports are divided into two groups such thar the

matching algorithm is implemented within each input-cutput pair group in parallel. The matching i

performed by exchanging input and output port groups at every time slot to handle all incoming traffics.

Two algorithms, maximal weight matching by port partitioning (MPP) and modified maximal weight

matching by port partitioning (MMPP) are presented. MMPP has the lowest delay for every packet arrival

rate. The buffer size on a port is approximately 20-60 packets depending on the packer arrival rates. The

throughput is illustrated to be linear to the packet arrival rate, which can be achieved under highly efficient

matching algorithm.

1. Introduction

With the development of communication technology,
the number of telecommunication users is growing
rapidly especially in the web interface. As the number
of Internet users grows exponentially these years the
so called 80/20 rule in LAN which means 80% inter-
nal traffic and 20% external traffic, is not appropriate
any more, Thus the bottleneck problem in the rourer
becomes severe with the increase of external traffic.

‘Two approaches to solve the bottleneck problem in
routers have been proposed. One is route once and
switch many and the other is gigabit router (ETRI,
1997). Route once and switch many is the way to
minimize the frequency of routing. This approach
needs new protocols and network components with
high cost. IP switching of Ipsilon (Davie et 2., 1998)
and Tag switching of Cisco (Davie e 2., 1998) are
the examples of this method.

¥ This research was supporred by the fund from Electronics and Tele-
communications Besearch Institure.

An alternative approach to achieve routing at
gigabit per second is to implement high speed
layer-3 packet header processing with an internal
switch fabric at a router. The processor's internal
cache is employed as a least recently used cache of IP
destination addresses, and wuses longest prefix
matching algorithm to look up the routing table.
The multi gigabit router (MGR) is an example of this
approach (Mckeown, 1995).

It is known that the cost of gigabit router is less
than that of route once and switch many due to the
use of the existing nerwork system. Thus we, in this
paper, focus our attention to the gigabit router
which has input queue with virtual output queueing
at each port (Anderson & /., 1993). Virtual ouput
queueing (VOQ) is suggested to overcome limirations
limitations of head of line (HOL) blocking in input
queue system.,

The HOL blocking can be entirely eliminated by
using a simple buffering strategy ar each input port.
In VOQ, rather than maintaining a single first in

234 Chae Y. Lee - Wang Hwan. Lee «+ Hee K. Cho

RNDE

_'.\\ o [z i
-+, P }r. ;
- L[] e -
- [le—e
:

(a)

]

;”j\i" —
N |
e ;'J 'S |2 |
.__ P *—9
[4]
(b) ()

Figure 1. HOL Blocking (a), VOQ (b) and Switching ().

/ _ Sch

T\

Forwarding engine
Input Pon 1 Cutput Port 1
»| Line card Line card L
buffer /
Switch,
fabric
o Line card \ Line card |
Input Pan N Crutput Port N

\-

/

Figure 2. Basic Structute of a Switch,

first out (FIFO) queue for all packets, each input
maintains a separate queue for each outputr(Anderson
e al., 1993), as shown in <Figure 1>. It is known
that the theoughput by VOQ is improved to 100%
(Mckeown, 1996) compared to the 58% (Karol er 4.,
1987) at an input queue switch with HOL blocking.

2. Input and Output Ports for Switching

A basic stracture of switch is shown in <Figure 2>,
The switch fabric interconnects input and output
ports at each time slot. The matching of each pair of
input and cutput ports is scheduled by the scheduler

and impelmented by the switch fabric.

Algorithms are developed to solve the matching
problerns. Maximum cardinality matching algorithm
(Hopcroft and Karp, 1973} is proposed to find the
match that maximizes the number of edges, while
maximum weight matching algorithm (Tarjan,
1983) maximizes the sum of edge weights. Clearly,
maximum size matching is a special case of the
maximum weight matching,

It was demonstrated using simuilation that the
maximum cardinality matching algorithm is stable
for independent and identically distributed arrivals
up to offered load of 100% when the traffic is
uniform (Mckeown, 1996). However, the algorithm

A Scheduling of Switch Ports for IP Forwarding

does not take into consideration the condition of
each port, since each edge has same weight.

On the other hand, in the maximum weight match-
ing algorithm, the matching process is solved by
considering the queue status of each port via the
weight of each link. The most efficient algorithm for
solving this maximum weight matching problem is
known to converge in OMN’logN) running time
(Tarjan, 1983).

Since the maximum weight matching algorithm 13
very complex to implement in hardware, we are in-
terested in iterative approximation to maximum
weight matching in the iterative Maximal Weight
Matching (i-MWM) algorithm (Mckeown, 1995). N
input and N output arbiters operate in paralle] as in
Parallel Tterative Martching (PIM) which was devel-
oped by DEC Systems Research Center for the
16-port, 1 Gbps AN2 switch (Anderson et al.,
1993). At each time slot, the matching for the next
time slot is scheduled as follows. Each iteration of
i-MWM consists of three steps; request, grant and
accept. All inputs and ouputs are initially un-
matched. At the end of each iteration, only those
inputs and outputs not matched are eligible for
matching in the following iterations. Connections
made in one iteration are never removed by a later
iteration, even if a larger weight match would result.

233

The three steps of each iteration are as follows:

Step 1. Request. Each unmatched input sends a
request word to each output for which it
has weight.

Step 2. Grant, If an unmatched output receives

any requests, it chooses the request wich

largest weight. Ties are broken arbitrarily.

Step 3. Accept. If an unmatched input receives one
or mote grants, it accepts the one to which
it made the largest weight grant. Ties are
broken arbitrarily.

<Figure 3> shows the above matching process at
an iteration.

3. Iterative Maximal Weight Matching by
Port Partitioning

In i-MWM, the number of comparisons required at
each arbiter becomes N-1 in one iteration in the
worst case. This is true at both grant and accept
atbiters. However, by dividing the ports into two
groups, the number of operations at each arbiter

l input |

Grant artiter | f
Input 2 Grant arbiter 2 !‘_
* .
. .
L]]
L] »
L]
L]
Ciramt arbiter {
Inypuit -» ;
-
. *
- .
——{
Input N Grant arbiter N]

* Acoept asbiter §~~*Iaput 1 & output N\
| are matched.

Accept arbiter 3

-

»

-

.

.

[

-———*Inpui j & cutput i

B Aceept arbiter § are matched.

I"'~.__ L J

F———#*Tnput N & otuput 2
Acoept arbiter N are matched.
e Roquest signal

...... — - Grant signal
————— - Accept signal

Figure 3. Implementation of Arbiters in Scheduler.

236

becomes a half. Thus, we consider partitioning the
input and output ports into two groups such that the
computational burden required in the process of
request, grant and accept is reduced and the match-
ing process is accomplished in one time slot before
transmission. An example of port partitioning is
shown in <Figure 4>. As shown in the figure, the
input and ourput port group considered in one time
slot is exchanged in the succeeding time slor. The
matching is performed within the group in parallel.
In other words in <Figure 4>, input ports 1, 2, 3
and 4 and output ports 1, 2, 3 and 4 are in one
group in one time slot. In the next time slot, input
ports 1, 2, 3 and 4 and output ports 5, 6, 7 and 8 are
in one group. Thus only within group traffics are
considered for matching as indicated in Figure.
The matching process of port partitioning is explain-
ed in the follow- ing Algorithm MPP.

Algorithm MPP

Step 1. Let G_0 = {grant arbiteri | 1< i< N/2,
*N: toral number of ports
G 1 ={grant arbiter i | N/2 + 1< { <N},
1. 0={inpurporti | 1ILi<Nf2},
and I 1={inpurporci | N2 +1<i <N}

Step 2. time = current timeslot; iteration = 1;

Step 3. Each input sends its weight information to
grant arbiters in paralle].

Step 4. Each grant arbiter in G_0 selects one input
port to have max weight in I (time(mod 2)).

Step 5. Each granc arbiter in G_1 selects one input
port to have max weight in I_(1-(time(mod2))).

Step 6. Each grant arbiter sends the selected input
index to that accept arbirer,

Step 7. Each unmatched accept arbiter selects one
output to have max weight. If an accept
arbiter selects an outpur port, then the
corresponding input and outpur port is
matched. Thus, at next iteration, the
corresponding inpur and output port is
not considered to find match.

Step 8. I no matching exisits, goto Step 10.

Step 9. iteration ++; goto Step 3.

Chae Y. Lee - Wang Hwan. Lee - Hee K. Cho

Step 10. Input port having marched traffic, trans-
mits the matched traffic.

In <Figure 4>, notice that the packet from input
port 4 to output pore 6 is delayed due to the
grouping. In this case, by including such a packet
into the matching as shown in <Figure 5>, we can
improve the switch efficiency. It will not only reduce
the delay of packets but also increase the throughpur
by giving the chance to accept packets at the two
ports in the following time slot. By considering such
a case, we present a Modified Matching by Port
Partitioning (MMPP) as follows.

Algorithm MMPP

Step 1. time = current time slot; iteration = 1.

Step 2. Let G_0 = {grant arbiter i|1 < i< N/2},
*N: total number of ports

G_1 = {grant athiteri | N/2 + 1< | <N},
I 0= {inputporri | 1< i< N/2},
andJ_1 = {input porri | N2 +1<i <N},
Step 3. Each input sends its weight information to
grant arbiters in parallel.

Step 4. For all G_0, if grant arbiter k didn't receive
any signal from I (time(mod 2)),
G 0=G0\{kfandG 1=G 1U {k}.

Step 5. For all G_1, if grant arbiter k didn't receive
any signal from I_(1-(time(mod 2})),
G 1=G_1\{k}andG 0=G 0 U {k}.

Step 6. Each granc arbiter in G_0 selects one input
port to have max weight in I_{time (mod 2)).

Step 7. Each grant arbiter in G_1 selects one input
port to have max weight in I (1-{time(rnod 2))).

Step 8. Each grant atbiter sends the selecred input
index to that accepr arbiter.

Step 9. Each unmatched accept arbiter selects one
output to have max weight. If an accept
arbiter selects an output port, then the
corresponding input and output port is
matched. Thus, at next iteration, the
corresponding input and output port is
not considered to find match.

A Scheduling of Switch Ports for IP Forwarding

After one time slot

237

Traffic not eonsider=d in finding matching

Figure 4. An Examnple of Port Partitioning.

Input port Qutput port

Group A

Group B

Trprut port Output pont
1 1
: @ 9.
3 3
& ® .,

®;

Arbiter £ doesn’t receive any
traific siznal from group B

2,
Y a Y
.\.
Y
7 7
£ 3

Figure 5. An Example of Modified Matching.

Step 10. If no matching exists, goto Step 12.
Step 11. iteration +-+; goto Step 2.

Step 12. Input port having matched traffic, trans-
mits the matched traffic.

4. Computational Results

Algorithms presented in the previous section were
implemented in Visual C++ (Version 5.0}, and ran
ont 2 90 MHz Intel Pentium based personal compu-

ter with 16 Mb of memory under Window 95. In
order to simulate the scheduling algorithm, we as-
sume the Bernoulli traffic; the probability of traffic
occurrence is p, 0 = p < 1, at each input in every
time slot. We also assume that one time slot is one
packert transmission time. The packet size is assumed
fixed. The input queue switch is assumed to have 32
input and 32 output ports. The input queue switch
adopts VOQ. Each algorithm is implemented for
500,000 time slots. The weight is determined base
on the occupancy of the queue such that the port
with longest queue has the priority to be marched.
Delay, buffer size and throughput are employed to
measure the performance. The unit of delay is time

238

10000

- —l— 1 MWM with 1 iteratian
| —#—MPF wath 2 iteratons
108C Fi oo MMPP with 2 iterstions

average dalay
B =

0.6 0es a.r s
packet arrival rate

Figure 6. Average Delay with 2 Jrerations in MMPP.

o

8 MW ik 3 narahions -
< M7 with € iterations i
=<sims MMPP with & itorations i

average delay

0.8 965 0.7 275 0.4 &85 o9 0.95 058
packet arval rate

Figure 8. Average Delay with 6 Irerarions in MMPP.

slots and the unit of buffer size is the number of
packets. Throughput is the average number of trans-
mitted packets over 32 input ports in one time slot.

<Figure 6>, <Figure 7> and <Figure 8> show
the average delay of three algorichms (-MWM, MPP,
MMPP). At low packet arrival rate, i-MWM and
MMPP have slightly lower delay than MPP.
However, at high packet arrival rate, MMPP has the
lowest delay compared to two other methods. In the
three figures the number of iterations represents the
number of request-grant-accept processes for the
matching at each rime slot. Since the input and out-
put ports are divided into two groups, two itera-
tions in the proposed MPP and MMPP correspond-
ing to one iteration of the algorithm i-MWM.

In <Figure 9> it is shown that the required buffer
size by the 32 ports is approximately 20-60 depend-
ing on the packet arrival rates. In <Figure 10>, it is
clear that the throughput is almost linear to the
packet arrival rate, which can be obtained under
highly efficient matching algorithm. Notice that

Chae Y. Lee - Wang Hwan. Lee -+ Hee K. Cho

100
i—mee - r
= WA with 2 iteratians | /
' MPF wath 4 gtrations ! .
o0 —— MMPE wath 4 i ;f

avetago dela

0.6 065 0.7 075 .8 [03
macket mrrival rate

Figure 7. Average Delay with 4 Irerations in MMPP.

0
50 “
8
‘& 40
o
@ 30 /I'/
B 20 4%—.4_: e e e o]
10 -
o H
0.9 0.92 0.94 0.95 0.8
packel arival rate
Figure 9. Buffer Size by MMPP with 6 iterations.
iz
i - ‘_‘_'4_:__’._.:5
B a
g 0
B& & ™
52
£ia
= g n —a— iIWM with 3 iterations
] 2| . T 7T g MPF with B iterationz T
S P,
g 3 = e MMF‘_!’_wnn B !':FIEIIOHS .
25
0.a C.6% e} G35 C.3E

Packet Arrival Rate

Figure 10. Throughpur of MMPP with 6 irerations.

higher throughput is obtained by MMPP than the
existing method when the packet arrival rate is
extremely high. For lower arrival rates almost same
result is obtained by the three methods, which is

A Scheduling of Switch Ports for IP Forwarding

mainly due to the fixed number of input and ourpur
ports.

5. Conclusions

Input and output matching algorithms by port parti-
tioning are proposed for IP forwarding in gigabit
router. The matching process is accelerated by parti-
tioning input and output into two groups respec-
tively. Matching is accomplished within each pair of
input-output groups in parallel. In MMPP, match-
ing input-output ports that are not in the same pair
of groups is allowed, when each of the port is idle in
its current pair. The effectiveness of port partitioning
is illustrated with compurational results. Better per-
formance is obtained when the packet arrival rate is
relatively high. MMPP demonstrated the best per-
formance in delay, required buffer size and through-
put.

239

References

Anderson, T., Owicki, S. and Saxe, J. (1993), High speed
switch scheduling for local area networks, ACM Trans.
on Compuier Systems. Nov., 319-352.

Davie, B., Doclan, P. and Rekhrer, Y. (1988), Suirching in
IP Netuvrks, Morgan Kaufman Publisher Inc.

ETRI (1997), A study on gigabit etherner interface technology Dec.

Hopcroft, J. E. and Karp, R M. (1973), An a5/2 aigorithm
for maximum matching in bipartite graphs, Society for
Industrial and Applied Mathematics . Comput., 2,
225-231.

Karel, M., Hluchyj, M. and Morgan, 5. (1987), Input versus
output queueing on a space division switch, IEEE Trans.
Commumications, 35(12), 1347-1356.

McKeown, N. (1995), Scheduling algorithms for input-queved
cell switches, pbDD Thesis. University of California at
Berkeley.

McKeown, N., Anatharam, V. and Walrand, J. (1996), Achieving
100% throughpur in an input-quened switch, Pro
INFOCOMM '96, San Francisco, 296-302.

Tarjan, R. E. (1983), Data structures and network algorithms,
Socirty far Industvial and Applied Mathematics, Pennsylva-
nia, Nov.

