Kangweon-Kyungki Math. Jour. 7 (1999), No. 1, pp. 37-44

THE DOMINATION NUMBER
OF AN ORIENTED TREE

CHANGWOO LEE

ABSTRACT. We study the relations among the domination number,
the independent domination number, and the independence number
of an oriented tree and establish their bounds. We also do the same
for a binary tree.

1. Introduction

Let D be a digraph. A subset S of vertices of D is a dominating
set of D if for each vertex v not in S there exists a vertex w in § such
that (u,v) is an arc of D. Note that the set of all vertices of D is a
dominating set of D. A dominating set of D with the smallest cardi-
nality is called a minimum dominating set of D and its cardinality is
the domination number of D. We will reserve a(D) for the domination
number of D. A subset I of vertices of D is an independent set of D
if no two vertices of I are joined by an arc in D. The independence
number 3(D) of D is the number of vertices in any largest independent
subset of vertices in D. An independent dominating set of D is an
independent and dominating set of D. The independent domination
number o'(D) of D is the number of vertices in any smallest indepen-
dent dominating subset of vertices in D. For definitions and notation
not given here see [1].

An oriented tree is a tree in which each edge is assigned a unique
direction and an oriented forest is defined analogously.

A binary (search) tree is an oriented tree which enjoys the following
properties (see [2]):

(1) There is a unique vertex vy (called the root) such that for any
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vertex v distinct from vy there is one and only one path starting
at vg and ending at v.

(2) For each vertex v the number of arcs beginning with v is zero
or two. In the former case v is called a leaf while in the latter
case it is called an inferior verter.

(3) The set of arcs is partitioned into two sets L and R (the left
and right arcs, respectively). For each interior vertex there is
precisely one left arc and one right arc starting with this vertex.

Equivalently (see [3]), a binary (search) tree may be defined as an
oriented rooted tree that consists either of a single vertex or is con-
structed from an ordered pair of smaller binary trees by joining their
roots from a new vertex that serves as the root in the tree thus formed.
The vertices are not labeled, although the root is distinguished from
the remaining vertices, and two such trees are regarded as the same if
and only if they have the same ordered pair of branches with respect
to their roots. Notice that every vertex is incident with either zero or
two arcs that lead away from the root; this fact implies that such trees
must have an odd number of vertices.

Let T be a binary tree on 2n + 1 vertices. Then T' has n interior
vertices and n + 1 leaves. Let I, I, Iz be the sets of interior vertices
with zero leaves, only one leaf, two leaves, respectively. It is of interest
to observe that |Iz| = |Iy|+1 since |Ip|+|[1|+|12] = n and |[1|+2|]5] =
n+ 1.

Let T be a binary tree. The level number of a vertex v in T is the
length of the unique path from the root to v in T and the height of T
is the maximum of the level numbers of the vertices of T. A binary
tree of height h is balanced if every leaf has distance h or h — 1 from
the root, while it is fully balanced if every leaf has distance h from the
root.

In section 2 we show that

1<a(T)<d(T)<B(T)<n-1,

B(T) = n/2
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for any oriented tree T" of order n. In section 3 we show that

o(T) < o/(T) < B(T),
"271 +1

-ISO‘(T)Sn,
n+128m) < | AL

for any binary tree T on 2n + 1 vertices.

2. Oriented trees

In this section we study the relations among the domination number,
the independent domination number, and the independence number of
an oriented tree and establish their bounds.

It is easy to see that a 3-cycle has no independent dominating set and
a 4-cycle has two independent dominating sets. But J. von Neumann
and O. Morgenstern showed [4] that every digraph without cycles has a
unique independent dominating set, and M. Richardson showed [5] that
every digraph without odd cycles has an independent dominating set.
The proofs were long and involved. However, for oriented forests (and
hence oriented trees), we have the following short algorithmic proof.

THEOREM 1. Every oriented tree T' has a unique independent dom-
inating set. '

Proof. Tt is sufficient to prove this theorem for oriented forests and
so we shall state an algorithm which finds an independent dominating
set for an oriented forest 7. The algorithm begins by putting ver-
tices with indegree zero into an independent dominating set. Next we
remove the vertices that are already in the independent dominating
set together with their out-neighbors to get a new oriented forest and
repeat this process for the new oriented forest.

Algorithm: Let Ty = T be the given oriented forest and let Ko = 0.
Put i = 1 and go to (1).

(1) Choose the set S; of all vertices with indegree zero in the oriented
forest T; and let K; = K;_1 U S;.
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(2) Let T;41 be the oriented subforest of T; induced by V — N*[K;],
where N*[K;] denotes the union of the out-neighbors of K; and K;
itself. If T;,; is an empty digraph, let K = K; and stop. Otherwise,
return to (1) putting ¢ =17 + 1.

Let 7" be an oriented tree with n vertices. Then the average indegree
of T is

(Z indeg(v)) /n = L,

n
veT'

Thus there is a vertex v of 7" with indegree zero. This implies that
the algorithm terminates after finitely many steps.

First we want to prove that K is an independent dominating set of
T. It is obvious that K is a dominating set of T". To show that K is
an independent set, we let © and v be in K. Assume there is an arc
between u and v, say, uv in T'. Then, by (1), u and v cannot be chosen
for K in the same step. If u were chosen for K in an earlier step than
the step in which v was chosen, then v would not be in K. Therefore
v must be chosen for K in an earlier step ¢ than the step in which u is
chosen for K. For this, u should have been deleted in an earlier step
than step i. Thus u is not in K, which contradicts the fact that u is
in K. '

Next we want to show that T has a unique independent dominating
set. Suppose that T has two distinct independent dominating sets
K and L. Then any one of K and L cannot be a proper subset of
the other. Otherwise, one of them contains an arc and cannot be
independent. Let vy be a vertex in K — L. Then there is a vertex vz in
L — K that dominates v; and next there is a vertex v # vy in K — L
that dominates vo. Repeat this argument. Then we have a sequence
{v;} of vertices such that v; # v;12. Let j be the smallest integer such

that v; = v for some k < j. Then vy = v;,v;_1, -+ , vk is a cycle of
length at least 3 in the underlying tree of T'. This contradicts that T'
is an oriented tree. O

It is easily seen that a(G) < S(G) for undirected graphs G. But it
does not hold for directed graphs as we have already seen in a directed
3-cycle. However, for oriented trees, it still is true.

CoOROLLARY 1. Let T be an oriented tree of order n. Then we have
158l a’(T) <BT)<n-1
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and
B(T) > n/2.

Proof. The first part is immediate from the definitions. For the
second part, observe that the independence number of an oriented tree
is the same as that of the underlying unoriented tree. |

Here is an example that shows that the three invariants need not be
equal. Let n > 4 be an integer and let T be an oriented tree with V =
{’Uq, Tt Un, U, !Un} and £ = {(ulwuj) | J=2,-- ,’I’L} U {(Ultvj) l
Jj =2, ,n}U{(u1,v1)}. Then it is easy to see that a(T) = 2, /(T) =
n+ 1, and B3(T) = 2n — 2. Therefore we have o(T) < o'(T) < B(T).

Let «, o', (3, and n be positive integers satisfying 1 < o < o <
B <n-—1and # > n/2. Then can we construct an oriented tree T' of
order n having o(T) = a, &/(T) = &/, and B(T') = B? By checking all
oriented trees with four vertices, we know that all possible outcomes of
(o, &, B) are (1, 1, 3), (2, 2, 2), (2, 3, 3), and (3, 3, 3). Thus there are
no oriented trees of order 4 having, for example, the outcome (1,2, 3).

THEOREM 2. Let n > 2 be an integer. Then for any « such that
1 < a < n-—1, there is an oriented tree T' of order n whose domination
number is c.

Proof. We construct T' as follows. The vertex set of T' is V' = [n)]
and the arcs consist of (¢,n) for ¢ = 1,2,... ,a — 1 and (n,j) for j =
a,a+1,... ,n—1. Then T is an oriented tree and {1,2,... ,a—1,n} is
a minimum dominating set of T'. Therefore T' has domination number
Q. t

THEOREM 3. Let n > 2 be an integer. Then for any o such that
1 < &' < n—1, there is an oriented tree T' of order n whose independent
domination number is o'.

Proof. We construct T as follows. The vertex set of T' is V' = [n].

If o > (n— 1)/2, then the arcs consist of (i,n) for i = 1,2,...,d
and (j,j+a')for j=1,2,... ,n—a’ — 1. If &/ < (n—1)/2, then the
arcs consist of (i,n) fori =1,2,... ¢/, (,7j+ ) for j =1,2,... ¢,

and (a,k) for k =2a+1,... ,n— 1. Then T is an oriented tree and



42 Changwoo Lee

{1,2,...,a'} is the independent dominating set of 7. Therefore T has
independent domination number «’. O

3. Binary trees

In this section we study relations among the domination number,
the independent domination number, and the independence number of
a binary tree and establish their bounds.

THEOREM 4. Let T' be a binary tree on 2n + 1 vertices. Then we
have

(1) a(T) < (T) < B(T),
@) [2"“] < o(T) <n,
(3) n+1<B(T) < V’(ig—”iJ

Proof. Corollary 1 implies (1). To prove (2), observe that every
vertex in T' dominates at most three vertices and that the set of all
interior vertices of T' is a dominating set for 7. This establishes (2).
The set of all leaves of T' forms an independent set of cardinality n + 1
and hence n + 1 < B(T).

Now we want to prove the last inequality. Let |T'| be the underly-
ing tree of the binary tree T. Suppose S = {uj,uz,--- ,ux} is any
independent set in |T|. For each ¢ = 2,---  k, there is a unique
u; — u; path in |T|. Let R be the set of all predecessors of u; in
the paths for i = 2,--- | k. Since the set R is disjoint from the set
S, we have |R| < (2n + 1) — k. In addition, since every vertex in |T|
has degree at most 3, we have (k — 1)/2 < |R|. Therefore we have
(k—1)/2 < (2n+1) — k and hence k < [2(2n + 1) + 1]/3. O

Here is an example that shows the three invariants in (1) need not
be equal. Let n be an odd integer. Consider any binary tree of order
2n + 1 and height n. Such a tree always has a leaf adjacent from the
root. Now attach two new vertices to this leaf. The resulting oriented
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tree T is a binary tree of order 2n+3. It is easily seen that a(T") = n+1,
&(T)=n+2, and B(T) =n+3.

Now let us consider the sharpness of the bounds of (2) and (3) in
Theorem 4 and let T3 denote the binary tree of order 3.

The bounds in (2) are sharp. Let T be any binary tree of height n.
Then the set of all interior vertices of T' is a minimum dominating set
for T and so a(T) = n. Hence the upper bound in (2) is sharp.

To see the sharpness of the lower bound of (2), there are three cases
to consider.

Case 1: 2n + 1 = 3k. Consider k copies of T3. Put one of these
copies with the root at the bottom and stack the remaining k — 1
copies one by one from left to right by joining the leaf of the bottom
copy to the roots of two stacking copies. Observe that £ — 1 is even in
this case and hence this stacking is always possible. It is easy to see
that the resulting binary tree has order 2n+ 1 and domination number
k=(2n+1)/3.

Case 2: 2n+ 1 = 3k + 1. Consider k copies of T3 and a single
vertex. Put the single vertex at the bottom, which will serve as a root,
and stack two copies by joining the root at the bottom to the roots
of two stacking copies. Next stack the remaining k — 2 copies one by
one from left to right by joining the leaf of the bottom to the roots of
two stacking copies. Observe that k is even in this case and hence this
stacking is always possible. It is easy to see that the resulting binary
tree has order 2n + 1 and domination number k + 1 = [(2n + 1)/3].

Case 3: 2n+ 1 = 3k + 2. Consider k copies of T3 and two vertices.
Put one of these copies with the root at the bottom and stack the
remaining k — 1 copies one by one from left to right by joining the
leaf of the bottom to the roots of two stacking copies. Now join the
remaining two vertices from any one of the leaves of the binary tree
already constructed. Observe that k£ — 1 is even in this case and hence
this stacking is always possible. It is easy to see that the resulting
binary tree has order 2n + 1 and domination number k + 1 = [(2n +
1}/3].

The lower bound in (3) is sharp. A binary tree of order 2n + 1 and
height n has independence number n + 1.

There is a binary tree whose independence number attains the upper
bound in (3) for infinitely many n. For example, a fully balanced binary
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tree of even height will do.
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