SPARSE ORTHOGONAL MATRICES BY WEAVING

GI-SANG CHEON

ABSTRACT. We determine sparse orthogonal matrices of order n which is fully indecomposable by weaving.

1. Introduction

By a pattern we simply mean the arrangement of zero and nonzero (denoted *) entries in a matrix. An $n \times n$ pattern P is called orthogonal if there is a (real) orthogonal matrix U whose pattern is P. By #(U) or #(P) we mean the number of nonzero entries in the matrix U or pattern P. An $n \times n$ pattern (or matrix) P is called fully indecomposable if it has no $r \times q$ zero submatrix such that r + q = n; equivalently, there do not exist permutation matrices Q_1 and Q_2 such that

$$Q_1PQ_2 = \begin{bmatrix} P_{11} & O \\ P_{21} & P_{22} \end{bmatrix},$$

in which P_{11} and P_{22} are square and nonempty (or, equivalently the bipartite graph of P is connected). If P were an orthogonal pattern and there were such reducing blocks, then an elementary calculation shows that $P_{21} = O$ also.

In 1991, M. Fiedler conjectured that for $n \geq 2$ an $n \times n$ orthogonal matrix which is fully indecomposable has at least 4n-4 nonzero entries. In [BBS], this conjecture was shown in the affirmative, and also, the zero patterns of the $n \times n$ orthogonal matrices with exactly 4n-4 nonzero entries were determined. B. L. Shader [S] gave a simpler proof of this result, and recently this result was extended in [CS1, CS2].

Received November 3, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 05A15: Secondary 65F25.

Key words and phrases: Sparse orthogonal matrix, weaving.

First, we describe a few results from [BBS]. Recursively define a family of (0,1)-matrices of order $n \geq 2$ as follows. Let

$$\mathcal{B}_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

If n is odd, define

(1)
$$\mathcal{B}_n = egin{bmatrix} & & & & & 0 \ & & & & \vdots \ & & \mathcal{B}_{n-1} & & 0 \ & & & 1 \ & & & 1 \ & & & 1 \ \hline 0 & \cdots & 0 & 1 & 1 \end{bmatrix}.$$

If $n \ge 4$ is even, define

(2)
$$\mathcal{B}_{n} = \begin{bmatrix} & & & & & 0 \\ & & \mathcal{B}_{n-1} & & \vdots \\ & & & 0 \\ & & & 1 \\ \hline 0 & \cdots & 0 & 1 & 1 & 1 \end{bmatrix}.$$

For example,

$$\mathcal{B}_5 = egin{bmatrix} 1 & 1 & 1 & 0 & 0 \ 1 & 1 & 1 & 0 & 0 \ 0 & 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \quad \mathcal{B}_6 = egin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 & 1 & 0 \ 0 & 1 & 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

As noted in [BBS], each of the matrices \mathcal{B}_n $(n \geq 2)$ is the zero pattern of an $n \times n$ orthogonal matrix which is fully indecomposable and has exactly 4n-4 nonzero entries.

By the sparse orthogonal matrix of order n we mean the orthogonal matrix with the same zero pattern as \mathcal{B}_n .

We can ask "what's the $n \times n$ sparse orthogonal matrix?". In this paper, we construct such matrices. This construction is also true for complex unitary matrices.

2. Weaving and sparse orthogonal matrices

To construct $n \times n$ fully indecomposable orthogonal matrices (or patterns) with exactly 4n-4 nonzero entries, we apply a method called weaving described in [C]. It produces a large matrix from a list of row matrices R_i 's and column matrices C_j 's with appropriate sizes, via a (0,1)-matrix.

To every $m \times n$ (0,1)-matrix $A = [a_{ij}]$ having row sums r_1, r_2, \ldots, r_m and column sums c_1, c_2, \ldots, c_n , we associate a woven product of matrices as follows. We adopt the following notations.

s = s(i, j) := the number of nonzero positions in row i of A up to column j,

t = t(i, j) := the number of nonzero positions in column j of A up to row i.

Now let R_i (i = 1, 2, ..., m) have r_i columns \mathbf{u}_s , and C_j (j = 1, 2, ..., n) have c_j rows \mathbf{v}_t^T using the indices s and t introduced above. We define the woven product

$$M(A) = (R_1 \cdots R_m) \circledast (C_1 \cdots C_n) = [M_{ij}]$$

block entrywise by

$$M_{ij} = \begin{cases} \mathbf{u}_s \mathbf{v}_t^T & \text{if } a_{ij} = 1, \\ 0 & \text{otherwise.} \end{cases}$$

The matrix A is called the *lattice* of the weaving, and the matrix M(A) obtained by weaving from the lattice A is called the *woven* matrix. Note that the resulting woven matrix depends on the lattice and matrices R_i 's and C_j 's.

LEMMA 2.1. Let A be an $m \times n$ (0,1)-matrix whose bipartite graph is connected. If the R_i 's and C_j 's corresponding to the lattice A are all square and fully indecomposable, then the woven product $M(A) = (R_1 \cdots R_m) \circledast (C_1 \cdots C_n)$ is square and fully indecomposable as well.

Proof. It is clear from the definition of woven product that if the R_i 's and C_j 's are square then the woven product $M(A) = (R_1 \cdots R_m) \otimes (C_1 \cdots C_n)$ is also a square matrix. Since the R_i 's and C_j 's are also all fully indecomposable, each of their bipartite graphs is connected. Since A has a connected bipartite graph as well, any vertex in the bipartite graph of M(A) may be reached from any other via a sequence of paths guaranteed either by the connectivity of the bipartite graphs of the R_i 's and C_j 's or of A. Thus, the bipartite graph of M(A) is connected, and hence M(A) is fully indecomposable.

There is a canonical way of factorizing woven matrices based on the lattice A. The following lemma is due to R. Craigen [C].

LEMMA 2.2. Let A be an $m \times n$ (0,1)-matrix having row sums r_1, r_2, \ldots, r_m and column sums c_1, c_2, \ldots, c_n . If R_i ($i = 1, 2, \ldots, m$) is an $r_i \times r_i$ matrix and C_j ($j = 1, 2, \ldots, n$) is a $c_j \times c_j$ matrix, then there exists a permutation matrix P_A such that

$$(R_1 \cdots R_m) \circledast (C_1 \cdots C_n) = [R_1 \oplus \cdots \oplus R_m] P_A [C_1 \oplus \cdots \oplus C_n],$$

where \oplus denotes a direct sum.

Throughout the rest of this paper, we let N denote the number of nonzero entries in a given lattice.

THEOREM 2.3. Let A be an $m \times n$ (0,1)-matrix having row sums r_1, r_2, \ldots, r_m and column sums c_1, c_2, \ldots, c_n . If R_i $(i = 1, 2, \ldots, m)$ is an $r_i \times r_i$ orthogonal matrix and C_j $(j = 1, 2, \ldots, n)$ is a $c_j \times c_j$ orthogonal matrix, then the woven product $M(A) = (R_1 \cdots R_m) \circledast (C_1 \cdots C_n)$ is an $N \times N$ orthogonal matrix.

Proof. It is clear from Lemma 2.1 that the woven product M(A) is square. By Lemma 2.2, there exists a permutation matrix P_A such that

$$M(A)(M(A))^{T} = [R_{1} \oplus \cdots \oplus R_{m}] P_{A}[C_{1} \oplus \cdots \oplus C_{n}] \cdot [C_{1} \oplus \cdots \oplus C_{n}]^{T} P_{A}^{T}[R_{1} \oplus \cdots \oplus R_{m}]^{T}.$$

Since $r_1 + \cdots + r_m = c_1 + \cdots + c_n = N$, it follows that $M(A)(M(A))^T = I_N$. Thus M(A) is an $N \times N$ orthogonal matrix, which completes the proof.

Now, we are ready to construct the sparse orthogonal matrix by weaving. The pattern of a woven product is the woven product of the patterns of the R_i 's and C_j 's. It follows from Lemma 2.1 and Theorem 2.3 that the woven product of fully indecomposable orthogonal patterns through a lattice whose bipartite graph is connected will be a (larger) fully indecomposable orthogonal pattern.

For $m \geq 2$, we define the $m \times m$ lattice A_o and $m \times (m+1)$ lattice A_e as follows:

(3)
$$A_o = \begin{bmatrix} 1 & 1 & & & & \\ & 1 & 1 & O & & \\ & & \ddots & \ddots & \\ & O & & 1 & 1 \\ & & & & 1 \end{bmatrix},$$

and

(4)
$$A_e = \begin{bmatrix} 1 & 1 & & & & \\ & 1 & 1 & & O & \\ & & \ddots & \ddots & & \\ & O & & 1 & 1 & \\ & & & & 1 & 1 \end{bmatrix}.$$

Then $\#(A_o) = 2m-1$ and $\#(A_e) = 2m$. From Theorem 2.3, the woven products obtained by the lattices A_o and A_e produce $(2m-1) \times (2m-1)$ woven matrix and $2m \times 2m$ woven matrix, respectively.

Note that row sums r_i 's and column sums c_j ' of A_o and A_e are 1 or 2. To construct fully indecomposable orthogonal patterns, we shall only use the 1×1 orthogonal pattern [*] and the 2×2 orthogonal pattern $\begin{bmatrix} * & * \\ * & * \end{bmatrix}$ for the R_i 's and C_j 's.

It is clear from the definition of woven product that the orthogonal patterns of a woven product of the orthogonal patterns R_i 's and C_i 's

of $M(A_o)$ and $M(A_e)$ have the following forms, respectively:

$M(A_o)$	=	$(R_1$	$\cdots R_m$	*	$(C_1 \cdots$	$\cdot C_m$
147 (210)		(TOT	1 cm		(01	$\cup m$

		*	*	*						
		*	*	*						
			*	*	*	*				
			*	*	*	*	,			
(5)	=				•••		٠.			
						٠.		٠		
							*	*	*	*
							*	*	*	*
									*	*

 $M(A_e) = (R_1 \cdots R_m) \circledast (C_1 \cdots C_{m+1})$

		*	*	*							
		*	*	*							
			*	*	*	*					
			*	*	*	*					
(6)					٠.		٠.				
	=					٠.		٠.			
		-					*	*	*	*	
							*	*	*	*	
									*	*	*

Then $M(A_o)$ is a $(2m-1) \times (2m-1)$ orthogonal pattern which is fully indecomposable, and we get

$$\#(M(A_o)) = 4(2m-1-1) = 4(2m-1) - 4.$$

Similarly, $M(A_e)$ is a $2m \times 2m$ orthogonal pattern which is fully indecomposable, and we get

$$\#(M(A_e)) = 4(2m-1) = 4(2m) - 4.$$

Note that if n is an odd then the zero pattern of $M(A_o)$ is precisely coincide with (1), and if n is an even then the zero pattern of $M(A_e)$ is precisely coincide with (2).

It is clear that the 1×1 fully indecomposable orthogonal matrix U whose pattern is [*] is [1], and the 2×2 fully indecomposable orthogonal matrix U whose pattern is $\begin{bmatrix} * & * \\ * & * \end{bmatrix}$ has the form

(7)
$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}, \text{ or } \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$

where $0 < \theta < 2\pi$, $\theta \neq \frac{\pi}{2}, \pi, \frac{3}{2}\pi$.

Thus we have the following theorem.

THEOREM 2.4. Let A_o and A_e be the lattices defined in (3) and (4) respectively. Then an $n \times n$ fully indecomposable sparse orthogonal pattern is

$$\left\{egin{array}{ll} M(A_o) & \hbox{in (5)} & \hbox{if } n=2m-1 \ \hbox{for } m\geq 2, \ M(A_e) & \hbox{in (6)} & \hbox{if } n=2m \ \hbox{for } m\geq 2. \end{array}
ight.$$

Note that we can get many sparse orthogonal matrices with the same pattern $M(A_o)$ or $M(A_e)$, since we can arbitrarily choose θ in (7).

For example, let

$$A_o = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then
$$\#(A_o) = N = 5$$
, and $r_1 = r_2 = 2 = c_2 = c_3$, $r_3 = 1 = c_1$. Take

$$R_1 = egin{bmatrix} rac{\sqrt{3}}{2} & rac{1}{2} \ -rac{1}{2} & rac{\sqrt{3}}{2} \end{bmatrix}, \quad R_2 = egin{bmatrix} rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \ -rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \end{bmatrix}, \ C_2 = egin{bmatrix} rac{1}{2} & rac{\sqrt{3}}{2} \ -rac{\sqrt{3}}{2} & rac{1}{2} \end{bmatrix}, \quad C_3 = egin{bmatrix} -rac{1}{2} & rac{\sqrt{3}}{2} \ -rac{\sqrt{3}}{2} & -rac{1}{2} \end{bmatrix},$$

and

$$R_3 = C_1 = [1].$$

Then

$$M(A_o) = (R_1 \ R_2 \ R_3) \circledast (C_1 \ C_2 \ C_3)$$

$$= \begin{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} [1] & \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} & O \\ O & \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} & \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \\ O & O & [1] \begin{bmatrix} -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{4} & \frac{\sqrt{3}}{4} & 0 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{4} & \frac{3}{4} & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{6}}{4} \\ 0 & \frac{\sqrt{6}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{6}}{4} \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}.$$

Thus $M(A_o)$ is a 5×5 orthogonal matrix with exactly 4n - 4 = 16 nonzero entries which is fully indecomposable.

ACKNOWLEDGEMENT. The author would like to thank the referee for some kind comments and for pointing out several typographical errors in the original manuscript.

References

- [BBS] L. B. Beasley, R. A. Brualdi and B. L. Shader, Combinatorial and Graph-Theoretical Problems in Linear Algebra (R. A. Brualdi, S. Friedland and V. Klee, eds.), Springer-Verlag, 1993, pp. 207-218.
- [CS1] G.-S. Cheon and B. L. Shader, How sparse can a matrix with orthogonal rows be?, J. of Combinatorial Theory Series A 85 (1999), 29-40.
- [CS2] _____, Sparse orthogonal matrices and the Haar wavelet, Discrete Applied Math. J (to appear).
- [C] R. Craigen, The craft of weaving matrices, Congressus Numerantium 92 (1993), 9-28.
- [S] B.L.Shader, A simple proof of Fiedler's conjecture concerning orthogonal matrices, Rocky Mtn. Math. J. (to appear).

Department of Mathematics Daejin University Pocheon 487-711, S. Korea