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SPARSE ORTHOGONAL MATRICES BY WEAVING
GI-SANG CHEON

ABSTRACT. We determine sparse orthogonal matrices of order n
which is fully indecomposable by weaving.

1. Introduction

By a pattern we simply mean the arrangement of zero and nonzero
(denoted #) entries in a matrix. An n xn pattern P is called orthogonal
if there is a (real) orthogonal matrix U whose pattern is P. By #(U)
or #(P) we mean the number of nonzero entries in the matrix U or
pattern P. Annxn pattern (or matrix) P is called fully indecomposable
if it has no r x g zero submatrix such that r + ¢ = n; equivalently, there
do not exist permutation matrices ()1 and 2 such that

P11 0]
P =
Ql Q2 |:P21 P22:| ’

in which P;; and P, are square and nonempty (or, equivalently the
bipartite graph of P is connected). If P were an orthogonal pattern
and there were such reducing blocks, then an elementary calculation
shows that Ps; = O also.

In 1991, M. Fiedler conjectured that for n > 2 an n x n orthogonal
matrix which is fully indecomposable has at least 4n—4 nonzero entries.
In (BBS], this conjecture was shown in the affirmative, and also, the
zero patterns of the n x n orthogonal matrices with exactly 4n — 4
nonzero entries were determined. B. L. Shader [S] gave a simpler proof
of this result, and recently this result was extended in [CS1, CS2].
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First, we describe a few results from [BBS|. Recursively define a
family of (0, 1)-matrices of order n > 2 as follows. Let

1 1
ng[l 1].
If n is odd, define
0
B3 0
(1) B, =
1
1
0 0 1 1
If n > 4 is even, define
0
Bn—l
(2) B, = 0
1
| 0 0 11 1
For example,
11100 rl 1 1 0 0 07
111 0 0 0
L 4 18 01 1 110
35: '0 1 1 1 1 , BE‘.:
01 1 1 10
g 31 1 1 1
000 1 1 0 001 11
0 0 0 1 1 14
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As noted in [BBS], each of the matrices B,, (n > 2) is the zero pattern
of an n x n orthogonal matrix which is fully indecomposable and has
exactly 4n — 4 nonzero entries.

By the sparse orthogonal matriz of order n we mean the orthogonal
matrix with the same zero pattern as B,,.

We can ask “what’s the n x n sparse orthogonal matrix?”. In this
paper, we construct such matrices. This construction is also true for
complex unitary matrices.

2. Weaving and sparse orthogonal matrices

To construct n x n fully indecomposable orthogonal matrices (or
patterns) with exactly 4n —4 nonzero entries, we apply a method called
weaving described in [C]. It produces a large matrix from a list of row
matrices R;’s and column matrices C;’s with appropriate sizes, via a
(0, 1)-matrix.

To every mxn (0, 1)-matrix A = [a;;] having row sums r1,72,... ,7m
and column sums ci,c¢s,... ,Cn, We associate a woven product of ma-
trices as follows. We adopt the following notations.

= 5(i,7) := the number of nonzero positions in row i of A up to
column j,

t = t(i,7) := the number of nonzero positions in column j of A up
to row 1.

Now let R; (z = 1,2,...,m) have r; columns u,, and C; (j =
1,2,...,n) have ¢; rows v; using the indices s.and ¢ introduced above.
We define the woven product

M(A) = (R1+Rm) @ (C1--- Cp) = [My]

block entrywise by

M;; .
0 otherwise.

{ usvf if a;; = 1,
The matrix A is called the lattice of the weaving, and the matrix M (A)
obtained by weaving from the lattice A is called the woven matrix. Note
that the resulting woven matrix depends on the lattice and matrices
R;’s and Cj’s.
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LEMMA 2.1. Let A be an m x n (0,1)-matrix whose bipartite graph
is connected. If the R;’s and C;’s corresponding to the lattice A are
all square and fully indecomposable, then the woven product M(A) =
(Ry--+ Ry) ® (Cy -+ Cy) is square and fully indecomposable as well.

Proof. It is clear from the definition of woven product that if the
R;’s and C;’s are square then the woven product M (A4) = (Ry -+ Rpn)®
(Cy---Cy) is also a square matrix. Since the R;’s and C;’s are also all
fully indecomposable, each of their bipartite graphs is connected. Since
‘A has a connected bipartite graph as well, any vertex in the bipartite
graph of M(A) may be reached from any other via a sequence of paths
guaranteed either by the connectivity of the bipartite graphs of the
R;’s and C;’s or of A. Thus, the bipartite graph of M (A) is connected,
and hence M (A) is fully indecomposable. O

There is a canonical way of factorizing woven matrices based on the
lattice A. The following lemma is due to R. Craigen [C].

LEMMA 2.2. Let A be an m x n (0,1)-matrix having row sums
PLyTsonvw i B0 COIME SUINE Oxy 8, 5o 50 I Be 8 = 1,2, o0 )
is an r; X r; matrix and C; (j = 1,2,... ,n) is a ¢; X ¢; matrix, then
there exists a permutation matrix P4 such that

(R Rm)®(C1---Cr) =[R1 @ ® Rp]PA[C1 & --- @ C),
where @ denotes a direct sum.

Throughout the rest of this paper, we let IV denote the number of
nonzero entries in a given lattice.

THEOREM 2.3. Let A be an m x n (0,1)-matrix having row sums
Py .o 5 Ty i COTUHGN SHEIR €, Gy 0 o0 I By (8 = 1,8, 000 yi00)
is an r; X r; orthogonal matrix and C; (j = 1,2,...,n) is a ¢; X ¢;
orthogonal matrix, then the woven product M(A) = (Ry -+ Ry) ®
(Cy---Cy) is an N x N orthogonal matrix.

Proof. 1t is clear from Lemma 2.1 that the woven product M (A)
is square. By Lemma 2.2, there exists a permutation matrix P4 such
that

M(A)(M(A)T =[R1 @ ® Ru|PalC1 @ --- @ Cy)-
[Ci®--®C.]TPTR1 @ - ® Rn]”.
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Since r1+-+-+7rm = c1+-+-+c, = N, it follows that M(A)(M(A))T =
In. Thus M(A) is an N x N orthogonal matrix, which completes the
proof. a

Now, we are ready to construct the sparse orthogonal matrix by
weaving. The pattern of a woven product is the woven product of the
patterns of the R;’s and Cj’s. It follows from Lemma 2.1 and Theorem
2.3 that the woven product of fully indecomposable orthogonal patterns
through a lattice whose bipartite graph is connected will be a (larger)
fully indecomposable orthogonal pattern.

For m > 2, we define the m x m lattice A, and m x (m + 1) lattice
A, as follows:

A
1 1 0
(3) Ao: ’
0 1 1
1
and
1 1
1 1 (0]
(4) A =
o) 1 1
1 1

Then #(A,) = 2m — 1 and #(4.) = 2m. From Theorem 2.3, the
woven products obtained by the lattices A, and A, produce (2m —1) x
(2m — 1) woven matrix and 2m x 2m woven matrix, respectively.

Note that row sums r;’s and column sums c;’ of 4, and A4, are 1
or 2. To construct fully indecomposable orthogonal patterns, we shall
only use the 1 x 1 orthogonal pattern [*] and the 2 x 2 orthogonal

pattern [: :] for the R;’s and C}’s.

It is clear from the definition of woven product that the orthogonal
patterns of a woven product of the orthogonal patterns R;’s and C;’s
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“of M(A,) and M(A,) have the following forms, respectively:
M(A,) =(Ry--Rp) ®(C1---Cr)

* | *  *
T
& * %
x ok * %
(5) -

% % * ok
¥ & * ok
¥k

* * %
* ¥k
* % * *
* ok * *

* * * ok
* * * ok
* %
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Then M(A,) is a (2m — 1) X (2m — 1) orthogonal pattern which is
fully indecomposable, and we get

#(M(A,) =4@2m —1—1) =4(2m — 1) — 4.

Similarly, M(A.) is a 2m x 2m orthogonal pattern which is fully inde-
composable, and we get

#(M(A.)) = 4(2m — 1) = 4(2m) — 4.

Note that if n is an odd then the zero pattern of M(A4,) is precisely
coincide with (1), and if n is an even then the zero pattern of M(A,)
is precisely coincide with (2).

It is clear that the 1 x 1 fully indecomposable orthogonal matrix
U whose pattern is [*] is [1], and the 2 x 2 fully indecomposable

orthogonal matrix U whose pattern is : z has the form

(7)

cosf sinf " cosfl  sinfl
-sinf cosf |’ sinf -cosf

where 0 < 6 < 2w, 0 # 3,m, %71.’.

Thus we have the following theorem.

THEOREM 2.4. Let A, and A, be the lattices defined in (3) and (4)

respectively. Then an n x n fully indecompbsable sparse orthogonal
pattern is

M(A,) in (5) ifn=2m-—1 for m>2,
M(A.) in (6) if n=2m for m > 2.

Note that we can get many sparse orthogonal matrices with the
same pattern M(A,) or M(A.), since we can arbitrarily choose 6 in

(7).

For example, let

b

Q

Il
CcC o=
o~ R
[ S )
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" Then #(4,) =N=5,and 1 =12 =2=cp=0¢3, T3 =1=c1. Take

¥v3 1 vz V2
2 2 2 2
Rl:[ }, RZ:l: ],
% - 48 _V2 V2
2 2 2 2
1 V3 _1 3
2 2 2 2
_V3 1 _¥3 1
2 2 3 2 2
and
R3:01:[1].
Then
M(AD):(R:[ Rz R3)@(Cl Cz 03)
- ﬁ %'1 -
2 13
2 2
_ V2 7] V2
= 2 2
_ V31 _1 43
o | T en |G|
2 4 2
| o 0 m[-£ -3 |
(2 1 2 0 0]
=
= 0 _8 V2 _¥2 8
4 4 4 4
0 VB _ V2 V2
4 4 4 4
L0 0 0 ¥ _1

Thus M (A,) is a 5 x 5 orthogonal matrix with exactly 4n —4 = 16
nonzero entries which is fully indecomposable.
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