Biochemical Characterization of the Herpes Simplex Virus-1 DNA Polymerase

  • Song, Byeong-Doo (School of Construction & Environmental Engineering, Handong University) ;
  • Lehman, I. Robert (Department of Biochemistry, Beckman Center, Stanford University)
  • Received : 1999.05.20
  • Accepted : 1999.07.05
  • Published : 1999.09.30

Abstract

We have investigated the biochemical properties of the herpes simplex virus type 1 (HSV-1) DNA polymerase without the UL42 protein (Pol), purified from insect cells infected with a recombinant baculovirus containing the UL30 gene. BSA and DTT have inhibitory effects on dAMP incorporation. Pol showed a greater turnover rate of steady-state single nucleotide incorporation at 12 mM $MgCl_2$ than at 2 mM $MgCl_2$. However, it showed a greater processivity of DNA synthesis at lower $MgCl_2$ concentration (1 mM, 2 mM) than at a higher $MgCl_2$ concentration (12.5 mM). These results are consistent with a slow DNA dissociation at lower $MgCl_2$ concentrations. Pol does not incorporate a correct nucleotide into the primer with an incorrect nucleotide at the end; instead, it preferentially excises the incorrect nucleotide at the 3' end of the primer. Pol has DNA polymerase activity at pHs 6.5 and 7.5 but little at pHs 5.5, 8.5, and 9.5. It has exonuclease activity at pHs 6.5, 7.5, and 8.5 but little at pHs 4.5, 5.5, and 9.5. The finding that Pol has exonuclease activity but not DNA polymerase at pH 8.5 suggests that DNA binds to Pol, but deoxynucleotide binding or incorporation does not occur at pH 8.5.

Keywords

Acknowledgement

Supported by : NIH