백신에 의해 유도되는 면역의 원리와 실제

양

개선의 발전과 더불어 계군 건강상에 중요한 문제로 대두되고 있는 것은 전염병이다. 양계산업에 관련된 수의사는 물론 양계생산자 역시 전염병의 치료보다는 예방에 집중 더 많은 관심을 기울이고 있다. 여전히 예방접종은 전염병으로부터 계군을 보호하는 가장 성공적인 방법으로 평가되고 있다.

방역상태와 사양관리의 개선이 양계산업에서 전염병 감소에 중요한 역할을 하는 것은 사실이지만, 예방접종과 지속적인 백신 품질의 향상, 예방접종 프로그램, 그리고 백신접종 방법의 발전에 의해 전염병은 빠른 속도로 감소되고 있다. 또한 몇몇 질병의 경우 예방접종이 유일한 해결 방법이 되기도 한다.

1. 백신은 무엇인가?

백신이란 감염 또는 질병에 대하여 면역학적으로 유래된 저항성을 유도하기 위하여, 감염원으로부터 확산된 물질이다.

“능동적 면역화”란 면역 반응을 유도할 목적으로 살아있는 숨추에 백신을 접종하는 과정

△ 적절한 시기에 올바른 방법으로 예방접종을 하는 것은 매우 중요한 일이다.
을 말한다. 예방접종과 면역회란 용어는 현재 같은 뜻으로 쓰이기도 한다.

백신에 함유된 항원(일반적으로 감염된 표면의 항원)은 면역반응을 자극시키고 이후로 백신에 함유된 항원과 같은 독성 변이주에 노출되더라도 질병이 발생하거나 또는 감염되는 것을 막는다.

병원균의 종류에 따라 면역학적 저항성은 세액성, 국소적 항체, 또는 세포성 면역에 의해 유래한다. 백신이 질병에 대한 저항성은 촉진시키아 하지만 반드시 감염을 막아야하는 것은 아니다.

백신은 병원균에 따라 병원균이 담에 감염되는 것을 막아주는 면역반응을 자극하거나 병원균이 감염은 되더라도 예방접종된 담이 질병을 일으키지 않거나 또는 그 증상이 경미하도록 해야 한다.

대부분의 백신은 병원균의 감염 자체를 막기보다는 제한된 감염을 통해 효과를 나타낸다. 숙주의 면역시스템은 질병을 예방하고 궁극적으로 병원균을 제거한다.

2. 백신은 어떻게 작용하는가?

1차 예방접종 후, 면역시스템은 백신에 함유된 병원균에 대한 항체를 생성하기 시작한다. 항체는 백신에 함유된 병원균이 완전히 제거될 때까지 계속 생성된다.

위와 같은 면역학적 항체 생성자극의 결과로 백신에 함유된 것과 같은 독성 변이주 질병원을 이겨낼 수 있는 것이다.

그렇지만 항체는 시간이 경과함에 따라 점점 줄어들고 그러므로 2차 예방접종(부스터)으로 면역시스템을 다시 자극해야 한다. 1차 예방접종은 일반적으로 약하고(항체가 났고) 아주 느린 1차 면역반응을 유발시키고 지속되는 시간도 짧다.

또한 1차 예방접종은 면역세포의 일종인 기억 T세포(memory T-cell)를 통해 면역시스템에 면역적 기억을 만들어 주고 이 기억 T세포는 같은 감염원과 2차 접촉을 했을 때 효과적으로 빠른 면역 반응을 일으킨다.

그러므로 2차 예방접종으로 인해 2차 면역 반응이 일어나고 항체는 급격히 증가하면서 높은 항체 수준을 유지하는 기간도 늘어난다. 다만 2차 면역 반응이 일어나는데 필요한 항원의 양은 1차 면역 반응에 필요한 것보다 적은 양이면 된다.

3. 면역 반응의 발생

1차 면역 반응으로 생성되는 항체의 면역글
로브린 종류는 IgM이다.
반면에 2차 면역 반응의 주요 항체는 IgG이다. 2차 면역 반응동안 생성된 항체는 증가된 교차 반응으로 퍼져 흐루 효과적으로 향인과 결합할 수 있다. IgG는 일반적으로 부스터 예방접종 (2차 예방접종)을 한 3~4주 후에 최고 농도에 도달한 후 이후로 점차 감소한다. IgG는 난황에서 발견되는 주요 항체로서 모체 임신기간의 주성분이다. 예방접종을 통한 질병의 예방은 최후의 수단이다. 농장의 방역이 질병 예방을 위한 계절적이고 백신은 감염성 질환을 방어하는 제2선인 것이다. 병원균이 계균에 도달되는 것을 백신으로 막을 수는 없기 때문이다. 또 몇몇 질병의 경우 최고의 백신과 예방접종 프로그램으로 면역을 시킨다해도 병원성이 강한 야외 병원균의 공격을 받았을 때는 좋은 방어력을 보여 주지 못한다. 방역과 면역력은 상호보완적인 관계를 가진다. 방역은 야외 질병원의 공격을 감소시키고 질병에 대한 면역력 형성에도 도움을 준다.

4. 계군의 면역
계군에서 질병 예방을 위해 백신을 사용한 경우 계군 면역이라 개념으로 생각할 수 있는 데 이것은 질병에 대한 계군 전체의 저항성을 말하는 것이다. 예방접종된 계군 중 일부성 질병 방어에 필요한 면역력을 형성하는데 실패하고 여전히 병원균의 감염과 질병에 걸리기 쉬운 상태로 남아있게 된다.

△ 질병을 예방하기 위한 면역력을 형성시키는데 필요한 충분한 항원을 함유한 백신을 사용해야 한다

감염된 타로부터 바이러스가 또 다른 감수성이 있는 타에 감염되고 천천히 계군 전체로 전파될 가능성이 있다. 그러므로 계군 중 존중 더 많은 타에 면역력을 형성하게 되면 질병 공격에 대한 피해를 줄일 수 있을 것이다.
백신의 효과 또는 예방접종의 성공은 절대적 이기 보다는 상대적이다. 다시 말해서 백신이 질병의 피해를 상당히 감소시킬 수는 있어도 질병 공격률을 100% 방어하지는 못한다. 그러므로 예방접종은 우선 질병의 피해를 어떻게 줄일 것인가에 초점을 맞춰야 한다. 또한 계군의 방어수준 뿐만 아니라 병원균, 병원균의 양, 그리고 감염 경로도 역시 고려해야 한다.

5. 예방접종시 고려해야 할 사항
다음에 열거되는 요인들을 계군의 예방접종 시 고려해야 할 사항들이다.
1) 축사와 축사 주변에 병원균이 만연하는 경우. 축사와 축사 주변에 존재하지 않는 병에 대한 예방접종은 아무 효과가 없을뿐이면 아
저자 혹은 일반 대중이 병원사에 대한 정보를 얻기 위해 작성된 경로

6. 백신 프로그램 작성

아닌 질병에 대해 계군을 예방 접종하기로 결심한다면 각각의 질병에 대한 예방접종 프로그램의 다음 요소들을 결정해야 한다.

1) 예방접종 환수: 단일 오래된 기간동안 충분한 방어력을 가질 수 있는 면역력을 유지하고 싶다면 여러 차례 연속적인 예방접종을 해야 한다.

2) 최초 예방접종 시기와 이후 1차와 2차 예방접종 사이의 간격 그리고 이후로 추가되는 예방접종의 시간 간격을 결정해야 한다.

3) 예방접종 경로와 방법(유수, 분무접종, 접안법, 낡은의 약물부 첨단).

4) 백신의 형태(생독 또는 사독, 균주의 종류)

예방접종 프로그램을 계획하는 데에는 크게 2가지 목적이 있다.

첫째, 계군이 질병에 걸릴 확률이 있는 기간 동안 충분한 방어력을 유지하기 위해 면역체계를 자극시키고 면역력의 수준을 유지하는데 있다. 둘째, 면역학적 기억을 형성시켜 예방접종 이후에 병원균에 노출되더라도 빠르고 강력한 면역 반응으로 병원균을 성공적으로 제거할 수 있어야 한다. 전염성 질병과 사운다는 것은 병원균의 복제와 전파에 맞서 면역시스템이 이를 극복한다. 병원균에 감염되었을 당시의 면역의 수준 그리고 병원균에 대한 면역시스템의 반응 속도가 감염의 결과 즉, 질병 발생의 심각성을 결정짓는다. 감염되기 하루 또는 이틀경에 최고조에 달한 강력한 면역 반응은 감염을 초기 회복과 질병에 의한 피해를 줄여 준다.

7. 올바른 백신프로그램의 선택

전세계의 모든 계군에 적합한 한가지 백신프로그램이 있을 수는 없다. 다음의 요소들을 예방접종 프로그램 계획에 고려해야 한다.

1) 감염될 가능성이 있는 야외 병원균의 추, 아류형, 혈청형 등의 병원성을 예상해야 한다.

독성이 높은 경우 북극의 환경이 필요하며 특히 야외 공격주와 백신주는 항원이 유사한 갑의 혈청형이어야만 특이적 면역 반응을 유발하여 질병 발생을 예방할 수 있다.

2) 여러 병원균의 감염 시기를 알아야 한다.

3) 감염원에 대한 노출 위험성: 예를 들어 모기가 많은 지역의 경우 1일에 예방접종을 해야할 때도 있다.

4) 낡의 사용기간

산란계나 종계의 경우 오래된 기간동안 충분한 면역력을 유지해야 한다. 산란계의 경우 산란율 저하, 알의 품질저하, 부화율저하를 일으키는 질병을 막아야 한다.

5) 특정한 질병(IBD)에 대한 초기 예방접종 시 모계 이행방계의 수준을 반드시 확인하여야 한다.

6) 예방접종 후 발생할 수 있는 부작용을 고려해야 한다.
7) 종계에서 질병의 수적적 전파를 막아야 할 경우
8) 모체 이행정체로 병아리의 질병으로부터 막아야 할 경우

8. 예방접종의 실패

백신이 제군종의 많은 닭을 질병으로부터 방어하지 못할 경우 백신 브레이크가 발생한다. 백신 브레이크는 백신 또는 닭과 관련이 있다.
1) 백신의 적절량을 투여하는데 실패하는 경우: 적절한 방어력을 유도하기 위해서는 특정한 수이상의 미생물이 제군으로 백신으로서 투여되어야 한다. 적절한 양의 투여가 이루어지지 않는 경우는 다음과 같다.
 ① 드문 경우지만 백신의 품질이 좋지 않다.
 ② 백신의 효과를 멀어뜨리는 잘못된 수송과 보관
 ③ 백신 접종자의 실수
 ④ 백신 접종시기에 계군의 심각한 면역억제 상태 있는 경우
 ① 바이러스 감염으로 인해 닭의 면역 반응이 심각하게 손상되는 경우(예: IBD, 마렉병)
 ② 질병이나 영양결핍 등 환경적 요인에 의한 스트레스
 ③ 사료에 농해수준의 마이코톡신이 있는 경우
 ④ 농해수준의 모체 이행 항체
 ⑤ 너무 많은 양의 병원균에 노출된 경우
 ⑥ 백신이 혈유하고 있지 않은 혈청형이나 항원 변이주가 감염된 경우
 ⑦ 특정 병원균에 대한 유전적 감수성이 높은 품종을 사용하는 경우

7) 예방접종 이전에 이미 계군이 병원균에 감염되어 있는 경우
 계군이 최소한 질병에 대한 면역력을 형성하는데 10~14일 정도가 필요하다.
8) 예방접종 후 상당한 기간 후에 면역력의 상실

9. 성공적인 예방접종의 확신

계군의 성공적인 예방접종을 위해 3가지 중요한 조건이 있다. 병원균의 정확한 주(strain), 혈청형, 또는 서브형태를 포함하는 종은 품질의 백신, 잘 계획된 예방접종 프로그램, 그리고 적절한 경과와 정확한 접종 방법으로 백신을 접종하는 것이다. 다음의 사항들은 계군의 성공적인 면역을 위해 고려해야 할 점들이다.
1) 품질이 인정된 백신의 사용
2) 적절하게 보관되고 수송된 백신의 사용
3) 백신 사용에 관한 지시사항을 반드시 따르는 것
 ④ 정확한 예방접종 방법은 성공적인 면역력 형성에 매우 중요한 사항이다.
 정확한 예방접종을 위해 중요한 점은 다음과 같다.
 * 백신의 효율을 유지시켜야 한다. 냉장보관 및 수송시 백신 품질의 손상이 없도록 조심해야 한다.
 * 백신 주사량을 지켜야 한다.
 * 백신이 균일하게 혼합되었는지 확인해야 하며 정확하게 주사하여야 한다. 또한 백신을 정확히 분배하여야 한다.
 ⑤ 피하 예방접종의 경우 식품절가용 색소를 첨가하여 예방접종후 피부 아래에 색소 색갈로 정확하게 피하로 접종 되었는지 확인해야 한다.
6) 적절한 예방접종 시기와 접종 간격을 정확하게 지켜야 한다.

7) 스트레스를 많이 받는 탓은 예방접종으로 인한 스트레스를 피해야 한다. 또 예방접종 자체가 담에게는 스트레스이기 때문에 예방접종 후 2~3일간은 절지히 관리해야 한다.

8) 병원균과 같은 혈청형 항원을 함유하는 백신을 사용한다.

9) 제두백신의 경우 백신접종 후 발등을 확인하여야 한다.

10. 면역의 수준과 반응의 관찰

예방접종에 대한 면역 반응과 면역력의 수준은 접종 후 일주 후 항체의 정량적 측정으로 조사할 수 있다.

예방접종 10일에서 21일 이후에 무작위로 선택된 담으로부터 시료를 체취하여 항체를 조사한다. 조사된 항체가를 신뢰할 수 있으라면 적어도 1,000마리당 1마리 이상의 담으로부터 혈액을 체취하여 검사해야 한다.

예방접종 후 항체를 검출하는데 걸리는 시간은 조사하는 방법에 따라 차이가 난다. 바이러스에 대한 항체가를 조사할 때 ELISA 방법을 많이 사용하는데 어떤 질병에 대한 방어력을 형성할 수 있는 충분한 항체가는 질병마다 다르다.

또 ELISA로 측정한 항체가 질병에 대한 방어력이 항상 빠르게 여러 번 검사하면 감염된 병원균의 병원성이도 억제 그리고 유전적 감수성도 영향을 미치기 때문이다.

ELISA는 IgG 항체만을 검출할 수 있으며 접종 면역에 필요한 IgA나 세포성 면역은 측정할 수 없다.

11. 가금백신의 종류

1) 생독백신
 • 자연적으로 만들어진 병원성이 없어졌거나 또는 약독화된 변이주로 백신을 만드는 경우
 • 실험실에서 인위적으로 병원성이 있는 병원균을 계해나거나 조직배양 세포에 여러 대 계대하여 약독화 시킨 주를 백신으로 만드는 경우
 • 세균의 경우 유전자 조작으로 병원성을 제거한 다용 생독 백신으로 사용하는 경우

2) 사독백신
 • 사독백신은 세균, 바이러스, 마이코 플라즈마와 같은 병원성이 있는 병원균을 촉이나 화학적 처리방법으로 항원성은 그대로 유지시키면서 감염성을 없앤 경우이다.
 • 가금류에 사용되는 세균과 마이코 플라즈마 백신은 대부분 유기체 전체를 불활화시키며 예방 접종 한다.
 • 불활화된 사독백신은 더 이상 증식하지 못하기 때문에 채내에서 빠른 속도로 제거되어 면역 반응의 지속시간도 짧다.
 • 면역 반응을 촉진하고 면역력을 지속시키기 위해 일반적으로 사독 백신은 보조제로서 오일을 사용한다. 사독 세균백신은 예방접종을 4~6주 간격으로 2회 실시해야 한다.
 • 일반적으로 생독 백신은 사독 백신보다 방어력이 뛰어난 것으로 알려져 있다. 혈청형이 여러 가지인 경우 사독백신의 효과는 더욱 떨어진다.
 • 또한 세척증 면역 반응을 유도하기 때문에 IgA나 세포성 면역이 필요한 경우에도 방어력이 떨어진다. 위와 같은 차이점 때문에 생독 또는 사독 백신을 적절히 선택하여 사용해야 할 것이다.