DOI QR코드

DOI QR Code

Robust Nonlinear $H_2$/$H_{\infty}$Control for a Parallel Inverted Pendulum

병렬형 역진자와 비선형 $H_2$/H_{\infty}강인제어

  • Published : 2000.04.01

Abstract

A robust nonlinear $H_2$/$H_{\infty}$ control method for a parallel inverted pendulum with structured perturbation and dry friction is proposed. By the random input describing function techniques, the nonlinear dry friction is approximated into the quasi-linear system. Introducing the quadratic robustness theorem, the robust $H_2$/$H_{\infty}$ control system is constructed for the quasi-linear perturbed system. But it is difficult to design a controller due to the nonlinear correction term in Riccati equation. With some transformations on the Riccati equation containing nonlinear correction term, the design of the robust nonlinear controller can be done easily. Hence when the stiffness and mass of the parallel inverted pendulum vary in certain ranges, the proposed control scheme has the robustness for both the structured perturbation and dry friction. The results of computer simulation show the effectiveness of our proposed control method.

Keywords

References

  1. Elthohamy, K. G., Kuo, C. Y., 1998, 'Nonlinear Optimal a Triple Link Inverted Pendulum with Single Control Input,' Int. J. Control, Vol. 60, No. 2, pp. 239-256
  2. Anderson, C. W., 1989, 'Learning to Control an Inverted Pendulum Using Neural Networks,' IEEE Control Systems Magazine, Vol. 9, No. 3, pp. 31-37 https://doi.org/10.1109/37.24809
  3. Gurumoortthy, R., Sanders, S. R., 1992, 'Controlling Non-Minimum Phase Nonlinear Systems - The Inverted Pendulum on a Cart Example,' Proc. CDC, pp. 123-128
  4. Vander Linden, G. W., Lambrechts, P. E, 1992, '$H_{\infty}$ Control of an Experimental Inverted Pendulum with Dry friction,' Proc. CDC, pp. 123-128 https://doi.org/10.1109/CCA.1992.269888
  5. Furta, K., Okutani, T., and Sone, H, 1978, 'Computer Control of a Double Inverted Pendulum,' Computer and Elect. Engr., No. 5, pp. 67-84
  6. Kim, j. S., 1994, 'QLQG/LTR Control for Hard Non-Linear Multivariable Systems,' Instn. Mech. Engrs., j. Systems and Control Eng., Vol. 208, pp. 177-187
  7. Han, S. I., Kim, J. S., 1997, '$H_{\infty}$-Constrained Quasi-Linear Quadratic Gaussian Control with Loop Transfer Recovery, ' KSME Int. J., Vol. 11, No. 3, pp. 255-266
  8. Gelb, A., Vander Velde, W. E., 1968, Multiple Input Describing Function and Nonlinear System Design, McGraw-Hill
  9. Kateb, M. R., Zhang, Y., 1995, '$H_{\infty}$ Control Analysis and Design for Nonlinear Systems,' Int. J. Control, Vol. 61, No. 2, pp. 459-474 https://doi.org/10.1080/00207179508921911
  10. Rotea, M. A., Khargonekar, P. P., 1991, '$H_2$-Optimal Control with an $H_{\infty}$-Constraint: The State Feedback Case,' Automatica, Vol. 27, No. 2, pp. 307-316 https://doi.org/10.1016/0005-1098(91)90079-H
  11. Bernstein, D. S., Haddad, 1989, W. M., 'LQG Control with $H_{\infty}$ Performance Bound : A Riccati Equation Approach,' IEEE, Trans., A. C., Vol. 34, No. 3, pp. 293-305 https://doi.org/10.1109/9.16419
  12. Doyle, J. C., Zhou, K., Bodenheimer, B., 'Mixed $H_2$ and $H_{\infty}$ Control,' Proc. ACC, pp. 2502-2507 https://doi.org/10.1109/ACC.1990.4174187
  13. Packard, A., Doyle, J.C., 1993, 'The Complex Structured Singular Value,' Automatica, Vol. 29, pp. 71-109 https://doi.org/10.1016/0005-1098(93)90175-S
  14. Bernstein, D. S., Haddad, W. M., 1988, 'The Optimal Projection Equations with Petersen-Hollot Bounds : Robust Stability and Performance Compensation via Fixed-Order Dynamic Compensation for Systems with Structured Real-Valued Parameter Uncertainty,' IEEE, Trans., A. C., Vol. 33, No. 6, pp. 578-582 https://doi.org/10.1109/9.1257
  15. Kim, J. S., 1989, 'The QLQG/LTR Control for Nonlinear Systems with a Non-Gaussian Nature', KSME, Vol. 3, No. 2, pp. 113-120
  16. Suzuki, A., Hedrick, J. K., 1985, 'Nonlinear Controller Design by an Inverse Random Input Describing Function Method,' Proc. ACC, pp. 1236-1241 https://doi.org/10.1109/ACC.1985.4171849