Supercritical Carbon Dioxide Extraction of Beef and Pork for Low Lipid Sausage Manufacturing

Young An Kwon
Woosuk University, Department of Food Science and Technology

Abstract

Lipid and cholesterol were extracted from beef and pork by the supercritical carbon dioxide (SC-CO₂) for the manufacturing of low-lipid and low-cholesterol sausage. The ranges of extraction temperature and pressure were from 35 to 55°C and from 103 to 375 bar, respectively. SC-CO₂ extraction yield of beef lipid increased as extraction pressure increased and/or extraction temperature decreased, while extraction temperature was more influential on the cholesterol extraction than pressure condition. When lipid and cholesterol of freeze-dried beef with varied moisture contents were extracted, their solubilities increased as the moisture content reduced. The extraction of lipid and cholesterol from pork was shown the same tendency as the beef. The chunk type of beef shape was more suitable for the lipid and cholesterol extraction than the powder type of beef. The color of meat after SC-CO₂ extraction was lighter than the raw freeze dried meat because of the extraction of color pigments. After SC-CO₂ extraction, beef and pork were rehydrated and mixed with raw beef and pork containing lipid and cholesterol. Their mixing ratio up to 50 : 50 did not affect physical properties of the sausage compared with the control sausage.

Key words : SC-CO₂ extraction, lipid, cholesterol, sausage

서 론

동물성 식품은 인체가 식품으로부터 얻는 전체 칼로리의 1/3 이상을 공급하며 주요 영양소들을 공급하는 중요한 식품이다. 또한 동물성 식품은 개개인의 건강에 지대한 영향을 미치는 지방의 반 이상 및 포화 지방의 3/4 이상과 모든 콜레스테롤을 공급함에도 불구하고(1), 소비자들은 포화지방산과 콜레스테롤이 인체에 미치는 건강상의 위해를 염려하여 동물성 육류의 소비를 꺼리는 경향이 있다. 따라서 육류에 포함된 지방과 콜레스테롤을 제거하면서 육류가 가지고 있는 항 미생물, 영양성분 및 조미를 그대로 유지한다면 육류의 소비는 크게 증가하게 될 것이다. 이를 위한 여러 가지 방법들이 시도되고 있는데, 초압에 이산화탄소를 이용하는 초압계 요체 추출 방법은 최근에 시도되고 있는 한 가지 방법이다.

초압계 요체 추출은 19세기에 그 원리가 알려진 이래로 1970년대부터 식품에 응용이 되기 시작하면서 식품공업에서의 효용성이 주목받게 되었다. 초압계 요체 추출은 유지를 함유한 물질로부터 유지성분만을 추출하거나(2-4) 특수 목적을 위하여 추출시 이를 분리하거나 동물성 유지의 추출에 많이 이용이 되고 있다(5,6). 그러나 이류를 포함한 육류로부터 지방과 콜레스테롤을 추출하여 저지방, 저콜레스테롤 육류제품을 연구하는 분야도 역시 많이 있으며, 발표된 연구결과도 그리 많지 않다. 초압계 이산화탄소를 이용한 육류로부터 지방 추출에 관한 보고로는 Yamaguchi 등(7)에 의한 세우로부터 지방의 추출이 성공적으로 이루어졌다는 것이 최초이며 Hardardottir와 Kinsella(8)는 콜레스테롤로부터 초압계 이산화탄소를 이용하여 지방을 추출할 수 있음을 보여주었다. King 등(9)은 진조된 comminuted 육류와 소시지, 헨다 같은 육제품으로부터 96%의 지방을 제거하였다고 보고하였으며, Chao 등(10)
고르고기에서 얻은 갈고기로부터 지방과 콜레스테롤을 추출하는 실험을 수행하였으며, Wehling 등\(^{(1)}\)은 진조된 고기 가루로부터 지방과 콜레스테롤이 상공적으로 제거될 수 있음을 보여주었다. King 등\(^{(2)}\)은 웨버가주는 갈고기와 웨버가 bazı에서 지방과 콜레스테롤을 제거하였고, 그러나 Kwon과 Chae\(^{(3)}\)의 진조된 갈고기의 지방과 콜레스테롤은 추출에 미치는 수분의 영향을 보고하였다. 진조기 이산화수소 추출을 통한 유류로부터 지방과 콜레스테롤을 제거하는 연구가 부족한 것은 이 기술을 이용한 제품 생산에 있어서 생산비용과 함께 기술적 문제들에 극복되지 못했으며 기초자료의 부족 등으로 인하여 제약을 받고 있기 때문이다.

따라서 본 연구는 초금속 유체 추출을 이용하여 고기와 돼지고기로부터 지방과 콜레스테롤을 제거하고자 하였으며, 이때 지방과 콜레스테롤을 추출에 미치는 추출조건의 영향을 살펴보고, 초금속 유체 추출으로 제거된 지방량, 콜레스테롤 함량을 대표적인 유체품인 소시지를 만들어 소시자의 품질적 성질을 살펴보았다. 이를 통해 저지방, 저콜레스테롤 소시지의 제조를 위한 기초자료를 제공할 수 있게에 보고하는 바이다.

재료 및 방법

재료

실험에 사용된 고기와 돼지고기는 전주 시내에서 각각 등심 90kg을 구입하여 외부 지방을 제거한 후 시료로 이용하였다. 고기의 평균 지방 함량은 4.2% 이었으며, 콜레스테롤 함량은 고기 100g당 평균 56.4mg이었으며, 돼지고기의 평균 지방 함량은 5.1%. 콜레스테롤 함량은 고기 100g당 평균 63.7mg로 고기가보다 약간 높았다. 외부 지방이 제거된 고기와 돼지고기를 육류 머신(Chopper)에 갈아 갈고기와 돼지고기 시료를 만들고 동결건조기(Bodiro, Iljin Engineering Co. Korea)를 이용하여 -40°C, 15 microtorr에서 수분을 제거하였다.

초금속 유체 추출장치

이산화수소를 용매로 사용하는 초금속 유체 추출장치(Newport Scientific, Inc, Jessup, MD, USA)는 Fig. 1에 나타내었다. 초금속 유체 추출장치의 주요 구성은 추출조(extractor), 분리조(seperator) 및 웨버로 이루어져 있다. 추출장치의 추출조와 분리조의 용량은 각각 1.0L와 0.5L이었으며, 추출조와 분리조의 온도는 J type 열전위(thermocouple, TC)를 통한 feedback 제어기(CT)를 이용하여 오차범위 0.5°C이내에서 제어되었다. 추출장치의 압력은 diaphragm type 웨버를 사용하여 오차범위 6.89 bar 이내로 제어되었으며, 안전장치도 6.89×10^4 bar의 rupture disc(RD)를 사용하였다. 추출장치와 분리조의 압력은 back pressure regulator(BPR)를 이용하여 유지하였으며, 온도범위 35-55°C와 압력범위 103-373 bar에서 초금속 유체 추출조건을 조절하여 실험을 수행하였다. 용매로 사용된 이산화수소는 순도 99.9%의 공업용을 사용하였으며, 이산화수소 펑크로부터 웨버로 공급되기 전 5 micron particle filter를 이용하여 불순물을 제거하고 사용하였다. 각 실험조건에서 100g의 고기 또는 돼지고기를 사용하여 고기 또는 돼지고기의 지방과 콜레스테롤을 초금속 이산화수소로 제거하였으며, 지방과 콜레스테롤을 함유한 초금속 이산화수소는 34.5 bar, 40°C로 유지된 분리조에서 기화되어 용매의 능력을 상실한 기체 이산화수소가 되면서 지방을 분리조에 남겨놓고 제거되었다. 기화된 이산화수소는 적산기를 통하여 외부로 배출함으로써 추출에 사용된 양을 계산하였으며, 이산화수소의 평균 질량속도는 2.0 kg/hr이었다.

시료의 분석

고기와 돼지고기의 수분 함량은 AOAC\(^{(4)}\) 방법에 의한 105°C 건조법으로 측정하였다. 고기와 돼지고기의 콜레스테롤 함량은 수분한 AOAC 방법\(^{(5)}\)에 의하여 gas chromatography(GC) 분석으로 측정하였다. 이 방법은 고기의 지방 0.25g을 약 2 mL의 acetone에 녹인 후 내부 표준물질 1 mL의 stigmastrol (90% 순도, Sigma Chem. Co. St. Louis, MO, USA)을 이용한 시료를 준비한 후 15% KOH를 함유한 20 mL의 에탄올로 100°C에서 20분간 검사하였다. 검출된 시료는 냉
소시지의 제조

초입계 유체 추출을 통하여 얻어진 저지방, 저콜레스테롤 육류를 이용하여 혼합 및 가열처리를 하는 프랑크푸르트 소시지(frankfurt sausage)를 제조하였다. 사용된 원료육은 쇠고기와 돼지고기의 비율을 60:40으로 하였으며, 소시지 제조 방법은 다음과 같다(17). 초입계 유체 추출된 원료육을 재수확한 후 140℃에서 플레이트에 간고 쇠고기와 염분의 혼합, 부식염, 에리소프린, 소금 및 물엿을 페이스트 상태로 만들었다. 남은 돼지고기와 염분 및 향신료를 컴프리하 여 좋은 조치 이들 때까지 섭 дог하고 중탕기에 25 사이즈 씬 롤로 오스 케이砐에 충전하였다. 추출된 소시지는 적당한 간격으로 밀착하고 가열 혼합하였으며, 혼합 후 냉각하여 표면을 진조시키고 케이신텝 벗겨내어 최종 제품을 완성하였다.

소시지의 분석

제조된 소시지의 품질을 나타내는 여러 가지 요소 중에서 보수력(water holding capacity), 조리생산성(cook yield) 및 결착력(binding strength)을 지표로 삼아 이들을 측정하였다(17,18). 보수력은 육류의 질간, 암열, 분쇄, 암착 등의 외부 힘을 가해낼 때 수분을 간직할 수 있는 능력을 나타내게 된다. 보수력의 측정은 암착법(brush method)을 사용하였는데, 일정량의 소시지를 두 개의 판 사이에 넣고 압착으로 35-50kg/cm²의 압력을 가하여 압착함으로써 유효되는 수분을 휘파져 흘수시켜 획득한 밀착도를 측정하는 방법이다. 결착력은 제조된 소시지에서 단백질과 수분의 결합정도에 대한 유효한 지방의 결합력(binding ability)을 나타내게 된다. 유효기는 원시 단백질이 수분에 용해되고, 이 용해 중에 지방의 일부가 분산되어 만들어진다. 따라서 이와 같은 소시지 내의 결합 정도를 알아보기 위하여 Texture metere(TA XT2, Stable Micro Systems, England)를 이용하여 소시지의 단위 면적당 결합력을 나타내는 침투법(penetration test)에 의하여 측정하였으며 힘을 나타내는 g 단위로 표시하였다. 가열시 소시지는 단백질 변성에 수반하여 보수력의 저하, 효소의 활성화, pH의 상승, 환원력의 증가, 이온결합력의 저하가 나타난다. 이에 의하여 수분의 유효화와 함께 가공성 단백질의 감소가 예상된다. 따라서 조리 생산성은 조리 전후의 농도 변화를 측정하여 제조된 소시지의 수축 정도를 측정하였으며 조리 전 출량의 %로 나타내었다.

결과 및 고찰

추출에 미치는 수분의 영향

따로 다른 수분 함량을 가지는 동결 건조된 쇠고기의 서로 다른 추출조건에서 지방과 콜레스테롤의 추출 결과는 Table 1과 같다. 이에 사용된 이상환소의 양은 11kg으로 동일하였으며 추출조건의 온도는 35°C, 본리조의 온도는 40°C로 각각 유지하였다. 동일한 수분 함량 7.5%를 가지는 쇠고기의 추출에서도 알 수 있듯이 쇠고기의 지방은 압력이 높을수록 또한 수분 함유율 수축이 잘된 반면에 콜레스테롤의 수축은 138 bar나 345 bar에 비하여 241 bar에서 추출이 잘되었다. 또한 추출온도를 35°C에서 55°C로 변화시키면서 콜레스테롤의 용해도를 측정한 결과 콜레스테롤의

<table>
<thead>
<tr>
<th>Pressure(bar)</th>
<th>Moisture(%)</th>
<th>Cholesterol1 extracted(%)</th>
<th>Lipid extracted(%)</th>
<th>Ratio of chol. to lipid</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>7.5</td>
<td>17.0</td>
<td>16.0</td>
<td>25.0</td>
</tr>
<tr>
<td>241</td>
<td>7.5</td>
<td>71.5</td>
<td>87.3</td>
<td>81.9</td>
</tr>
<tr>
<td>345</td>
<td>17.0</td>
<td>60.8</td>
<td>85.3</td>
<td>71.3</td>
</tr>
</tbody>
</table>

1)Supercritical CO₂ extraction at 35°C.
2)Each value of extracted amount in the same column with uncommon superscripts are significantly different (p<0.05).
3)Cholesterol content is 56.4 mg chol./100 g freeze-dried beef which equals to 100%
추출은 음도가 높아짐수록 활발하게 이루어졌다. 지방의 경우 지방이 콜레스테롤에 비하여 고효반양물의 물
질이므로, 지방의 초세계 이산화탄소에 대한 용해도는
초세계 이산화탄소의 밀도에 좌우된다. 초세계 이산화
탄소의 밀도는 압력이 높은수록 또는 음도가 낮은수
록 커지게 되므로 이에 따라 지방의 추출이 잘 일어
나는 것이다. 그러나 콜레스테롤은 지방에 비하여 저
분자량을 가지고 있어서 콜레스테롤의 초세계 이산화
탄소에 대한 용해도는 이산화탄소의 밀도와 함께 추
출 음도에 의한 콜레스테롤의 확대도 영향을 받는
 것으로 보인다. 또한 콜레스테롤의 확대도 이산화탄
소의 밀도 변화보다 더 영향이 컸다. 추출 압력에 의
한 콜레스테롤 용해도는 추출 음도에 의한 영향을
직접적으로 받는 것으로 보인다. 따라서 쇠고기의 지
방은 압력이 높을수록 추출이 잘되었으나, 콜레스테롤
은 압력에 대한 영향보다는 음도가 높을수록 추출이
잘 되는 것으로 밝혀졌다. 이는 Chao 등(15)과 Kwon과
Chao(15)가 보여준 결과와도 일치한다.

또한 같은 압력에서 여러 가지 수분 함량을 가지는
동정 조건의 쇠고기의 지방 및 콜레스테롤의 쇠고기의
수분함량이 낮을수록 추출이 잘 되었다. 아울러 Table
1에서 보듯이 지방에 대한 콜레스테롤의 추출
비율은 쇠고기의 수분 함량이 낮을수록 높았다. 그러
나 지방과 콜레스테롤의 추출에 미치는 주 추출조건
의 차이에 의하여 추출을 지방의 콜레스테롤의 추출 비
율은 241 bar에서 가장 높았다. 따라서 콜레스테롤의
체계가 주목할시에는 추출압력의 조건이 241 bar
이 경우가 가장 효과적인 것으로 나타났다.

이와 함께 동정 조건의 쇠고기의 초세계 이산화
탄소에 의한 지방과 콜레스테롤 추출에 시행한 결과,
초고기의 추출에서도 동일한 양상을 보여주었다. 즉,
돼지고기 지방도 압력이 높을수록 또는 음도가 낮
을수록 추출이 잘되며 반면에 콜레스테롤의 추출은 138
bar가 345 bar에 비하여 241 bar에서 추출이 잘 되었
다. 또한 추출은 35°C에서 55°C로 변화시키면서

| Table 2. Effect of sample shapes on SFE11 efficiency of lipid and cholesterol from free-dried beef2 |
|-------------------|---|---|---|---|
| Pressure(bar) | Temp.(°C) | Shape of beef | Moisture (%) | Cholesterol extracted(%) | Lipid extracted(%) |
| 352 | 55 | powder | 3.9 | 75.9° | 85.0° |
| 45 | powder | 3.7 | 76.2° | 88.4° |
| 373 | 55 | chunk | 3.4 | 87.0° | 95.0° |
| 55 | chunk | 3.7 | 85.3° | 99.3° |
| 45 | chunk | 3.7 | 84.6° | 99.4° |

1Supercritical CO2 extraction at 35°C. Each value of extracted amount in the same column with uncommon superscripts are significantly different (p<0.05).

서료의 모양이 추출에 미치는 영향

쇠고기 서료의 모양이 초세계 이산화탄소에 의한 쇠
고기의 지방과 콜레스테롤 추출에 영향을 미치는지에
대하여 조사하였다. 동정 조건의 쇠고기를 분쇄하여
10 mesh 이하로 만든 분말(powder) 형태와 가로, 세,
로, 높이 각각 2cm로 동정 조건의 음면체(chunk)형태
로 나누어 추출한 결과는 Table 2와 같다. 추출시 미
치는 수분의 영향을 최소한으로 하기 위하여 사용된
쇠고기는 완전히 동정 조사하였으며, 지방의 추출율을
높이기 위하여 높은 추출 압력인 352 bar와 373 bar를
사용하였으며, 콜레스테롤의 추출율을 높이기 위하여
추출 음도도 45°C과 55°C의 높은 음도 조건에서 실험
하였다. 지방의 추출율은 앞서의 결과와 마찬가지로 고,
알, 질에서 큰 반면에 콜레스테롤의 추출율은 고압, 고온에서 큰 결과를 보여주었다. 지방 추출의 경우에
분말 형태는 음면체에 비하여 높은 추출율을 보였다.
이는 분말 상태의 동정 조건의 쇠고기가 총량이 빠르
짐으로 쇠고기 이산화탄소의 이동 동로를 허용하지
않고 channeling 현상을 일으키고 초세계 이산화탄소
와 지방의 접촉 반도가 낮아지는 것으로 보이던 반면

| Table 3. Effect of supercritical CO2 extraction on the color of freeze-dried beef |
|-------------------|---|---|---|
| Pressure(bar)/
temperature(°C) | L | a | b |
Control	56.07°	2.38°	15.58°
352/55	64.44°	1.62°	14.56°
373/55	64.02°	1.87°	13.93°

1Each value in the same column with uncommon superscripts are significantly different (p<0.05).
| Table 4. Functional properties of the low lipid sausage made from SFE extracted meat† |
|---------------------------------|-----------------|------------------------|------------------|
| Ratio of fresh to | Cook | Water holding | Penetration |
| extracted meat | yield(%) | capacity ratio | (g) |
| Control | 94.1a | 3.75a | 481.6a |
| 70 : 30 | 93.7a | 3.63a | 438.1a |
| 50 : 50 | 90.5b | 3.40b | 399.6b |
| 30 : 70 | 82.6c | 2.88c | 374.8c |

†Each value in the same column with uncommon superscripts are significantly different (p<0.05).

요약

저지방, 저콜레스테롤 소시지의 제조에 이용하기 위하여 원료로 사용되는 쇠고기와 돼지고기의 지방과 콜레스테롤을 초음파 이산화탄소로써 추출하였다. 추출 온도의 범위는 35-55°C였으며, 추출압력은 103-373 bar를 이용하였다. 쇠고기의 지방은 암력이 높을수록 추출이 잘되었으나, 콜레스테롤은 암력에 대한 영향보다는 온도가 높을수록 추출이 잘 이루었다. 여러 가지 수분 함량을 가지는 동결 건조된 쇠고기의 지방 및 콜레스테롤은 쇠고기의 수분함량이 낮을수록 추출이 잘 되었다. 아울러 지방에 대한 콜레스테롤의 추출 비율도 쇠고기의 수분 함량이 낮을수록 높았다. 돼지고기의 지방과 콜레스테롤 추출도 쇠고기와 비슷한 양상의 초음파 융합 추출 특성을 보였다. 또한 시료 쇠고기의 형태가 까지 부수어진 것에 비하여 작은 융합체를 가지고 있는 것이 지방 및 콜레스테롤의 추출량을 증가시켰다. 추출 후 쇠고기와 돼지고기의 융합수소의 추출이 함께 이루어지므로 추출 전의 쇠고기와 돼지고기에 비하여 많은 색을 나타내었는데 융합수소의 양이 많은 쇠고기의 경우 그 차이가 훨씬 컸다. 지방과 콜레스테롤이 초음파 이산화탄소로 제거된 쇠고기와 돼지고기는 재수화한 후, 지방과 콜레스테롤이 제거되지 않은 고기와 섞어 저지방 소시지를 제조하였다. 두 종류의 고기를 섞는 비율이 50 : 50이 될 때까지 소시지의 품질에 큰 영향이 없었으며, 이화학적 성질도 큰 차이를 보이지 않았다.

감사의 글

이 논문은 유석대학교 학술연구비 지원에 의하여 이
부어진 연구의 일부이며, 연구비 지원에 감사드립니다.

문 한

(1999년 6월 8일 참数)