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Abstract. We establish a sufficient condition for a simple closed curve in the
Euclidean plain R2, the unit sphere S? or the hyperbolic plane H2 to be the boundary
of a metric ball.

1. Introduction

In 1990, L. Coghlan and Y. Itokawa [2] proved

THEOREM. Let f : M — M%+Y(c) be an isometric immersion of a
compact Riemannian manifold of dimension d > 2 into a simply connected
space form of constant curvature ¢ and let K be the sectional curvature
of M. Suppose that f(M) is contained in a metric ball B, of radius r.
Assume either one of the following conditions:

1
o ¢=10 and supKz;E,

"_ and sup K = ¢ csc*(ver),

2/c
o ¢ <0 and supK = —cesch?(v/=cr).

oc>0,r<

Then f(M) is the boundary of the metric ball.

Let M be the Euclidean plane R?, the unit sphere S2 or the hyperbolic
plane H2. And let B, be the closed normal ball of radius r in M. Let
a : I - M be a simple closed ¢*®-curve in M with the same orientation
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as 0B,. Suppose that on M an orientation is given such that the geodesic
curvature of 9B, is positive. Then, the purpose of this paper is to prove
the following two analogous results of the above Theorem for the geodesic
curvature k4 of a simple closed curve a in M.

THEOREM 1. Let o : I — M be a simple closed ¢*-curve parametrized
by arc-length. Suppose that «(I) is contained in a closed normal ball B,
of radius r in M. Assume either one of the following conditions:

1
o M =R? and supky, = o
o M=82%r< -;—r- and sup Kk, = cotr,
o M = H? and supk, = cothr.

Then a(I) coincides with 8B, .

THEOREM 2. Let o : I — M be a simple closed c* -curve parametrized
by arc-length. Suppose that the domain D bounded by o contains a closed
normal ball B, of radius r with center p. Assume either one of the following
conditions:

o M =R? and infng:%,

o M =85?% a(I) C Bg(p) and inf kg = cotr,
o M= H? and inf kg = cothr.

Then a(I) coincides with 9B,..

2. Preliminary Results

Throughout this paper, M will be as described in the first paragraph.
Let V and (, ) be the connection and metric tensor respectively of M. If
o : I — M is a unit speed c™-curve in a surface M oriented by a frame
field E; and E;, then T = o is the unit tangent vector field of . On «a,
we put

U=FE,xFE; and N=UXxT.

Then N is called the principal normal vector field of a. The geodesic
curvature kg of o is the real valued function on I defined by

kg = (Vaa!, N).
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Suppose a has the same orientation as 9B, such that under it, the
geodesic curvature of 0B, is positive.

Let f be a smooth function on M and A the Laplacian on a. Then we
have

A(fla) = Hess. fla(d', o') = Hess. f(d/, ') + ((_V—a:o/)l, grad f). (1)

We use the following lemma (cf. [1]) to prove Theorem 1.

LEMMA 2.1. Let p be a point in M and let l(x) be the distance function
fromp tox in M. Then on M

(a) Hess.1>?=2(,) if M = R?,
(b) Hess.(—cosl)=cosl{,) ifM =252
(c) Hess.coshl=coshl(,) ifM=H?2

Proof. Let 3/8l,V be perpendicular vector fields on a neighborhood of
g € 582 such that |V| = sinl, that VvV is parallel to 8/9!, and that V is
a Jacobi field along any geodesic through p. Clearly Vy §/8! is parallel
to V and [V, 8/0!l] = 0. Hence

(’V”vgi, V)= (VoaV, V) = %ng» V) =sinlcosl,

and

Vv-gl- = —V-a/azv =cotlV.
So

@v, 2y = v, 9 2y = sinlcost.

ol ol

Hence
VvV = —sinl cosl g-l-

Therefore

Hess. cosl(V, V) =VVcosl — VyV cosl

= —sin®lcosl = —cosl (V, V).
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Moreover,
0 0
Hess. cosl (8 V)= Vcosl (VasaiV) cosl

=—cotlVcosl=0= ~c0sl(gl~, V).

Also,
0 d? = O
Hess. cosl (6‘1 61) FIE —cosl — (Va/m—l)cosl
d
= —cosl = acosl(al 3l>

Thus we have the proof for $2. Similar proofs hold for R? and H?2.

3. Proof of Theorem 1

Let p be the center of the closed normal ball B, C M that contains a(I).
Let I(z) be the distance function from p to z in M and let ¢ € a(J) be
a local maximum point for the function lja. Consider the unique normal
geodesic v : [0, {(¢)] — B, from v(0) = p to v(l(g)) = q (I(g) <r).

The following two lemmas have analogies with results in [2] which are
proved by using a function I /2. But we find difficulty in using the function
in the case H2.

LEMMA 3.1. Let q be defined as previously noted. Then,
lg)=r.

Proof. Since ¢ is a local maximum point for /|a,

(@', gradl)q = o/ (g)(1) = (loa)'(s) = 0.

Hence
o'(q) Lgradl(g) and gradi(q) = —N(q). (2)
Here, we define a function f : M — R by
1*(z) if M = R?,
flz) = —cosl(z) if M =52

coshl(z) if M = H?,
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Since g is a local maximum point for /|, it is also a local maximum point
for f|o. Hence
Hess. fla(q)(a,a’) < 0.

From (1), Lemma 2.1 and (2), we obtain
In the case M = S?,

0> Hess. fla(q)(c, &)
= Hess. f(g)(¢/, &) + (Vad')*, grad f),
= cosl(q) (e, &) +sinl(q) (Varc), grad g
= cosl(g) — sinl(g) x4(q).

So, we get
rg(q) 2 cotl(q).
From the hypothesis sup x4 = cot r, we have

g)=r.
In the case M = R? or H?, we can prove it in the same way.

LEMMA 3.2. Let q € a(I) be a point such that [(g) = r. Then there is
a neighborhood U of q in a such that f|a is subharmonic on it.

Proof. We define an auxiliary support function s : a(I) — [-1,1] by
s(z) = (N, gradl),.
Since ((Vaa')t, N)y = (Vpa', N); = ky(z), we have
(V) gradl), = (kyN, gradl),
= g () 5(2).
Let U = {z € a(I)|s(z) < 0 and k4(xr) > 0}. Since s(q) = —1 and
kg(q) > 0, U is a neighborhood of ¢ in a. We claim that on U, A(f|a) > 0.
Let us prove it in the case M = H?2. At each £ € U we have
A(fla)(z) = Hess. f(z)(, o') + (Vwa')*, grad f)s
= cosh () (o', @) + sinh (z) (Vy '), gradl);
= cosh {(z) + sinh (z) k() s(z)
> coshl(z) — sinh(z) ky(x)
> coshl(z) — sinhi(z) cothr
> coshl(z) — sinh{(z) cothi(z) = 0.
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Similar proofs hold for R? and S2.

Lemma 3.2 implies by the maximum principle for subharmonic func-
tions that fla(z) = fla(g) on U, and so I(z) = I(¢) = r on U. But this
implies that if ¢ € a(I) has I(q) = r, then | = r in a neighborhood of g.
Let V.= {ge€ a(l)|l(g) =r}. ThenV # @ and V is a closed and open
subset of a(I). Since a(I) is connected, V = a(I) and a(I) coincides with
0B,, which completes the proof of Theorem 1.

4. Proof of Theorem 2

If ¢ is an angle function from F; to o' along «, then it is well known
[3] that

d
and
/ngds=27r+/w12=27r+/ dwiz
o o D
=27r+/(~KdM)=21r~KA, (3)
D

where A is the area of D.
Let L be the length of . Then since the domain D bounded by o
contains B,

L > the length of 0B, and A > the area of B,. (4)

(a) In the case M = S2, since K = 1, (3) and the hypothesis inf x, =
cot r imply

2r—-A= / Kgds > /cotrds = cotr L.
o [+3
Here, since the area of B, = 27w (1 — cosr),
A>27m(1—cosr).

Hence, we have

1
cotr (27r B A)

tanr {27 — 27 (1 — cosr)}
2T sinr. (a.1)

L

IA

i IA
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And, since the length of 8B, = 27 sinr, (4) implies
L > 2x sinr. (a.2)

From (a.1) and (a.2), L = 27 sinr and this means that a(l) coincides
with 8B,.
(b) In the case M = H?2, since K = —1, the hypothesis inf k;, = cothr
implies
2n+ A= / Kgds > [ cothrds = cothr L.
[¢ § [+ 4

Hence, we have

L< cotlhr (2r + A) = tanhr (27 + A). (b.1)
And, since the length of 8B, = 2= sinhr, (4) implies
L > 2m sinhr. (5.2)
Since the area of B, = 2 (coshr — 1), (4) implies
A > 2m(coshr —1). (6.3)
If we put A; = A—(the area of B,), then
A =27 (coshr — 1) + A;. (b.4)

Hence, from (b.1) and (b.4)
L < tanhr (2r coshr + A;) = 2m sinhr + A; tanhr. (b.5)

Given a domain D bounded by a curve a in H?, E. Schmidt [4] in 1940
proved that the area A of D and the length L of a are related by the
isoperimetric inequality

4mA < L* - A2,

Suppose that A; # 0, namely, a(I) # 0B,. Then, from (b.4) and (b.5)
we have

(L? — A%) — 4w A <(2x sinhr + A; tanhr)? — {27 (coshr — 1) + A;}?
— 47 {27 (coshr — 1) + A1}

=—4r A, "'Alz (1 wtanhzr) < 0.

coshr

This contradicts to the isoperimetric inequality. Hence a(I) coincides with
0B,.
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