ON THE GEODESIC CURVATURE OF A SIMPLE CLOSED CURVE IN \mathbb{R}^2 , THE UNIT SPHERE S^2 OR THE HYPERBOLIC PLANE H^2

JAE-UP SO

Dept. of Mathematics, Chonbuk National University, Chonju 561-756, Korea. E-mail: jaeup @ moak.chonbuk.ac.kr.

Abstract. We establish a sufficient condition for a simple closed curve in the Euclidean plain \mathbb{R}^2 , the unit sphere S^2 or the hyperbolic plane H^2 to be the boundary of a metric ball.

1. Introduction

In 1990, L. Coghlan and Y. Itokawa [2] proved

THEOREM. Let $f: M \to M^{d+1}(c)$ be an isometric immersion of a compact Riemannian manifold of dimension $d \geq 2$ into a simply connected space form of constant curvature c and let K be the sectional curvature of M. Suppose that f(M) is contained in a metric ball B_r of radius r. Assume either one of the following conditions:

$$c = 0 \text{ and } \sup K = \frac{1}{r^2},$$

$$c > 0, r \le \frac{\pi}{2\sqrt{c}} \text{ and } \sup K = c \csc^2(\sqrt{c}r),$$

$$c < 0 \text{ and } \sup K = -c \operatorname{csch}^2(\sqrt{-c}r).$$

Then f(M) is the boundary of the metric ball.

Let M be the Euclidean plane \mathbb{R}^2 , the unit sphere S^2 or the hyperbolic plane H^2 . And let B_r be the closed normal ball of radius r in M. Let $\alpha: I \to M$ be a simple closed c^{∞} -curve in M with the same orientation

Received April 10, 2000.

¹⁹⁹¹ AMS Subject Classification: 53C40.

Key words and phrases: geodesic curvature, hessian, subharmonic, isoperimetric inequality.

as ∂B_r . Suppose that on M an orientation is given such that the geodesic curvature of ∂B_r is positive. Then, the purpose of this paper is to prove the following two analogous results of the above Theorem for the geodesic curvature κ_g of a simple closed curve α in M.

THEOREM 1. Let $\alpha: I \to M$ be a simple closed c^{∞} -curve parametrized by arc-length. Suppose that $\alpha(I)$ is contained in a closed normal ball B_r of radius r in M. Assume either one of the following conditions:

$$o \quad M = \mathbb{R}^2 \text{ and } \sup \kappa_g = \frac{1}{r},$$

$$o \quad M = S^2, \ r \le \frac{\pi}{2} \text{ and } \sup \kappa_g = \cot r,$$

$$o \quad M = H^2 \text{ and } \sup \kappa_g = \coth r.$$

Then $\alpha(I)$ coincides with ∂B_r .

THEOREM 2. Let $\alpha: I \to M$ be a simple closed c^{∞} -curve parametrized by arc-length. Suppose that the domain D bounded by α contains a closed normal ball B_r of radius r with center p. Assume either one of the following conditions:

$$egin{aligned} \circ & M = \mathbb{R}^2 \ ext{and inf} \ \kappa_g = rac{1}{r}, \ & \circ & M = S^2, \ lpha(I) \subset B_{rac{\pi}{2}}(p) \ ext{and inf} \ \kappa_g = \cot r, \ & \circ & M = H^2 \ ext{and inf} \ \kappa_g = \coth r. \end{aligned}$$

Then $\alpha(I)$ coincides with ∂B_r .

2. Preliminary Results

Throughout this paper, M will be as described in the first paragraph. Let $\overline{\nabla}$ and \langle , \rangle be the connection and metric tensor respectively of M. If $\alpha: I \to M$ is a unit speed c^{∞} -curve in a surface M oriented by a frame field E_1 and E_2 , then $T = \alpha'$ is the *unit tangent vector field* of α . On α , we put

$$U = E_1 \times E_2$$
 and $N = U \times T$.

Then N is called the principal normal vector field of α . The geodesic curvature κ_g of α is the real valued function on I defined by

$$\kappa_g = \langle \overline{\nabla}_{\alpha'} \alpha', N \rangle.$$

Suppose α has the same orientation as ∂B_r such that under it, the geodesic curvature of ∂B_r is positive.

Let f be a smooth function on M and Δ the Laplacian on α . Then we have

$$\Delta(f|\alpha) = Hess. f|\alpha(\alpha', \alpha') = Hess. f(\alpha', \alpha') + \langle (\overline{\nabla}_{\alpha'}\alpha')^{\perp}, \operatorname{grad} f \rangle.$$
(1)

We use the following lemma (cf. [1]) to prove Theorem 1.

LEMMA 2.1. Let p be a point in M and let l(x) be the distance function from p to x in M. Then on M

$$\begin{cases} (a) & Hess. \ l^2 = 2 \, \langle \, , \, \rangle & \text{if } M = \mathbb{R}^2, \\ (b) & Hess. \ (-\cos l) = \cos l \, \langle \, , \, \rangle & \text{if } M = S^2, \\ (c) & Hess. \ \cosh l = \cosh l \, \langle \, , \, \rangle & \text{if } M = H^2. \end{cases}$$

Proof. Let $\partial/\partial l$, V be perpendicular vector fields on a neighborhood of $q \in S^2$ such that $|V| = \sin l$, that $\overline{\nabla}_V V$ is parallel to $\partial/\partial l$, and that V is a Jacobi field along any geodesic through p. Clearly $\overline{\nabla}_V \partial/\partial l$ is parallel to V and $[V, \partial/\partial l] = 0$. Hence

$$\langle \overline{\nabla}_{V} \frac{\partial}{\partial l}, V \rangle = \langle \overline{\nabla}_{\partial/\partial l} V, V \rangle = \frac{1}{2} \frac{\partial}{\partial l} \langle V, V \rangle = \sin l \cos l,$$

and

$$\overline{\nabla}_V \frac{\partial}{\partial l} = \overline{\nabla}_{\partial/\partial l} V = \cot l V.$$

So

$$\langle \overline{\nabla}_V V, \frac{\partial}{\partial l} \rangle = -\langle V, \overline{\nabla}_V \frac{\partial}{\partial l} \rangle = -\sin l \cos l.$$

Hence

$$\overline{\nabla}_V V = -\sin l \cos l \, \frac{\partial}{\partial l}.$$

Therefore

Hess.
$$\cos l(V, V) = VV \cos l - \overline{\nabla}_V V \cos l$$

= $-\sin^2 l \cos l = -\cos l \langle V, V \rangle$.

Moreover,

Hess.
$$\cos l \left(\frac{\partial}{\partial l}, V \right) = \frac{\partial}{\partial l} V \cos l - (\overline{\nabla}_{\partial/\partial l} V) \cos l$$

= $-\cot l V \cos l = 0 = -\cos l \langle \frac{\partial}{\partial l}, V \rangle$.

Also,

Hess.
$$\cos l\left(\frac{\partial}{\partial l}, \frac{\partial}{\partial l}\right) = \frac{d^2}{dl^2} \cos l - (\overline{\nabla}_{\partial/\partial l} \frac{\partial}{\partial l}) \cos l$$

= $-\cos l = -\cos l \langle \frac{\partial}{\partial l}, \frac{\partial}{\partial l} \rangle$.

Thus we have the proof for S^2 . Similar proofs hold for \mathbb{R}^2 and H^2 .

3. Proof of Theorem 1

Let p be the center of the closed normal ball $B_r \subset M$ that contains $\alpha(I)$. Let l(x) be the distance function from p to x in M and let $q \in \alpha(I)$ be a local maximum point for the function $l|\alpha$. Consider the unique normal geodesic $\gamma:[0,l(q)]\to B_r$ from $\gamma(0)=p$ to $\gamma(l(q))=q$ $(l(q)\leq r)$.

The following two lemmas have analogies with results in [2] which are proved by using a function $l^2/2$. But we find difficulty in using the function in the case H^2 .

LEMMA 3.1. Let q be defined as previously noted. Then,

$$l(q) = r$$
.

Proof. Since q is a local maximum point for $l|\alpha$,

$$\langle \alpha', \operatorname{grad} l \rangle_q = \alpha'(q)(l) = (l \circ \alpha)'(s) = 0.$$

Hence

$$\alpha'(q) \perp \operatorname{grad} l(q) \text{ and } \operatorname{grad} l(q) = -N(q).$$
 (2)

Here, we define a function $f: M \to \mathbb{R}$ by

$$f(x) = \left\{ egin{array}{ll} l^2(x) & ext{if } M = \mathbb{R}^2, \ -\cos l(x) & ext{if } M = S^2, \ \cosh l(x) & ext{if } M = H^2. \end{array}
ight.$$

Since q is a local maximum point for $l|\alpha$, it is also a local maximum point for $f|\alpha$. Hence

Hess.
$$f|\alpha(q)(\alpha',\alpha') \leq 0$$
.

From (1), Lemma 2.1 and (2), we obtain In the case $M = S^2$,

$$0 \geq Hess. \ f(\alpha(q)(\alpha', \alpha'))$$

$$= Hess. \ f(q)(\alpha', \alpha') + \langle (\overline{\nabla}_{\alpha'}\alpha')^{\perp}, \ grad \ f \rangle_q$$

$$= \cos l(q) \langle \alpha', \alpha' \rangle + \sin l(q) \langle (\overline{\nabla}_{\alpha'}\alpha'), \ grad \ l \rangle_q$$

$$= \cos l(q) - \sin l(q) \kappa_q(q).$$

So, we get

$$\kappa_g(q) \ge \cot l(q).$$

From the hypothesis $\sup \kappa_g = \cot r$, we have

$$l(q)=r.$$

In the case $M = \mathbb{R}^2$ or H^2 , we can prove it in the same way.

LEMMA 3.2. Let $q \in \alpha(I)$ be a point such that l(q) = r. Then there is a neighborhood U of q in α such that $f|\alpha$ is subharmonic on it.

Proof. We define an auxiliary support function $s: \alpha(I) \to [-1, 1]$ by

$$s(x) = \langle N, \operatorname{grad} l \rangle_x.$$

Since
$$\langle (\overline{\nabla}_{\alpha'}\alpha')^{\perp}, N \rangle_{x} = \langle \overline{\nabla}_{\alpha'}\alpha', N \rangle_{x} = \kappa_{g}(x)$$
, we have
$$\langle (\overline{\nabla}_{\alpha'}\alpha')^{\perp}, \operatorname{grad} l \rangle_{x} = \langle \kappa_{g}N, \operatorname{grad} l \rangle_{x} = \kappa_{g}(x) s(x).$$

Let $U = \{x \in \alpha(I) | s(x) < 0 \text{ and } \kappa_g(x) > 0\}$. Since s(q) = -1 and $\kappa_g(q) > 0$, U is a neighborhood of q in α . We claim that on U, $\Delta(f|\alpha) \geq 0$. Let us prove it in the case $M = H^2$. At each $x \in U$ we have

$$\Delta(f|\alpha)(x) = Hess. f(x)(\alpha', \alpha') + \langle (\overline{\nabla}_{\alpha'}\alpha')^{\perp}, grad f \rangle_{x}$$

$$= \cosh l(x) \langle \alpha', \alpha' \rangle + \sinh l(x) \langle (\overline{\nabla}_{\alpha'}\alpha'), grad l \rangle_{x}$$

$$= \cosh l(x) + \sinh l(x) \kappa_{g}(x) s(x)$$

$$\geq \cosh l(x) - \sinh l(x) \kappa_{g}(x)$$

$$\geq \cosh l(x) - \sinh l(x) \coth r$$

$$\geq \cosh l(x) - \sinh l(x) \coth l(x) = 0.$$

Similar proofs hold for \mathbb{R}^2 and S^2 .

Lemma 3.2 implies by the maximum principle for subharmonic functions that $f|\alpha(x) \equiv f|\alpha(q)$ on U, and so $l(x) \equiv l(q) = r$ on U. But this implies that if $q \in \alpha(I)$ has l(q) = r, then $l \equiv r$ in a neighborhood of q. Let $V = \{q \in \alpha(I) | l(q) = r\}$. Then $V \neq \emptyset$ and V is a closed and open subset of $\alpha(I)$. Since $\alpha(I)$ is connected, $V = \alpha(I)$ and $\alpha(I)$ coincides with ∂B_r , which completes the proof of Theorem 1.

4. Proof of Theorem 2

If φ is an angle function from E_1 to α' along α , then it is well known [3] that

$$\kappa_g = \frac{d\varphi}{ds} + \omega_{12}(\alpha'),$$

and

$$\int_{\alpha} \kappa_g \, ds = 2 \, \pi + \int_{\alpha} \omega_{12} = 2 \, \pi + \int_{D} d \, \omega_{12}$$

$$= 2 \, \pi + \int_{D} (-K \, dM) = 2 \, \pi - K \, A, \tag{3}$$

where A is the area of D.

Let L be the length of α . Then since the domain D bounded by α contains B_r ,

$$L \ge$$
 the length of ∂B_r and $A \ge$ the area of B_r . (4)

(a) In the case $M = S^2$, since K = 1, (3) and the hypothesis inf $\kappa_g = \cot r$ imply

$$2\pi - A = \int_{\alpha} \kappa_g \, ds \ge \int_{\alpha} \cot r \, ds = \cot r \, L.$$

Here, since the area of $B_r = 2\pi (1 - \cos r)$,

$$A \geq 2\pi \left(1 - \cos r\right).$$

Hence, we have

$$L \leq \frac{1}{\cot r} (2\pi - A)$$

$$\leq \tan r \left\{ 2\pi - 2\pi \left(1 - \cos r \right) \right\}$$

$$= 2\pi \sin r. \tag{a.1}$$

And, since the length of $\partial B_r = 2\pi \sin r$, (4) implies

$$L \ge 2\pi \sin r. \tag{a.2}$$

From (a.1) and (a.2), $L = 2\pi \sin r$ and this means that $\alpha(I)$ coincides with ∂B_r .

(b) In the case $M = H^2$, since K = -1, the hypothesis inf $\kappa_g = \coth r$ implies

$$2\pi + A = \int_{C} \kappa_g \, ds \ge \int_{C} \coth r \, ds = \coth r \, L.$$

Hence, we have

$$L \le \frac{1}{\coth r} \left(2\pi + A \right) = \tanh r \left(2\pi + A \right). \tag{b.1}$$

And, since the length of $\partial B_r = 2\pi \sinh r$, (4) implies

$$L \ge 2\pi \sinh r. \tag{b.2}$$

Since the area of $B_r = 2\pi (\cosh r - 1)$, (4) implies

$$A \ge 2\pi \left(\cosh r - 1\right). \tag{b.3}$$

If we put $A_1 = A$ —(the area of B_r), then

$$A = 2\pi \left(\cosh r - 1\right) + A_1. \tag{b.4}$$

Hence, from (b.1) and (b.4)

$$L \le \tanh r \left(2\pi \cosh r + A_1\right) = 2\pi \sinh r + A_1 \tanh r. \tag{b.5}$$

Given a domain D bounded by a curve α in H^2 , E. Schmidt [4] in 1940 proved that the area A of D and the length L of α are related by the isoperimetric inequality

$$4\pi A < L^2 - A^2$$

Suppose that $A_1 \neq 0$, namely, $\alpha(I) \neq \partial B_r$. Then, from (b.4) and (b.5) we have

$$(L^{2} - A^{2}) - 4\pi A \le (2\pi \sinh r + A_{1} \tanh r)^{2} - \{2\pi (\cosh r - 1) + A_{1}\}^{2}$$
$$- 4\pi \{2\pi (\cosh r - 1) + A_{1}\}$$
$$= -4\pi A_{1} \frac{1}{\cosh r} - A_{1}^{2} (1 - \tanh^{2} r) < 0.$$

This contradicts to the isoperimetric inequality. Hence $\alpha(I)$ coincides with ∂B_r .

References

- [1] J.G. Choe and R. Gulliver, *Isoperimetric Inequalities on Minimal Submanifolds of Space Forms*, Research Institute of Mathematics Global Analsis Research Center **91-6** (1990).
- [2] L. Coghlan and Y. Itokawa, On the sectional curvature of compact hypersurfaces, Proc. Amer. Math. Soc. 109 no. 1 (1990), 215-221.
- [3] B. O'Neill, Elementary Differential Geometry, academic Press, New York, 1966.
- [4] E. Schmidt, Über die isoperimetrische Aufgabe im n-dimensionalen Raum konstanter negativer Krümmung. I. Die isoperimetrischen Ungleichungen in der hyperbolischen Ebene und für Rotationskörper im n-dimensionalen hyperbolischen Raum,, Math. Z. 46 (1940), 204-230.