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Abstract. In this paper, we introduce the extremal length and examine its proper-
ties and consider the applications of extremal length to conformal mappings. We obtain
the theorems in the connection with “the extremal length zero” and “the fundamental
sequences”.

1. Extremal length

Our tool is “extremal length”, a conformally invariance associated with
a family of curves.

Let D be a domain in the complex plane, {7} a family of curves of D,
and let p(z) be a non-negative real-valued function defined on D. We set

Ap(p) = A(p) = / / z) dzdy.

Let 7 be a curve of the family {y}. If there is countable sequence {;}
of disjoint rectifiable arcs, which are parameterized by their arc lengths
(i.e., the arc v; is given by z = z;(s;), where 0 < 5; < l;, and [; is the
length of +;), such that () = U®(v;), we set

L =3 [ sats) s
=1 i

We introduce

L(p) = Liyy(p) = gg’}l()

where L{.y(p) = oo, the family {v} is empty.
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DEFINITION 1.1 ([1]). The function p(z) shall be called admissible with
respect to D and {v}, if A(p) and L(p) are not both zero or both infinite.

DEFINITION 1.2 ([1]). The quantity

L%(p)
1 A = A~y) = sup ——-,
(1) p(7) = Aly) = sup A0
where the supremum is taken over all admissible functions p(z), is called
the eztremal length of the family of curves {7} with respect to the domain
D.

PROPOSITION 1.3 ([9]). Let B be the interior of the annulus formed
by two concentric circles of radii a and b (a < b). The family {~} of curves
of B which connect the two circles has extremal length

1 b

(2) Aly) = o log

E )
while the family {v*} of simple closed curves of B which separate the two
boundary components has extremal length

(3) A(Y") =

The following theorem is an immediate consequence of the definition.

THEOREM 1.4 ([1]). (Conformal invariance of extremal length) Let
2* = f(z) be a 1-1 conformal mapping on D upon a domain D* and {v}
be a family of curves in D, then

Aly) = A(f (7).

THEOREM 1.5. Let {7} and {7’} be two families of curves of a domain
D such that each v € {v} contains a v’ € {¥'}. Then

A7) 2 A(Y).

Proof. Let € > 0 be given and let p'(z) be admissible for the family
{7'}, subject to the condition that

@ A(p')
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Define a function pg(z) in D by

p'(z) z belongs to some v/
0 otherwise '

po(z) = {
For v € {7}, let 7' be one of the elements of {7’} contained in <. Then

(5) Lo (7) 2 Liyy(0'),

since either {,, () = oo, or
Loo (1) = / po ds > / plds=1y(v") 2 Liyy ().
7 v

For each v € {7}, (5) holds, then

(6) L43(po) 2> Ly (p)-

Also, we have
(7) A(po) < A(p).

Show that pg is admissible for the family {v}. If A(y') = 0, the theorem
holds trivially. Assume that A(p’) < 0o, and A(po) < oo.

If A(po) = 0, then either (i) A(p’) = 0, or (ii) A(p") > 0. In case (i),
L,y (p') > 0, since p’ is admissible for {v'}, while in case (ii), we choose
€ so that 0 < € < A(y’) in (4), and we conclude from that formula that
Liyy(p') > 0. In either case, therefore, A(pg) = 0 implies, by (6), that
L{,3(po) > 0; hence, po is admissible for {v}. By (6) and (7), we obtain

L%’,}(PO) N L%»,}(P’)
Alpo) — A(P)

and therefore, by (4), A(y) > A(?’) — ¢, then

A(Y) 2 A(Y").

This completes the proof of the theorem.
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COROLLARY 1.6. In particular, if {~} is contained in {v'}, then
A(Y) 2 A(Y).

2. Geometric applications of extremal length

An important application of extremal length is to the boundary cor-
respondence between two simply connected domains which are mapped
conformally on each other.

Throughout this section, D is a domain in the complex plane.

DEFINITION 2.1 ([1]). A crosscut of D is a Jordan curve + in D which
in both directions tends to a boundary point.

It is well known that D—+y consists of two simply connected components.

DEFINITION 2.2 ([1]). Choose a fixed zg € D and consider sequences
P = {p,} of points in D. With the sequence P, we associate the family
I, of all clusters of crosscuts of D which separate zp from almost all p,,.
The sequence P is said to be fundamental if A(I',) = 0.

The definition is independent of the choice of z,.

Recall that A(I'p) = 0 if and only if L(p) = 0 for all p with A(p) < oco.

LEMMA 2.3 ([1]). Let D and D* be simply connected domains in the
complex plane, and consider sequence P = {p, } of pointsin D. Let f be a
conformal mapping from D to D*. Then the sequences {p,} and {f(pn)}
are simultaneously fundamental.

LEMMA 2.4. Let P = {p,} be a fundamental sequence in D. Then all
accumulation points of the P = {p,} lie on the boundary of D.

Proof. Let o € D be an accumulation point of P. Then o ¢ FE, since
otherwise {7} would be empty, and A(y) = oo, where F is the set of zp in
definition 2.2. Therefore, the open set DD — E contains a closed disk F with
center a such that p,, € F for an infinite number of indices. If £ is a curve
contained in D which connects a to a point 8 of E, then every crosscut
v of the family {7} intersects the continuum T = £ U F. T has positive
spherical distance § from the boundary. Let p*(z) = v¥(z,00), where
¥ (2, w) is the spherical distance. Then, for each v € {7}, l,-(7) > 26.
Hence L{,}(p*) > 20. Since 0 < A(p*) < m, p* is admissible. We have

L*p*) _ 4
Ay) > >2.52>0.
(’Y) — A(p*) bl T
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This contradiction shows that « cannot be an interior point of D. This
completes the proof.

LEMMA 2.5. A sequence P = {p,} of points of A = {z||z] < 1} is a
fundamental if and only if it converges to a point ¢ = e*® of the boundary
of A.

Proof. Let lim, oo pn = ¢, and set 7; = |p; — (|, C; = {z]]z - (] =
r;}. Then the sequence {r;} converges to 0. By restriction to a suitable
subsequence of {p,}, we assume that C separates Cy,, (n > 1) from z,.
Let {7} be the family of crosscuts of A which separate zo from almost
all p,. For j, every simple closed curve, which separates the Cp and
Cj, contains a crosscut which separates zp from almost all p, and which
belongs to the family {}. Let {0} be the family of all such simple closed
curves by Proposition 1.3 and Theorem 1.5, we have

A7) £ A) =

The right side converses to zero as k — oo, and the result, A(v) = 0. Thus,
P = {p,} is a fundamental sequence in D.

On the other hand, if ¢(; = e and (3 = e*2 are distinct points of
the boundary. Let {p,,} and {g,} be sequences converging to (; and (3,
respectively. Let zo = 0. Each member of the family {7} of crosscuts of A
which separate 2o from almost all points of the join of our two sequences
have Euclidean length at least |(; — {2]. Denoting by pe the function
po(z) = 1 for all z of A, we have Ly,y(po) > |1 — (2|, while A(py) = ;
hence,

AN 2 6 -Gl > 0.

A sequence of points of A with more than one accumulation point on the
boundary cannot be a fundamental sequence. This completes the proof.

THEOREM 2.6. Let D be a Jordan domain in the complex plane, and
let w = f(2) be a conformal mapping on A = {z||z| < 1} upon D. Let wy
be a point on the boundary of D, and consider a sequence P = {wy,} of
points of D converging to wg. Let f~1(P) = {z,} be a inverse image of
P. Then the sequence of points {z,} has no point of accumulation in the
interior of A, and {z,} has one and only one point of accumulation z¢ on
the boundary of A.

Proof. Since wyg is a point on the boundary of D, P = {w,} is a fun-
damental by Lemma 2.4. Thus, {z,} is a fundamental by Lemma 2.3.
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Therefore, point of accumulation zg of {2} exist on the boundary of A,
by Lemma 2.4.

On the other hand, z; is one and only one point of accumulation by

Lemma 2.5. This completes the proof of the theorem.

w
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