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Abstract. An A-module M is catenary if for each pair of prime submodules K
and L of M with K C L all saturated chains of prime submodules of M from K to
L have a common finite length. We show that when A is a Noetherian domain, then
every finitely generated A-module is catenary if and only if A is a Dedekind domain
or a field. Moreover, a torsion-free divisible A-module M is catenary if and only if the
vector space M over Q(A) ( the field of fractions of 4 ) is finite dimensional.

0. Introduction

In this paper all rings are commutative with identity and all modules are
unitary. Recall that a ring A is called catenary if the following condition
is satisfied: for any prime ideals p and p’ of A with p C p’ there exists a
saturated chain of prime ideals starting from p and ending at p’, and all
such chains have the same finite length. In [8] we extended this definition
to modules and we gave some characterisations of such modules.

In section 1 we show that when A is a Noetherian domain, then every
finitely generated A-module is catenary if and only if A is a Dedekind
domain or a field. A Noetherian ring A for which A2 is a catenary A-
module must be of dimension at most one. Moreover, we prove that every
module of finite length is catenary.

In section 2 we determine the height of some prime submodules of
A? as an A-module. By using of catenary modules we show that every
Noetherian UFD A of dimension 2 has a height one prime ideal p such
that A/p is not a Dedekind domain.

Let A be a ring and M be an A-module. A proper submodule K of
M is called prime if am € K implies m € K oraM C K, fora € A,
m € M (see, for example, [3] or [6]). A strictly increasing ( or decreasing
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) chain Ky C K; C ... of prime submodules of an A-module M is said to
be saturated if there do not exist any prime submodule strictly contained
between any two consecutive terms. We say that a prime submodule K of
M has height n, if there exsits a chain K = K¢ D K; D -+ D K, of prime
submodules K;(0 <7 < n) of M, but no longer such chain. Otherwise, we
say that it has infinite height. We shall denote the height of K by htK.
We define the h-dim(M) to be the supremum of the heights of all prime
submodules of M. If M has no prime submodule, we set h-dim(M) = —1.
Note that if M = A, then the h-dim(M) is just the Krull dimension
dim(A) of A.

An A-module M is called a locall module if it has exactly one maximal
submodule.

1. Catenary modules.

DEFINITION. An A-module M is said to be catenary if for each pair
K, K’ of prime submodules of M, with K C K’ there exists a saturated
chain of prime submodules of M from K to K’ and all such chains have
the same finite length.

It is proved that any finitely generated module over a Dedekind domain
is catenary and also being catenary is a local property [8].

In the proof of Theorem 2.12 of [8] we can omit the hypothesis dim(A) =
1, since one can show that this condition does hold by using the Principal
Ideal Theorem. Thus we have the following theorem.

THEOREM 1.1. Let (A, M) be a Noetherian local domain. Suppose

M = A? is a catenary A-module. Then A is a discrete valuation domain
or a field.

THEOREM 1.2. Let A be a Noetherian domain which is not a field.
Then the following are equivalent:

(i) A is a Dedekind domain.

(ii) Every finitely generated A-module is catenary.
(iii) A™ is a catenary A-module for some n > 2.
(iv) A? is a catenary A-module.

Proof. (1) == (i1) The proof follows by [8 , Corollary 2.10 and Lemma
2.2].

(#3) == (413) Clear.

(#42) == (iv) The proof follows by [8, Lemma 2.2].
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(tv) == (i) For each non zero prime ideal p of A, A, is a Noetherian
local domain and A, @ Ay is a catenary A,-module by [8, Theorem 2.9].
Thus A, is a discrete valuation ring, by Theorem 1.1.

COROLLARY 1.3. Let A be a Noetherian ring. Then the following are
equivalent:

(i) For each prime ideal p of A, A/p is a Dedekind domain or a field.
(ii) Every finitely generated A-module is catenary.

(ili) A" is a catenary A-module for some n > 2.

(iv) A% is a catenary A-module.

Proof. (i) == (ii) Let M be a finitely generated A-module. For each
prime submodule K of M with (K : M) = p, M/K is a finitely generated
(A/p)-module and A/p is a Dedekind domain or a field. Thus M/K is a
catenary (A/p)-module. Now M is a catenary A-module by [8, Lemma
2.3].

(i) = (iii) Clear.

(#421) = (iv) It follows by [8, Lemma 2.2].

(iv) = (i) For each prime ideal p of A, p @ p is a prime submodule
of A2 =A@ A. Hence 4 @ 4 = 224 is a catenary (A/p)-module, by [8,

pdp
Lemma 2.3]. Thus A/p is a Dedekind domain or a field.

For a ring A which satisfies each of the equivalent conditions of Corol-
lary 1.3, we have dim(A) < 1.

LEMMA 1.4. Let ¢ : A —> A’ be a ring epimorphism. Let M be an
A-module such that (kerp)M = 0. Then M is an A’-module and we have
that M is a catenary A-module if and only if M is a catenary A’-module.

Proof. For a € A, m € M we have p(a)m = am. Thus K is a prime
A-submodule of M if and only if K is a prime A’-submodule of M.

COROLLARY 1.5. Let M be an A-module and I be an ideal of A such
that IM = 0. If M is a catenary »‘}-module, M is a catenary A-module.

COROLLARY 1.6. Let M be a finitely generated A-module.If p is a
prime ideal of A such that pM = 0 and A/p is a Dedkind domain or a
field, then M is a catenary A-module.

EXAMPLE 1.7. If A = k[X,Y] where k is a field, then k[X] = 4 is an
A-module and M = k[X] & k[X] is a catenary k[X]-module. Thus M is a
catenary A-module.
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ExAMPLE 1.8. Let A be a Noetherian ring and M be a maximal ideal
of A. Then M = M/M? is a catenary Iﬁ——module, hence M is a catenary
A-module.

DEFINITION. Let M be an A-module with hA-dim(M) < co. We say
that M is equidimensional if h-dim(—‘};‘f—) = h-dim(M) for every minimal
prime submodule K of M. (To see the definition of an equidimensional
ring in [5, page 250])

We saw in [8, Proposition 2.5] that if M is an A-module with h-
dim(M) < oo and if for each pair K C L of prime submodules of M,

we have ht(%) = htL — htK, then M is catenary. Now we show that for
a local module M the converse is true if M is equidimensional.

PROPOSITION 1.9. Let M be a local equidimensional A-module with
maximal submodule N. If M is catenary then for each pair K C L of
prime submodules of M, we have ht(?%) = htL — htK.

Proof. If we choose a minimal prime submodule Ko C K, then ht(I—I{V—a) =
ht(£) + ht(»}(%), since M is catenary. Thus ht(%) = h-dim(M) — ht(£),
since M is equidimensional. Hence ht({gﬂ—) is independent of the choice
of Ko, so that htK = ht(%). Similarly htL = ht(—,%;). Therefore,
htL — htK = ht() — ht(£:) = ht()-

PROPOSITION 1.10. Every finitely generated Artinian A-module M is
catenary. That is, if l4(M) < oo, then M is catenary.

Proof. For each prime submodule K of M with (K : M) =p, M/K is
a finitely generated torsion-free Artinian (A/p)-module. Thus the integral
domain A/p is a field and hence M/K is catenary. Thus M is catenary,
by (8, Lemma 2.3].

COROLLARY 1.11. Let M be an A-module and l4(M) < oo. If Ky, K,
..., K, are all minimal prime submodules of M and (K; : M) = p;, then

) M
h — dim(M) = max {l.%_ (‘k"'i’)

- 1;1=0,1,...,r}

Proof. First note that M has only finitely many minimal prime sub-
modules, by [7, Theorem 4.2]. Let K; = Lo C L, C --- C L, = L be
a saturated chain of prime submodules of M such that 1 <¢ <7 and L
is a maximal submodule of M. Then 0 C %‘; C - C %Ol is a saturated
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chain of prime submodules of the (ﬁ)‘module ¥ =2 Now £ isa

finitely generated torsion-free Artinian (;ﬁ—)—module, thus (ff) is a field
and la (J‘Klﬁ) =n+1,thatis, n =104 (—%)*1.
P ! Py *

LEmMMA 1.12. Let A be an integral domain and M be a divisible A-
module. If N is a proper submodule of M, then (N : M) = 0.

Proof. If a € (N : M), then aM C N. If a # 0, then for all m € M
we have m = azx, for some z € M, by divisiblity of M. Thus m = ax €
aM C N. That is, M = N, a contradiction.

PROPOSITION 1.13. Let A be a domain and () be the quotient field of
A. If M is a torsion-free divisible A-module, then:

(i) M is a vector space over ().
(ii) N is a prime A-submodule of M if and only if N is a proper subspace
of the vector space M over Q.

Proof. (i) Forany 0 # b € A and z € M, there exists an element m € M
such that bm = z. m is unique because bm = bm’ implies that m = m’.
Define m = 1z. Hence M is a Q-module by 2z = }(ax) = a(3z), for all
a,be A,z e M.

(i¢) If N is a prime submoudle of the A-module M, then N is a divisible
torsion-free A-module by Lemma 1.12. Now part (i) implies that N is a
subspace of M. Conversely, let IV be a proper subspace of the vector space
M over Q. Ifam € N for 0 # a € A, m € M, then m = 1(am) € N.
Thus N is a prime submodule of M.

COROLLARY 1.14. Let A be a domain and () be the quotient field of
A. Suppose that M is a torsion-free divisible A-module. Then M is a
catenary A-module if and only if it is a finite dimensional vector space
over (J.

EXAMPLE 1.15. If Q is the field of rational numbers, then Q"(n > 1)
is a catenary Z-module, by Corollary 1.14. However it is not a finitely
generated Z-module.

PROPOSTION 1.16. Let A be a domain. If M is a finitely generated
divisible A-module, then A is a field.

Proof. For a maximal ideal M of A, there exists a prime submodule K
of M such that (K : M) = M, by [6, Theorem 3.3]. But M = (K : M) =
0, by Lemma 1.12. Thus A is a field.
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2. On the height of some prime submodules.

LEMMA 2.1. Let A be an integral domain and M = A% If K is a
non-zero prime submodule of M such that (K : M) = 0, then ht(K) = 1.

Proof. Let § = A — {0} and @ = S~ 'A be the quotient field of A.
Then V = S™1M = Q& Q is a vector space of dimension 2 and S~!K is a
non-zero prime submodule of V (since K ¢ S71K). Thus ht(S7'K) =1
. By [2, Lemma 10], ht(K) = ht(S™'K) = 1.

COROLLARY 2.2. Let A be an integral domain and M = A?. If L is
a pnme submodule of M such that (L : M) = p and L # p @ p, then

ht( p@p) 1.
Proof. Let A = %. Then L' = ;@1—; is a non-zero prime submodule
of M' = “Eé"E = A" @ A’ as an A’-module and (L' :4» M’) = 0. Hence

1=ht(L) = ht(i@};)’ by Lemma 2.1.

PROPOSITION 2.3. Let A be an integral domain and M = A?. Suppose
that for each pair ¢ C ¢' of prime ideals of A with ht(q'/q) = 1 we have

ht(gﬁg-) = 1. Let p be a prime ideal of A with ht(p) = n. Then

(i) ht(p @ p) = n.
(ii) If L is a prime submodule of M such that (L : M) = p and L # p®p,
then ht(L) = n + 1.

Proof. By induction on n. If n = 0, then the result follows by Lemma
2.1. Now let for each prime ideal p with ht(p) < n, (i) and (ii) hold.
If ht(g) = n + 1, then we show that ht(¢ & ¢q) = n + 1 and for each
prime submodule L of M such that (L : M) = q and L # q ® g we have
ht(L) = n + 2.

If N is a prime submodule of M and N C ¢ & g, then we claim that
ht(N) < n. Since py = (N : M) C q, ht(py) < n. If N = p; @ py, then
ht(N) = ht(p;) <n. fpi®ps CN C ¢y, then ht(p1) < n because if
ht(p1) = n, then ht(q/p1) = 1 and hence ht(p o) = 1, a contradiction.
Thus ht(N) = 1 + ht(py) < n. Therefore, ht(¢g ® q) < n+ 1. Since
ht(q) =n+ 1, then ht(g® q) =n+ L.

For each prime submodule K of M with K C L we have p’ = (K :
M) C (L : M) = q and ht(p’) < n. Thus ht(K)<1+ht(p)<n+1
Hence ht(L) < n+2. Since ¢&¢ C L and ht(¢®q) =n+1, ht(L) = n+2.
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LEMMA 2.4. Let A be a UFD and M = A% If K # 0 is a prime
submodule of M with (K : M) = p, then:

(i) If p = 0, then there exist a,b € A such that gcd(a,b) = 1 and
K = A(a,b). In this case ht(K) = 1.

(ii) If ht(p) = 1 and K = p @ p, then ht(K) = 1.

(iii) If ht(p) =1 and K # p @ p, then ht(K) = 2.

Proof. (i) The result follows by {2, Corollary 5].

(#) If there exists a non-zero prime submodule N of M contained in
p@p, then (N : M) = 0. Thus N = A(a,b) for some a,b € A with
gcd(a,b) = 1, by (i). Since ht(p) = 1, p is generated by a prime element
z € A. Now (a,b) € N C p® p, implies that x|a, z|b, a contradiction.

(#3t) By corollary 2.2, there is no prime submodule of M between p @ p
and K. By parts (i) and (ii) we have ht(K) = 2.

LEMMA 2.5. Let A be a Noetherian UFD with dim(A) =2 and M =
A?. Suppose A/p is a Dedekind domain for each prime ideal p of A with
ht(p) = 1. If M is a maximal ideal of A, then:

(i) MM M) = 2.

(ii) If N is a prime submodule of M such that (N : M) = M and
N # M @ M, then htN = 3.

Proof. (i) If p is a prime ideal of A contained in M with ht(p) = 1, then

MOGM _ M M i Mo AgpA
p®p C MSBM and ey = 5 @7 isa prime submodule of vor = 295

as an (£)-module. Since A/p is a Dedekind domain, ht(#422) = 1, by
(2, Corollary 2]. Thus ht(M & M) = 2, by Lemma 2.4.

(i) m%xz is a non-zero prime submodule of the vector space 7\;%!]7
over the field —_;&. Thus ht(ﬂ%ﬂ) = mnk(m—%ﬂ) = 1. By part (i) and
Lemma 2.4, ht(N) = 3.

COROLLARY 2.6. If A is a Noetherian UF D with dim(A) = 2, then
there exists a prime ideal p of A such that ht(p) = 1 and A/p is not a
Dedekind domain.

Proof. If for each prime ideal p of A with ht(p) = 1, A/p is a Dedekind
doman, then M = A? is a catenary A-module by Lemmas 2.4 and 2.5.
But by Corollary 1.3, M is not catenary, because dim(A) > 1 as required.

As we saw in [8 Example 2.14], p = B(X3 - Y?) is a prime ideal of

B = k[X,Y] (k is a field) of height 1 and % is not a Dedekind domain.

Also < X3 —4 > is a prime ideal of Z[X] of height 1 for which 2—% is
not a Dedekind domain.
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