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Buckling Analysis of Inelastic Steel Members
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ABSTRACT : In this study. the computationally efficient inelastic buckling
analysis program is developed to be used as the research tool in finding
buckling strength of inelastic members. The program can determine buckling
loads and buckled shapes of elastic and inelastic members which failed by
flexural, lateral-torsional and/or local buckling. It can analyze singly and
doubly symmetric I-shape members. In the program, the web of the member
is modeled using the plate element and the flanges are modeled by beam
elements. Multilinear isotropic hardening rule and the incremental theory of
plasticity are used to simulate the inelastic stress-strain relationship from
material tests. The program is verified using theoretical solutions and
experimental results. The results from the program show good agreement
with those from experiments and theory.
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1. Introduction rial properties expand, more structural
members are loaded to the inelastic range

As the understanding and knowledge of of the material to take full advantage of

structural members’ behavior and mate- material strength. The main failure modes

of inelastically loaded steel members are
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either yielding or buckling. Lateral
torsional and local buckling can occur for
the I-shaped steel members in the
inelastic range.

The finite element method which is
derived using the principle of stationary
potential energy has been employed tq
solve general buckling problems. Kapur

120 golved the problem of plate

and Harts
stability using the method. Barsoum and
Gallagherm solved

flexural-torsional buckling of one-dimen-

torsional and

sional prismatic members. Powel and
Klingner'™ employed the finite element
method to solve elastic lateral torsional
buckling of steel beams. Local and
distortional buckling was not considered
in their model. Akay, Johnson, and Will”
developed the two-dimensional elastic
buckling analysis program which can find
lateral torsional, local, and distortional
buckling loads of structural members.
El-Ghazaly et al.'” followed Akay et al’s
approach and developed the inelastic
buckling analysis program. But the
program was limited to specific cases. As

(5 . o
. finite element

summarized by Bradford
method has been actively adopted by
Australian researchers to perform lateral-
distortional buckling analysis. Commercial
programs like ANSYS, ABAQUS have the
capacity for elastic buckling analysis but
do not have the routine to determine
inelastic buckling loads.

The purpose of the study is to develop
the inelastic buckling analysis program,
IBASP (Inelastic Buckling Analysis of

Stiffened Plate). The developed program
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can predict the inelastic as well as elastic
buckling capacities of the members.
Lateral-torsional, local, and distortional
buckling capacities of the members can be
found. However, the program cannot
determine post-buckling strength and the
displacement at the instant of and after
the instability. It also does not consider
initial imperfections of the member. The
program can deal with singly- and doubly-

symmetric I-shape cross-sections.
2. Problem Statement

The linear buckling equation is obtained
from the second variation of the potential
energy and expressed as

(IK1+ A, KcDioDt={0} (1)

where [K] is the conventional stiffness

matrix, [ K¢] is the geometric stiffness
matrix, A is the lowest eigenvalue, and

{0D} is the infinitesimal displacement

——P{ Increase/Decrease Loadl

I In-Plane Analysis l

!

| Out-of-Plane Analysis]

[ Buckling Shape I

Fig. 1 Schematic Flowchart of
Computational Procedure
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vector. The conventional stiffness matrix,
[K]., depends on the state of material in
the inelastic range. The geometric
stiffness matrix [ K] is the function of

membrane stresses that are present in the
element prior to buckling. Eq. 1 is
characterized as the standard eigenvalue
problem whose eigenvalues are buckling
load multipliers. In a buckling problem,
the lowest eigenvalue and eigenvector
which represent lowest buckling load and
a corresponding mode shape are usually of
the greater interest. This load is defined
as bifurcation buckling load which may
not be the true collapse load of a member.
The collapse load can be quite different
from the buckling load because of
post-buckling strength.

The computational process of the finite
element program is composed of three
main parts as schematically shown in Fig.
1. In the first part, in-plane stress
analysis is performed to determine the
distribution of the membrane stresses and
the state of the material under applied
loads. It is followed by out-of-plane
stiffness analysis. In the second part,
stiffness

conventional and geometric

matrices, [K] and [ K], are assembled.

Last, the buckling load and the mode

shape are determined. The inverse
iteration method with shift is employed to
define the buckled shape.

In the program, elements which can
accommodate inelastic deformation are
employed. The web of a I-shape member

is modeled using the isoparametric plane
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stress elements for in-plane stress
analysis and the degenerated isopara-
metric plate elements for out-of-plane
behavior. Each node of the isoparametric
element shown in Fig. 2 has five degrees
of freedom. Two degrees of freedom are
for the in-plane analysis and remaining
three are for out-of-plane analysis. The
flange of a member is modeled using beam
elements. Akay, Johnson. and Wil
observed that modeling of flanges and
stiffeners using beam elements resulted in
substantial reduction in computation time
and no significant loss in accuracy. For
the new program, flanges and stiffeners of
the member are modeled using the layered
beam elements by Owen and Hinton"?.
The layered beam element shown in Fig.
3 can account for the spread of inelasti-
city through the depth of the beam.

The tangent modulus theory has been
used to predict the buckling capacities of
inelastic members. The theory which is

Shanley'"”

experimentally proven by
states that the buckling capacity of the
inelastic member is the function of
tangent modulus rather than reduced
modulus of the material. In the program,
the tangent modulus theory is adopted to
determine inelastic buckling capacities.
When the material is stressed over the
yield strength of the material, tangent
modulus is used in the formation of
stiffness matrices. The detailed descrip-
tion of the computational process of

IBASP is given below.
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3. In-Plane Stress Analysis

The in-plane stress analysis routine
determines membrane stresses and the
state of the material. In the routine, the
web of the member is modeled using
isoparametric plane stress elements and
flanges and stiffeners of the member are
modeled using the layered beam elements
with the axial degree of freedom only.
When the material is in the inelastic
state, an iterative solution method, a
modified Newton-Raphson method, is used
to solve non-linear problems due to
inelasticity. The plasticity algorithm
which determines the state of material
and forms the tangent stiffness matrix is
required to solve plasticity problems. The

elastic predictor-radial return ‘algorithm

7
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Fig. 2 Nine Node Isoparmetric Plate Blements
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recommended by Dodds'®

the study.

is adopted in

3.1 Web Element
The nine-node isoparametric plane
stress element shown in Fig. 2 is selected
because the isoparametric element can
accommodate inelastic deformation.
Numerical integration methods are used
to form the stiffness matrix because of its
convenience and easy implementation.
Stresses at numeral integration points of
the elements are saved to keep track of
the state of material.

If the state of the material is elastic,
the elastic stiffness matrix is formed and
stresses are calculated. When applied
stresses exceed the yield strength of a
material, plasticity theories are needed to
describe the behavior of the material and
form the stiffness matrix. In this study,
the incremental theory of plasticity is
employed. The theory relates the incre-
ment of plastic strain to the increment of
stresses and depends on stress history.
The details of the theory are discussed

below.

3.2 Incremental Theory of Plasticity

This theory relates the plastic strain
rate to the rate of yield criterion. The
three components of the incremental
theory of plasticity are a yield surface, a
flow rule, and a hardening rule. The yield
surface is defined as the shape of yield

function in the stress plane. The von

shRUT =y



Mises yield criterion which well represent
the behavior of steel is adopted in this
study. The flow rule determines the
direction of plastic strain. The associated
flow rule which states that the direction
of plastic flew is normal to the yield
surface is employed here. The hardening
rule describes the behavior of strain
hardening materials. The multi-linear
isotropic hardening rule is employed here.

an . .
, the isotropic

According to Hunsaker
hardening rule is simple to use and takes
the least amount of computer storage for
the loading history without unloading or
load reversal.

In multi-axial states of stresses, effec-
tive stress and effective strain are used to

describe the behavior of the material. The

effective stress, 0,, and effective strain,

€ .. for plane stress are defined as

o=V (oi+tol-0,0,437%) (2

2
- 2 2 Y
se—%\/(eﬁ-eﬁ- €x €yF 7 ) (3)

where 6; = membrane stresses: ¢&;=

membrane strains. The effective strain in
the inelastic state is composed of elastic

strain component ( € §) and plastic strain
component ( € 2).
The tangent modulus, E 7. in the

inelastic range is defined in terms of
effective stress and effective strain and

given by
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_do,  do, do,
Er= de, delt+de’ dae/E+de£(4)

where E= elastic modulus: do.,= effec-

tive stress variation: de.,= effective

i

strain variation: de ¢ elastic effective

strain variation: de ; = plastic effective
strain variation. Eq. 4 yields the plastic
modulus FE p which relates stress varia-

tion to plastic strain variation as follows:

dde=E= EET
dEﬁ £ E—ET

(5)

The elasto-plastic constitutive matrix,
[ D). for the incremental theory is

obtained as
Hat=[ D,)del=( D,]-[ D,Ddle} (6)

where [ D_] is the elastic constitutive

matrix and [ D,] is the plastic

constitutive matrix which is defined as

da, (o1
[ Da55 {55} [0
[ D,]= do,

Ey+ | a{a}]T[ D505

(7)

The elasto-plastic stiffness matrix, [ D],

is used in the in-plane stress analysis
routine and in the derivation of the
out-of-plane plate stiffness matrix.

3.3 Flange Element

In the program I[BASP, the layered
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beam element by Owen and Hinton" is

used to model flanges and stiffeners. As
shown in Fig. 3, the cross-section of the
beam is subdivided into N layers. The
advantage of the layered beam element is
that it can follow the
inelasticity through the depth of the beam

spread of

by assessing the state of the material at

each layer during in-plane and
out-of-plane analysis. The axial stiffness
of the layered beam, FEA, is the
summation of the axial stiffness from each

layer and defined as follows:
EA= glEl b] t/ (8)

where E;is the modulus of a layer, b, is
the width of a layer, and ¢, is the

thickness of the beam element.

When plastic deformation occurs, the

e bl A
CTeTs] T T Iv)
i by
Z
»
(@) cross-section of the layered beam
gyi eY/
u; O 4 Oy uy
—> -Phg > >

w,
5 1
L,

4

(b) Degrees of Freedom

Fig. 3 Layered Beam Element

spread of plasticity is monitored at each
layer. It 1is assumed that the layer
becomes inelastic when the middle of the
layer reaches the yield strength of the
material. The incremental inelastic
stress—strain relationship of the layered
beam is now defined. The total strain
increment in the inelastic range is
composed of elastic and plastic compo-

nents as follows:
de=de+de’ (9)

Then, the increment of stress in the
plastic range is defined as:

do=FEde‘=FE(de—de?) (10

The plastic strain increment de’ s
derived from Eq. 5 asde’=do/ E, and
substituted into Eq. 12. Then, the
elasto-plastic  stiffness E, can be

derived as

o —di__EE,
*= de = E+ E,

(11D
The elasto-plastic stiffness is used in the
derivation of the axial and bending
stiffnesses of the yielded layer.

4. Out-of-Plane Analysis
In the out-of-plane analysis routine, the
out-of-plane stiffness matrix and the

geometric stiffness matrix are formed. If
the material state is over the yield limit,

YT =A==



the out-of-plane stiffness matrix using the
tangent modulus is assembled.

4.1 Web Element

The degenerated isoparametric shell
element which is developed by Ahmad et

‘' is employed. The element is based

al.
on the Mindlin plate theory which allows
transverse shear deformations so that a
line that is straight and normal to the
midsurface before loading is assumed to
remain straight but not normal to the
midsurface. The advantage of the
isoparametric shell element is that the
shape functions from plane stress
elements can be used again for plate
bending element. It can also accommodate
the spread of inelasticity. Each node of
the shell element shown in Fig. 1 has
three out-of-plane independent degrees of
freedom: one translation, w., and two

rotations, &, and @,.

The element stiffness matrix [K] of the
element can be divided into two matrices:

a bending stiffness matrix [ K,] and a

shear stiffness matrix [ K,]. The bending

stiffness matrix contains terms related
only with plate bending stiffness while the
shear stiffness matrix is only associated
with transverse shear stiffness. As for the
plane stress element, a numerical
integration technique is used to obtain
the stiffness matrices. For a nine-node
isoparametric shell element, a 3X3 (nine)
mesh of Gauss integration points is

needed for full numerical integration.

H123 1% 20004 2%

4.2 Beam Element

The bending and torsional stiffness
matrices of the beam elements are needed
for buckling analysis. The degrees of

freedom w and @, in Fig. 2 are related to

the flexural behavior of the beam element
in the out-of-plane direction and the

degree of freedom €, represents the

torsion of the beam element. The bending
stiffness, FI, and torsional stiffness ,GJ,

of the layered beam are calculated as:
El= gl( E b, t;z%+ E, t,6312) (12)
GI= 2,61 61t 13 (13)

where G, is the shear modulus of the
layer and 2, is the z-coordinate at the

middle of the layer. It was assumed that
the inelastic shear modulus is the same

as the elastic one.
4.3 Geometric Stiffness

The geometric stiffness matrix of plate
elements is formed wusing membrane
stresses from the prior in-plane analysis
routine. Membrane forces which are a
summation of membrane stresses through
the thickness ¢ are defined as

t/2 /2
N,.= 0.dz N =f o
X _t/z x » y —t/Z ydzu

2
No= [, tod (14)



where N; and ¢; represent membrane
forces and stress, respectively. Then, the
geometric stiffness matrix [ K] for the
plate element is defined as

[ K= [[1aT] §= \Je) deay

(15)

where the matrix (G) is obtained from a
small rotation-displacement relationship.
The matrix is obtained from

{ z:;‘}=[G]{ d,) (16)

in which{ d,} is the out-of-plane
displacement vector, {w 8, 6,}. In the

derivation of the geometric stiffness
matrix, the out-of-plane displacement, w,
and membrane forces, N,, N, and N,,

are assumed to be independent of each
other.
The geometric stiffness matrix of the

beam element, [ K ¢] . depends on the

axial load and the length of the element.

The matrix is defined as follows:
b P 1 —
[K &) l[—l 1 ] (17)

where ] is the length of the element and
P represents the axial load. The axial
load of the layered beam element is

obtained using P= gl o;b;t; where o,

is axial stress of each layer. Degrees of
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freedom  associated with [ K ¢]  are

out-of-plane displacements, w; and w;.

5. Buckling Load and Programming
5.1 Buckling Load and Shape

Because the buckling equation given in
Ea. 1 is considered as a standard
eigenproblem, eigenproblem solution
methods are used to determine buckling
loads. Iteration methods are generally
preferred for solving large size eigenpro-
blems. The nontrivial solution of Eq. 1
exists only if the determinant of stiffness
matrices summation is equal to zero. The

determinant is expressed as follows:
ILKI+Al KGll=0 (18)

For the given state of stress, the
eigenvalue A assumes certain values to
satisfy the above equation. When the
critical (buckling) state of stresses is
reached. the eigenvalue A should be equal
to 1.0, Thus, it can be stated that
buckling happens when A= 1.0.

A Sturm sequence property'” is used to
determine whether or not the critical
state is reached. This property states that
the number of changes in signs of leading
principal minors of a standard eigenpro-
blem like ([A]l—A[B]) is equal to the
number of eigenvalues less than the
current A. Leading principle minors are

obtained by factorizing the matrix. The
matrix ([Kl+Al Kl) is factorized into
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[LID] [L] "where (L) is the lower

triangular matrix and (D) is the diagonal
[Dl= d;[11 where [I] is the

identity matrix. The diagonal elements of

matrix:

the matrix (D) represent leading principal
minors. The Sturm sequence property can
be restated as the number of negative
elements in (D)} equals to the number of
eigenvalues smaller than A. When the
critical state A=1.0 is reached, a slight
increase of A, sayd + @, results in one
negative element in the matrix (D). The
slight decrease of A,A-a, will lead all
positive elements in (D). a represents
the solution tolerance and can be
changed. By using the Sturm sequence
property, the buckling load can be
determined by just looking at the leading
principal minors of the matrix rather than
calculating eigenvectors as well as eigen-
values to see whether A=1.0 is reached or
not. After finding the buckling load, a
corresponding buckling shape is deter-

subspace iteration

10)

mined wusing the
method with shifts'
would be enough to find the buckled
shape when the true critical state is

A few iterations

reached.

5.2 Residual Stress

Residual stress generated from different
cooling rates on different parts of a cross-
section reduce the buckling capacities of
inelastic beams and columns. Compressive
residual stress occurs at more exposed

areas like flange tips for rolled I[-shaped
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sections. The junction of flanges and a
web in I-shaped sections cools later and
has tensile residual stresses. The residual
stress model by Galambos and Ketter®
has been widely used and is employed in
the program. In the IBASP, a user can
decide whether residual stresses need to
be included or not.

5.3 IBASP Programming and Limit

IBASP which run on a personal comput-
er was programmed using FORTRAN 77
WATCOM
FORTRAN 77% compiler”. The graphic

routines from the compiler were also used

and compiled using a

to draw a buckled shape. The number of
elements and nodes allowed in IBASP is
40 nine-node elements and 200 nodes but
can be extended depending on computer
capacity. The 200 beam elements used to
model the stiffeners and flanges are
allowed in IBASP.

6. IBASP Validation

Theoretical buckling solutions and test
results are adopted to calibrate the IBASP
program. The buckling moments of simply
supported beams are determined using
IBASP. The cross-section shown in Fig. 4

b
e —
== d= 304.8 mm (12.0")
b= 304.8mm (12.0"
n2€ d 1,=127mm(0.5"
N i =12.7 mm(0.5")
A

Fig. 4 Cross-section Properties
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Fig. 6 Simply Supported Beam Model

was assumed for the beam. The buckling
capacity of the inelastic member depends
on tangent modulus so that an idealized
bilinear stress-strain relationship with
constant tangent modulus in the inelastic
region was assumed and shown in Fig. 5.
The results from Bansal’s continuous

)
are used where the beams

beam tests"”
were failed by lateral buckling. The local
buckling prediction capacity of the IBASP
was measured using Elgaaly and Salkar’s

(19)
test results 7.

6.1 Simply Supported Beam with

Constant Moment

The simply supported beam under a
constant moment as shown in Fig. 6 is
used to compare the results from the
IBASP to the theoretical solutions by
Timoshenko and Gere''”. The elastic

buckling moment, M f, is expressed as
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2
M §=—§JE1y(Gf+E cw~’l%—) (19)

Timoshenko and Gere (1961) suggested
that the inelastic buckling moment is
obtained by multiplying the inelasticity

ratio, r. to the above equation. Then, the

inelastic  buckling moment, M .. s

expressed as follows,
ML=tME (20)

However, the inelastic buckling moment
of Egq. 20 1is reported to be too
conservative because the shear modulus is
assumed to be reduced in the inelastic
range(”’”. If the elastic shear modulus is
used as the inelastic shear modulus, the

inelastic buckling moment becomes

M{.,:—’;\j Er I,(GI+ Eq cw—’l‘f) (21)

The analysis results along with the
theoretical solutions are plotted in Fig. 7.

It shows the relationship between the

5400

Elastic (Eq. 19)
------- Inelastic (Eq. 20)
-~ ¥~ — Inelasitc (Eq. 21)
—ir—— IBASP Outputs

Buckling Moment (kN-m’
]

3400
24004~ Yield Moment
1900 4
1400 - TR -
900 T T R T al
3 5 7 9 11 13
Beam Length (m)

Fig. 7 Buckiing Moments of the Beam
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lateral-torsional buckling moments and
the beam lengths. In the inelastic range,
the inelast#ic buckling moments from Eq.
21 closely match with those from the
IBASP using the incremental theory of
plasticity. The buckled shape and
cross—section deformation are shown in

Fig. 8.

—o— Bottom Flange
-

—a—Mid Web
——

—»%—Top Flange

Relative Magnitude
=3
(=2
L

T T T T g T T

0 0.686 1.372 2,057 2.743 3.429 4.115 4.801 5.486
Beam Length (m)

(a) Lateral-Torsional Buckling Shape

After Buckling

(b) Buckied Shape at Midspan

Fig. 8 Buckling Shape of Simply Supported Beam

6.3 Bansal's Test

¥ conducted a total of 37

buckling tests using three span

Bansal
continuous steel beams to study elastic

and inelastic instability behavior. Rolled
I-shaped beams and plate girders were
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used in tests. The results from the test
No. 6 which failed by inelastic lateral
buckling are used here to compare with
those from the program, IBASP.

Test setups and dimension of the beam
are illustrated in Fig. 9. The load was
applied at the center of the beam which
was braced for the out-of-plane displace~
ment at the supports and the loading point.
The cross-section dimensions of the beam
are as follows: depth of the section=
307.3mm, flange width=102.6mm, flange
thickness=6.9mm, and web thickness=
5.8mm. The yield strength of the beam
was 333 MPa and no strain hardening
was reported.

A total of 32 elements (2X16) was used
to model the continuous beam. The load
vs. the vertical displacement at the
midspan curves from experiments and
analysis without residual stress is shown
in Fig. 10(a). The lateral buckling load in
the figure represents the observed lateral
buckling loads from the experiments. The
buckled shape in Fig. 10(b) means that
the beam buckled between the braces. The
load vs. displacement curve also show
that the buckled beam had some post
buckling strength. However, as explained
earlier, the IBASP can predict the

P
Stiffener i Brace

AN * \g
N—af * =%
1 1
a8 i oY W)

* Roller Hinge
13m 6.1m L3
N TS 7l |

Fig. 9 Bansal 's Test specimen and setup
39



Lateral Buckling Load: 1259 kN
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Fig. 10 Bansal 's Test Number 6

buckling load of the beams but not the
post buckling strength.

The lateral buckling load from the test
was 125.9 kN while the IBASP predicted
the buckling load as 1184 kN when
residual stress option was not used. The
difference between them is less than 6%.
When residual stress option was used
with the maximum compressive residual
stress of 111 MPa(=yield strength/3) at
the tip of the flanges, the buckling load
was reduced to 104.5 kN. The compres—
sive residual stress reduces the inelastic

buckling strength which depends on the

600
500
92‘3 400
5 300
5 200
“ 100
0 v T
0 0.05 0.1
Strain (mm/mm)

(a) stress-strain relationship

level of compressive stress in the member.
6.4 Elgaaly and Salkar’s Test

Elgaaly and Salkar''” performed a
series of tests to study local web yielding
and buckling behavior of [-shaped beams
under in-plane edge loads. Tests were
performed on short beams with a concen-
trated load at the midspan. The result
from a test were compared with that from
IBASP to see whether IBASP can predict
local buckling loads.

The stress-strain relationship of Fig. 11

s
Stiffener
- S~ d
— — N-\«\
& T
Brace
\
1 b T
< 2|

(b) Test Setup

Fig. 11 Stress-Strain Relationship and Test Setup for Elgaaly and Salkar's
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Fig. 12 Buckied Shape

was used as material data. The yield
strength of the material was reported“g).
but the strain hardening strain and
modulus were assumed for the analysis.
Fig. 11(b) shows the test setup. The
length of the beam between the supports,
b in Fig. 11(b), was 643.6 mm. The
measured cross-section dimensions of a
W16x31 section are as follows: thickness
of flanges=10.92mm, width of flanges=
139.7mm, thickness of web=6.71mm, and
404.87mm. During
experiments, the ratios of the length of
applied load (N) to the web depth (d),
N/d, were varied from 0.2 to 0.6. For the
comparison, the ratio N/d = 0.4 was

depth of section=

used. The beam was braced against
out-of-plane displacements and rotations
at supports and at the applied load
points.

A total of 24 (3X8) nine-node elements
were used to model the beam. The
buckling load from the test was 652.5 kN
while that from the analysis was 700.65

kN. The analytical buckling load was 7%
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greater than the experimental buckling
load. This may be due to the fact that the
stress-strain relationship after yielding is
assumed for the analytical study because
a complete stress-strain relationship was
not reported.

The buckled shape is given in Fig.
12(a). The cross-section of the buckled
beam at the quarter span and the
mid-span is shown in Fig. 12(b). The
buckled cross—section shape indicates that
the local distortional buckling occurred
rather than the lateral-torsional buckling.
It also demonstrates the capacity of the
IBASP to predict the distortional buckling
as well as the lateral torsional buckling.

7. Conclusion

The inelastic buckling analysis program,
IBASP, using the finite element method
was developed to predict inelastic buck-
ling loads of braced and unbraced
members. The program can find lateral-

torsional, flexural, and local buckling
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loads. The
experimental results were used to test the

theoretical solutions and
accuracy of the program. When the results
from the program were compared with
theoretical and experimental buckling
load, not much difference was observed.

The IBASP will be a good tool to

determine the buckling capacities of
inelastic members.
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