COMMON FIXED POINTS FOR COMPATIBLE MAPPINGS OF TYPE(A) IN 2-METRIC SPACES

WEN-ZUO WANG

Shenyang Science and Technology Cadres' College, Shenyang, Liaoning, 110013, People's Republic of China.

Abstract. In this paper we obtain a criterion for the existence of a common fixed point of a pair of mappings in 2-metric spaces. Our result generalizes a number of fixed point theorems given by Imdad, Khan and Khan [1], Kahn and Fisher [2], Kubiak [3], Rhoades [5], and Singh, Tiwari and Gupta [6].

1. Introduction

Rhoades [5] and Singh, Tiwari and Gupta [6] obtained a few fixed point theorems for contractive type mappings in 2-metric spaces. Murthy, Chang, Cho and Sharma [4] introduced the concept of compatible mappings of type(A) in 2-metric spaces and proved common fixed point theorems for compatible mappings of type(A) in 2-metric spaces. Imdad, Khan and Khan [1], Khan and Fisher [2] and Kubiak [3] established some necessary and sufficient conditions which guarantee the existence of a common fixed point for a pair of continuous mappings in 2-metric spaces.

In this paper we establish a criterion for the existence of a common fixed point of a pair of mappings of 2-metric spaces. Our result generalizes the corresponding results of Imdad, Khan and Khan [1], Kahn and Fisher [2], Kubiak [3], Rhoades [5], and Singh, Tiwari and Gupta [6].

2. Preliminaries

Throughout this paper, N and ω denote the sets of positive and non-negative integers, respectively. Let $R^+ = [0, \infty)$ and Φ the family of all functions $\varphi: (R^+)^5 \to R^+$ with the following properties:

(i) φ is upper semicontinuous, nondecreasing in each coordinate variable.

Received November 23, 1999.

¹⁹⁹¹ AMS Subject Classification: 54H25.

Key words and phrases: common fixed points, compatible mappings of type(A), 2-metric spaces.

(ii) $a(t) = \max\{\varphi(t, 0, 0, t, t), \varphi(t, t, t, 2t, 0), \varphi(t, t, t, 0, 2t)\} < t \text{ for all } t > 0.$

DEFINITION 2.1. Let f and g be mappings from a 2-metric spaces (X, d) into itself. f and g are said to be compatible of type (A) if

$$\lim_{n\to\infty}d(fgx_n,ggx_n,a)=\lim_{n\to\infty}d(gfx_n,ffx_n,a)=0$$

for all $a \in X$, whenever $\{x_n\}_{n \in N} \subset X$ such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some $t \in X$.

DEFINITION 2.2. A mapping f from a 2-metric space (X,d) into itself is said to be continuous at $x \in X$ if for every sequence $\{x_n\}_{n \in N} \subset X$ such that $\lim_{n \to \infty} d(x_n, x, a) = 0$ for all $a \in X$, $\lim_{n \to \infty} d(fx_n, fx, a) = 0$. f is called continuous on X if it is so at all points of X.

LEMMA 2.1([4]). Let f and g be compatible mappings of type(A) from a 2-metric spaces (X,d) into itself. If ft = gt for some $t \in X$, then fgt = ggt = gft = fft.

LEMMA 2.2([4]). Let f and g be compatible mappings of type(A) from a 2-metric spaces (X,d) into itself. If f is continuous at some $t \in X$ and if $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$, then $\lim_{n\to\infty} gfx_n = ft$.

LEMMA 2.3([7]). For each t > 0, a(t) < t if and only if $\lim_{n \to \infty} a^n(t) = 0$, where a^n denotes the n-times composition of a.

3. Characterization of common fixed points

Our result is as follows.

THEOREM 3.1. Let (X, d) be a complete 2-metric space with d continuous on X and let h and t be two mappings of X into itself. Then the following conditions are equivalent:

- (1) h and t have a common fixed point;
- (2) there exist $\varphi \in \Phi$, $f: X \to t(X)$ and $g: X \to h(X)$ satisfying (a1), (a2) annd (a3):
 - (a1) the pairs f, h and g, t are compatible,
 - (a2) one of f, g, h and t is continuous,
 - $(a3) \ d(fx,gy,a) \leq \varphi(d(hx,ty,a),d(hx,fx,a),d(ty,gy,a), d(hx,gy,a),d(ty,fx,a))$

for all $x, y, a \in X$.

Proof. (1) \Rightarrow (2). Let z be a common fixed point of h and t. Define $f: X \to t(X)$ and $g: X \to h(X)$ by fx = gx = z for all $x \in X$. Then (a1), (a2) and (a3) hold for any $\varphi \in \Phi$.

 $(2)\Rightarrow (1)$. Let x_0 be an arbitrary point in X. Since $f(X)\subset t(X)$ and $g(X)\subset h(X)$, there exist sequences $\{x_n\}_{n\in\omega}$ and $\{y_n\}_{n\in\omega}$ in X satisfying $y_{2n}=tx_{2n+1}=fx_{2n},\ y_{2n+1}=hx_{2n+2}=gx_{2n+1}$ for $n\in\omega$. Define $d_n(a)=d(y_n,y_{n+1},a)$ for $a\in X$ and $n\in\omega$. We claim that for any $i,j,k\in\omega$

(3.1)
$$d(y_i, y_j, y_k) = 0.$$

Suppose that $d_{2n}(y_{2n+2}) > 0$. Using (a3), we have

$$d(fx_{2n+2},gx_{2n+1},y_{2n}) \leq \varphi(d(hx_{2n+2},tx_{2n+1},y_{2n}),d(hx_{2n+2},fx_{2n+2},y_{2n}),\\d(tx_{2n+1},gx_{2n+1},y_{2n}),d(hx_{2n+2},gx_{2n+1},y_{2n}),d(tx_{2n+1},fx_{2n+2},y_{2n})),$$

which implies that

$$d_{2n}(y_{2n+2}) \leq \varphi(0, d_{2n}(y_{2n+2}), 0, 0, 0) \leq a(d_{2n}(y_{2n+2})),$$

which is a contradiction. Hence $d_{2n}(y_{2n+2}) = 0$. Similarly, we have $d_{2n+1}(y_{2n+3}) = 0$. Thus $d_n(y_{n+2}) = 0$ for all $n \in \omega$. Note that

$$(3.2) \quad d(y_n, y_{n+2}, a) \le d_n(y_{n+2}) + d_n(a) + d_{n+1}(a) = d_n(a) + d_{n+1}(a).$$

It follows from (a3) and (3.2) that

$$\begin{aligned} d_{2n+1}(a) &\leq \varphi(d(hx_{2n+2}, tx_{2n+1}, a), d(fx_{2n+2}, hx_{2n+2}, a), \\ &d(gx_{2n+1}, tx_{2n+1}, a), d(hx_{2n+2}, gx_{2n+1}, a), d(hx_{2n+2}, gx_{2n+1}, a)) \\ &\leq \varphi(d_{2n}(a), d_{2n+1}(a), d_{2n}(a), 0, d_{2n}(a) + d_{2n+1}(a)) \\ &\leq a(\max\{d_{2n}(a), d_{2n+1}(a)\}). \end{aligned}$$

Suppose that $d_{2n+1}(a) > d_{2n}(a)$. Then $d_{2n+1}(a) \le a(d_{2n+1}(a)) < d_{2n+1}(a)$, which is a contradiction. Hence $d_{2n+1}(a) < d_{2n}(a)$ and so $d_{2n+1}(a) \le a(d_{2n}(a))$. Similarly, we have $d_{2n}(a) \le a(d_{2n-1}(a))$. That is, for all $n \in N$

$$(3.3) d_{n+1}(a) \leq a(d_n(a)).$$

Let n, m be in ω . If $n \geq m$, then $0 = d_m(y_m) \geq d_n(y_m)$; if n < m, then

$$d_n(y_m) \le d_n(y_{m-1}) + d_{m-1}(y_n) + d_{m-1}(y_{n+1})$$

$$\le d_n(y_{m-1}) + d_n(y_n) + d_n(y_{n+1})$$

$$\le d_n(y_{m-1}) \le d_n(y_{m-2}) \le \Lambda \le d_n(y_{n+1}) = 0.$$

Thus, for any $n, m \in \omega$

$$(3.4) d_n(y_m) = 0.$$

For all $i, j, k \in \omega$, we may without loss of generality assume that i < j. It follows from (3.4) that

$$d(y_i, y_j, y_k) \le d_i(y_j) + d_i(y_k) + d(y_{i+1}, y_j, y_k) = d(y_{i+1}, y_j, y_k)$$

$$\le d(y_{i+2}, y_j, y_k) \le \Lambda \le d(y_{j-1}, y_j, y_k) = d_{j-1}(y_k) = 0.$$

Therefore (3.1) holds. In view of (3.3) and Lemma 2.3, we have

$$\lim_{n \to \infty} d_n(a) = 0.$$

In order to show that $\{y_n\}_{n\in\omega}$ is a Cauchy sequence, by (3.5), it is sufficient to show that $\{y_{2n}\}_{n\in\omega}$ is a Cauchy sequence. Suppose that $\{y_{2n}\}_{n\in\omega}$ is not a Cauchy sequence. Then there exist $\epsilon > 0$ and $a \in X$ such that for each even integer 2k, there are even integers 2m(k) and 2n(k) with 2m(k) > 2n(k) > 2k and $d(y_{2m(k)}, y_{2n(k)}, a) \ge \epsilon$.

For each even integer let 2m(k) be the least even integer exceeding 2n(k) satisfying the above inequality, so that

$$(3.6) d(y_{2m(k)-2}, y_{2n(k)}, a) \le \epsilon, d(y_{2m(k)}, y_{2n(k)}, a) > \epsilon.$$

For each even integer 2k, by (3.1) and (3.6) we have

$$\epsilon < d(y_{2m(k)}, y_{2n(k)}, a)
\leq d(y_{2m(k)-2}, y_{2n(k)}, a) + d(y_{2m(k)}, y_{2m(k)-2}, a)
+ d(y_{2m(k)}, y_{2n(k)}, y_{2m(k)-2})
\leq \epsilon + d(y_{2m(k)-2}, y_{2m(k)}, y_{2m(k)-1}) + d(y_{2m(k)-2}, y_{2m(k)-1}, a)
+ d(y_{2m(k)-1}, y_{2m(k)}, a)
= \epsilon + d_{2m(k)-2}(a) + d_{2m(k)-2}(a)$$

Common Fixed Points for Compatible Mappings of Type(A) in 2-Metric Spaces 95

which implies that

(3.7)
$$\lim_{k\to\infty} d(y_{2m(k)}, y_{2n(k)}, a) = \epsilon.$$

It follows from (3.6) that

$$0 < d(y_{2n(k)}, y_{2m(k)}, a) - d(y_{2n(k)}, y_{2m(k)-2}, a)$$

$$\leq d(y_{2m(k)-2}, y_{2m(k)}, a) \leq d_{2m(k)-2}(a) + d_{2m(k)-1}(a).$$

Using (3.5) and (3.7), we have

(3.8)
$$\lim_{k \to \infty} d(y_{2n(k)}, y_{2m(k)-2}, a) = \epsilon.$$

Note that

$$\begin{aligned} |d(y_{2n(k)},y_{2m(k)-1},a)-d(y_{2n(k)},y_{2m(k)},a)| &\leq d_{2m(k)-1}(a) \\ &\qquad \qquad + d_{2m(k)-1}(y_{2n(k)}), \\ |d(y_{2n(k)+1},y_{2m(k)},a)-d(y_{2n(k)},y_{2m(k)},a)| &\leq d_{2n(k)}(a) \\ &\qquad \qquad + d_{2n(k)}(y_{2m(k)}), \\ |d(y_{2n(k)+1},y_{2m(k)-1},a)-d(y_{2n(k)},y_{2m(k)-1},a)| &\leq d_{2n(k)}(a) \\ &\qquad \qquad + d_{2n(k)}(y_{2m(k)-1}). \end{aligned}$$

It is easy to see that

(3.9)
$$\lim_{k \to \infty} d(y_{2n(k)}, y_{2m(k)-1}, a) = \lim_{k \to \infty} d(y_{2n(k)+1}, y_{2m(k)}, a) = \lim_{k \to \infty} d(y_{2n(k)+1}, y_{2m(k)-1}, a) = \epsilon.$$

It follows from (a3) that

$$\begin{split} d(y_{2m(k)},y_{2n(k)+1},a) &= d(fx_{2m(k)},gx_{2n(k)+1},a) \\ &\leq \varphi(d(hx_{2m(k)},tx_{2n(k)+1},a),d(hx_{2m(k)},fx_{2m(k)},a), \\ &d(tx_{2n(k)+1},gx_{2n(k)+1},a), \\ &d(hy_{2m(k)},gy_{2n(k)+1},a),d(ty_{2n(k)+1},fy_{2m(k)},a)) \\ &= \varphi(d(y_{2m(k)-1},y_{2n(k)},a),d_{2m(k)-1}(a),d_{2n(k)}(a), \\ &d(y_{2m(k)-1},y_{2n(k)+1},a),d(y_{2n(k)},y_{2m(k)},a)). \end{split}$$

Letting $k \to \infty$, by (3.9), (3.7) and (3.5) we have

$$\epsilon \le \varphi(\epsilon, 0, 0, \epsilon, \epsilon) \le a(\epsilon) < \epsilon$$

which is a contradiction. Therefore $\{y_{2n}\}_{n\in\omega}$ is a Cauchy sequence in X. It follows from completeness of (X,d) that $\{y_n\}_{n\in\omega}$ converges to a point $u\in X$. Now, suppose that t is continuous. Since g and t are compatible of type(A) and $\{gx_{2n+1}\}_{n\in\omega}$ and $\{tx_{2n+1}\}_{n\in\omega}$ converge to the point u, by Lemma 2.2 we get that gtx_{2n+1} , $ttx_{2n+1} \to tu$ as $n\to\infty$. In virtue of

 $d(fx_{2n},gtx_{2n+1},a) \leq \varphi(d(hx_{2n},ttx_{2n+1},a),d(hx_{2n},fx_{2n},a),\\d(ttx_{2n+1},gtx_{2n+1},a),d(hx_{2n},gtx_{2n+1},a),d(ttx_{2n+1},fx_{2n},a)).$

Letting $n \to \infty$, we have

(a3) we have

$$d(u, tu, a) \le \varphi(d(u, tu, a), 0, 0, d(u, tu, a), d(tu, u, a)) \le a(d(u, tu, a)),$$

which implies that u = tu. It follows from (a3) that

$$d(fx_{2n}, gu, a) \leq \varphi(d(hx_{2n}, tu, a), d(hx_{2n}, fx_{2n}, a), d(tu, gu, a), d(hx_{2n}, gu, a), d(tu, fx_{2n}, a).$$

Letting $n \to \infty$, we have

$$d(u, gu, a) \le \varphi(0, 0, d(u, gu, a), d(u, gu, a), 0) \le a(d(u, gu, a)),$$

which implies that u = gu. It follows from $g(X) \subset h(X)$ that there exists $\nu \in X$ with $u = gu = h\nu$. From (a3) we get that

$$d(f\nu, gu, a) \leq \varphi(0, d(h\nu, f\nu, a), 0, 0, d(tu, f\nu, a)) \leq a(d(u, f\nu, a)).$$

Therefore $u=f\nu$. Lemma 2.1 ensures that $fu=fh\nu=hf\nu=hu$. By (a3) we obtain that

$$d(fu,gu,a) \leq \varphi(d(fu,gu,a),0,0,d(fu,gu,a),d(fu,gu,a))$$

$$\leq a(d(fu,gu,a)).$$

Hence u = fu. That is, u is a common fixed point of f, g, h and t. Similarly, we complete the proof when f or g or h is continuous. This completes the proof.

REMARK 3.1. Theorem 3.1 generalizes Theorem 3.3 of Imdad, Khan and Khan [1], Theorem 2 of Khan and Fisher [2], Theorem 1 of Kubiak [3], Theorem 4 of Rhoades [5], Theorem 1 of Singh, Tiwari and Gupta [6].

References

- 1. M. Imdad, M.S. Khan and M.D. Khan, A common fixed point theorem in 2-metric spaces, Math. Japon. 36 (1991), 907-914.
- 2. M.S. Khan and B. Fisher, Some fixed point theorems for commuting mappings, Math. Nachr. 106 (1982), 323-326.
- 3. T. Kubiak, Common fixed points of pairwise commuting mappings, Math. Nachr. 118 (1984), 123-127.
- 4. P.P. Murthy, S.S. Chang, Y.J. Cho and B.K. Sharma, Compatible mappings of type(A) and common fixed point theorems, Kyungpook Math. J. 32 (1992), 203-216.
- 5. B.E. Rhoades, Contraction type mappings on a 2-metric space, Math. Nachr. 91 (1979), 151-154.
- 6. S.L. Singh, B.M.L. Tiwari and C.K. Gupta, Common fixed points of commuting mappings in 2-metric spaces and applications, Math. Nachr. 95 (1980), 293-297.
- 7. S.P. Singh and B.A. Meade, On common fixed point theorems, Bull. Austral. Math. Soc. 16 (1977), 49-53.