THE STABILITY OF A GENERALIZED CAUCHY FUNCTIONAL EQUATION

LEE, EUN HWI, CHOI, YOUNG HO AND NA, YOUNG YOON

Dept. of Mathematics, Jeonju University,
Chonju, Chonbuk 560-759, Korea.
E-mail: ehl @ jeonju.ac.kr.

Dept. of Mathematics Education, Jeonju University,
Chonju, Chonbuk, 560-759, Korea.

Abstract. We prove the stability of a generalized Cauchy functional equation of the form ;

$$f(a_1x + a_2y) = b_1f(x) + b_2f(y) + w.$$

That is, we obtain a partial answer for the open problem which was posed by the Th.M Rassias and J. Tabor on the stability for a generalized functional equation.

1. Introduction

The stability of the Cauchy functional equation;

$$f(x+y) - f(x) - f(y) = 0$$

was originally raised by S.M.Ulam[5] and proved by D. H. Hyers[2]. There are many papers about the generalization of the Cauchy functional equation[1, 2, 3]. In this paper we consider a generalized Cauchy functional equation of the form

$$f(a_1x + a_2y) = b_1f(x) + b_2(y) + w.$$

In[4], Th. M. Rassias and J. Tabor have asked about the stability of a generalized Cauchy functional equation in the following sense;

$$||f(a_1x + a_2y + v) - b_1f(x) - b_2f(y) - w|| \le \theta(||x||^p + ||y||^p),$$

Received April 28, 2000.

¹⁹⁹¹ AMS Subject Classification: 39B22, 39B72.

Key words and phrases: functional equation, generalized Cauchy functional equation, stability of functional equation.

where $a_1, a_2, b_1, b_2 \neq 0, \theta, p \in R$, v and w are fixed elements of Banach space X and Y respectively and $f: X \longrightarrow Y$ a function. Under some conditions we obtain answers for the open problem which was posed by the Th. M. Rassias and J. Tabor [4] on the stability for a generalized Cauchy functional equation.

2. Results

THEOREM 1. Let X and Y be Banach spaces and $w \in Y$ fixed. Assume that $f: X \longrightarrow Y$ and $\varphi: X \times X \longrightarrow R$ are mappings such that

$$||f(a_1x + a_2y) - b_1f(x) - b_2f(y) - w|| < \varphi(x, y)$$

for fixed $a_1, a_2, b_1, b_2 \in R$ with $a_1 + a_2 \neq 0$ and every $x, y \in X$ and assume that $\sum_{n=1}^{\infty} |b_1 + b_2|^{n-1} \varphi(B^n(x), B^n(x))$ converges, where $B(x) = \frac{1}{a_1 + a_2} x$ and $|b_1 + b_2|^n \varphi(B^n(x), B^n(y))$ converges to 0 as $n \longrightarrow \infty$ for every $x, y \in X$.

Then there is a unique mapping $g:X\longrightarrow Y$ such that for every $x,y\in X$

$$g(a_1x + a_2y) = b_1g(x) + b_2g(y) + w$$

and for every $x \in X$,

$$||f(x) - g(x)|| \le \sum_{n=1}^{\infty} |b_1 + b_2|^{n-1} \varphi(B^n(x), B^n(x)).$$

Proof. Let y = x. Then we have

$$||f((a_1+a_2)x)-(b_1+b_2)f(x)-w|| \leq \varphi(x,x).$$

Let $z = (a_1 + a_2)x$. Since $(a_1 + a_2) \neq 0$, $x = \frac{1}{a+b}z$. Let $J(s) = (b_1 + b_2)s + w$. Thus

$$||f(z) - Jf(B(z))|| \le \varphi(B(z), B(z)), \qquad z \in X$$

and so

$$||f(B(z)) - Jf(B^2(z))|| \le \varphi(B^2(z), B^2(z)), \qquad z \in X.$$

Now

$$||Jf(B(z)) - J^2f(B^2(z))|| \le |b_1 + b_2| \varphi(B^2(z), B^2(z))$$

and so

$$||J^2 f(B^2(z)) - J^3 f(B^3(z))|| \le |b_1 + b_2|^2 \varphi(B^3(z), B^3(z)).$$

By induction we have

$$||J^n f(B^n(z)) - J^{n-1} f(B^{n-1}(z))|| \le |b_1 + b_2|^{n-1} \varphi(B^n(z), B^n(z))$$

for every $z \in X$. Let $g_n(x) = J^n f(B^n(x))$.

Since $\sum_{n=1}^{\infty} |b_1 + b_2|^{n-1} \varphi(B^n(x), B^n(x))$ converges, $\{g_n(x)\}$ is a Cauchy sequence. Thus we can define a function g(x) from X to Y by

$$g(x) = \lim_{n \to \infty} g_n(x).$$

Let
$$G(s_1, s_2) = a_1 s_1 + a_2 s_2 + w$$
. Then $G(s, s) = J(s)$ and

$$J(G(s_1, s_2)) = (b_1 + b_2)(b_1s_1 + b_2s_2 + w) + w$$

$$= b_1((b_1 + b_2)s_1 + w) + b_2((b_1 + b_2)w) + w$$

$$= b_1J(s_1) + b_2J(s_2) + w$$

$$= G(J(s_1), J(s_2)).$$

Now we have

$$||g(a_{1}x + a_{2}y) - (b_{1}g(x) + b_{2}g(y) + w)||$$

$$= ||g(a_{1}x + a_{2}y) - G(g(x), g(y))||$$

$$= \lim_{n \to \infty} ||J^{n}f(B^{n}(a_{1}x + a_{2}y)) - G(J^{n}f(B^{n}(x)), J^{n}f(B^{n}(y)))||$$

$$= \lim_{n \to \infty} ||J^{n}f(B^{n}(a_{1}x + a_{2}y)) - J^{n}G(f(B^{n}(x)), f(B^{n}(y)))||$$

$$\leq \lim_{n \to \infty} |b_{1} + b_{2}|^{n}||f(B^{n}(a_{1}x + a_{2}y)) - G(f(B^{n}(x)), f(B^{n}(y)))||$$

$$= \lim_{n \to \infty} |b_{1} + b_{2}|^{n}||f(a_{1}B^{n}(x) + a_{2}B^{n}(y))$$

$$- b_{1}f(B^{n}(x)) - b_{2}f(B^{n}(y)) - w||$$

$$\leq \lim_{n \to \infty} |b_{1} + b_{2}|^{n}\varphi(B^{n}(x), B^{n}(y))$$

$$= 0.$$

Thus we have

$$g(a_1x + a_2y) = b_1g(x) + b_2g(y) + w.$$

For every $x \in X$,

$$||f(x) - g(x)|| = \lim_{n \to \infty} ||f(x) - J^n f(B^n(x))||$$

$$\leq \lim_{n \to \infty} (||f(x) - J f(B(x))|| + ||J f(B(x)) - J^2 f(B^2(x))||$$

$$+ \dots + ||J^{n-1} f(B^{n-1}(x)) - J^n f(B^n(x))||$$

$$\leq \sum_{n=1}^{\infty} |b_1 + b_2|^{n-1} \varphi(B^n(x), B^n(x)).$$

Assume h is a solution of

$$h(a_1x + a_2y) = b_1h(x) + b_2h(y) + w$$

and

$$||h(x) - f(x)|| \le \sum_{n=i}^{\infty} |b_1 + b_2|^{i-1} \varphi(B^i(x), B^i(x).$$

Consider y = x and $z = (a_1 + a_2)z$. Then

$$h(z) = Jh(B(z))$$

$$= J^{2}h(B^{2}(z))$$

$$\dots$$

$$= J^{n}h(B^{n}(z)).$$

Thus we have

$$||h(z) - g(z)|| = \lim_{n \to \infty} ||J^n h(B^n(z)) - J^n f(B^n(z))||$$

$$= \lim_{n \to \infty} |b_1 + b_2|^n ||h(B^n(z)) - f(B^n(z))||$$

$$= \lim_{n \to \infty} |b_1 + b_2|^n \sum_{i=1}^n |b_1 + b_2|^{i-1} \varphi(B^{i+n}(z), B^{i+n}(z))$$

$$= \lim_{n \to \infty} \sum_{i=1}^n |b_1 + b_2|^{n+i-1} \varphi(B^{i+n}(z), B^{i+n}(z)) \longrightarrow 0$$

as $n \longrightarrow \infty$ And so h(z) = g(z) for every $x \in X$.

COROLLARY 2. Let X and Y be Banach spaces and $w \in Y$ fixed. Assume that $f: X \longrightarrow Y$ be a mapping such that

$$||f(a_1x + a_2y) - b_1f(x) - b_2f(y) - w|| < M$$

for $a_1, a_2, b_1, b_2 \in R$ with $a_1 + a_2 \neq 0, |b_1 + b_2| < 1$ and every $x, y \in X$.

Then there is a unique mapping $g:X\longrightarrow Y$ such that for every $x,y\in X$

$$g(a_1x + a_2y) = b_1g(x) + b_2g(y) + w$$

and for every $x \in X$

$$||f(x)-g(x)|| \leq \frac{1}{1-|b_1+b_2|}$$
.

Proof. By theorem 1 with $\varphi(x,y)=M$, we complete the proof of the corollary.

COROLLARY 3. Let X and Y be Banach spaces such that

$$||f(ax + by) - af(x) - bf(y)|| \le \theta(||x||^p + ||y||^p)$$

for every $x, y \in X$, $0 \neq |a+b| < 1$ and p < 1 in R.

Then there is a unique function $g: X \longrightarrow Y$ such that g(ax + by) = ag(x) + bg(y) for every $x, y \in X$

$$||f(x) - g(x)|| \le \frac{2\theta ||x||^p}{|a+b|^p - |a+b|}$$
.

Proof. Let $\varphi(x,y) = \theta(\|x\|^p + \|y\|^p)$ and $B(x) = \frac{1}{a+b}x$. By Theorem 1, there is a unique function $g: X \longrightarrow Y$ such that

$$g(ax + by) = ag(x) + bg(y)$$

and

and

$$||f(x) - g(x)|| \le \sum_{n=1}^{\infty} |a+b|^{n-1} \varphi(B^n(x), B^n(x))$$

$$= \frac{2\theta ||x||^p}{|a+b|} \sum_{n=1}^{\infty} (|a+b|^{1-p})^n$$

$$= \frac{2\theta ||x||^p}{1 - |a+b|^{1-p}} \cdot \frac{1}{|a+b|^p}$$

$$= \frac{2\theta ||x||^p}{|a+b|^p - |a+b|}.$$

THOEREM 4. Let X and Y be Banach spaces and $w \in Y$ fixed. Assume that $f: X \longrightarrow Y$ and $\varphi: X \times X \longrightarrow R$ are mappings such that

$$||f(a_1x + a_2y) - b_1f(x) - b_2f(y) - w|| < \varphi(x,y)$$

for fixed $a_1, a_2, b_1, b_2 \in R$ with $a_1 + a_2 \neq 0$ and every $x, y \in X$ and assume that

 $\sum_{n=0}^{\infty} \frac{1}{|b_1+b_2|^n} \varphi(G^{n-1}(x), G^{n-1}(x)) \text{ converges, where } G(x) = (a_1+a_2)x$ and $\frac{1}{|b_1+b_2|^n} \varphi(G^n(x), G^n(y)) \text{ converges to 0 as } n \longrightarrow \infty.$

Then there is a unique mapping $g:X\longrightarrow Y$ such that for every $x,y\in X$

$$g(a_1x + a_2y) = b_1g(x) + b_2g(y) + w$$

and for every $x \in X$

$$||f(x) - g(x)|| \le \sum_{n=1}^{\infty} \frac{1}{|b_1 + b_2|^n} \varphi(G^{n-1}(x), G^{n-1}(x)).$$

Proof. Let y = x. Then we have

$$||f((a_1+a_2)x)-(b_1+b_2)f(x)-w|| \leq \varphi(x,x).$$

Let $G(x) = (a_1 + a_2)x$, $L(x) = \frac{1}{b_1 + b_2}(x - w)$ and $H(x, y) = b_1 + b_2 y + w$. Then we have

$$H(L(x), L(y)) = b_1 L(x) + b_2 L(y) + w$$

$$= \frac{1}{b_1 + b_2} (b_1 x + b_2 y)$$

$$= L(H(x, y)).$$

For every $x \in X$

$$\left\| \frac{1}{|b_1 + b_2|} (f(G(x)) - w) - f(x) \right\| \le \frac{1}{|b_1 + b_2|} \varphi(x, x)$$

and so

$$||L(f(G(x))) - f(x)|| \le \frac{1}{|b_1 + b_2|} \varphi(x, x).$$

Thus for every $x \in X$

$$||L^{2}(f(G^{2}(x))) - L(f(G(x)))|| \leq \frac{1}{|b_{1} + b_{2}|} ||L(f(G^{2}(x))) - f(G(y))||$$
$$\leq \frac{1}{|b_{1} + b_{2}|^{2}} \varphi(G(x), G(x)).$$

By induction, for every $x \in X$ we have

$$||L^n f(G^n(x)) - L^{n-1} f(G^{n-1}(x))||$$

$$\leq \frac{1}{|b_1 + b_2|^n} \varphi(G^{n-1}(x), G^{n-1}(x)).$$

Let $g_n(x) = L^n(f(G^n(x)))$, for each $x \in X$. Since

$$\sum_{n=1}^{\infty} \frac{1}{|b_1 + b_2|^n} \varphi(G^{n-1}(x), G^{n-1}(x))$$

converges, $\{g_n(x)\}\$ is a Cauchy sequence for every $x \in X$. Thus we can define a function g(x) from X to Y by

$$g(x) = \lim_{n \to \infty} g_n(x).$$

Now we show that g is a solution of a generalized Cauchy equation. Thus we get

$$||g(a_{1}x + a_{2}y) - b_{1}g(x) - b_{1}g(y) - w||$$

$$= \lim_{n \to \infty} ||L^{n}f(G^{n}(a_{1}x + a_{2}y)) - H(L^{n}f(B^{n}(x)), L^{n}f(B^{n}(y)))||$$

$$= \lim_{n \to \infty} ||L^{n}f(a_{1}G^{n}(x) + a_{2}G^{n}(y)) - L^{n}Hf(B^{n}(x), f(B^{n}(y)))||$$

$$= \lim_{n \to \infty} \frac{1}{|b_{1} + b_{2}|^{n}} \varphi(G^{n}(x), G^{n}(y))$$

$$= 0.$$

Therefore, $g(a_1x + a_2y) = b_1g(x) + b_1g(y) + w$ for every $x \in X$.

$$||f(x) - g(x)||$$

$$= \lim_{n \to \infty} ||f(x) - L^n f(G^n(x))||$$

$$\leq \lim_{n \to \infty} ||f(x) - L f(G(x))||$$

$$+ ||L f(G(x)) - L^2 f(G^2(x))||$$

$$+ \dots + ||L^{n-1} (f(G^{n-1}(x))) - L^n (f(G^n(x)))||$$

$$= \sum_{n=1}^{\infty} \frac{1}{|b_1 + b_2|^n} \varphi(G^{n-1}(x), G^{n-1}(x)).$$

Assume that h is an another solution of

$$h(a_1x + a_2y) = b_1h(x) + b_2h(y) + w$$

and

$$||h(x) - f(x)|| \le \sum_{n=1}^{\infty} \frac{1}{|b_1 + b_2|^n} \varphi(G^{n-1}(x), G^{n-1}(x)).$$

Let y = x. Then L(h(G(x))) = h(x), and

$$L^{2}(h(G^{2}(x))) = L(h(G(x))) = h(x).$$

By induction we obtain $h(x) = L^n(h(G^n(x)))$. Thus we have

$$||h(x) - g(x)||$$

$$= \lim_{n \to \infty} ||L^{n}h(G^{n}(x)) - L^{n}f(G^{n}(x))||$$

$$= \lim_{n \to \infty} \frac{1}{|b_{1} + b_{2}|^{n}} ||h(G^{n}(x)) - f(G^{n}(x))||$$

$$= \lim_{n \to \infty} \frac{1}{|b_{1} + b_{2}|^{n}} \sum_{i=1}^{\infty} |b_{1} + b_{2}|^{i} \varphi(G^{i-1}(G^{n}(x)), G^{i-1}(G^{n}(x)))$$

$$= \lim_{n \to \infty} \sum_{i=1}^{\infty} |b_{1} + b_{2}|^{n+i} \varphi(G^{n+i-1}(x), G^{n+i-1}(x))$$

$$= \lim_{n \to \infty} \sum_{i=1}^{\infty} |b_{1} + b_{2}|^{i+1} \varphi(G^{n}(x), G^{n}(x))$$

$$= 0.$$

for every $x \in X$

Therefore we get h(x) = g(x) for every $x \in X$ and so we complete the proof.

COROLLARY 5. Let X and Y be Banach spaces and $w \in Y$ fixed. Assume that $f: X \longrightarrow Y$ be a mapping such that

$$||f(a_1w + a_2y) - b_1f(x) - b_2f(y) - w|| < M$$

for $a_1, a_2, b_1, b_2 \in R$ with $|b_1 + b_2| > 1$ and $x, y \in X$.

Then there is a unique mapping $g:X\longrightarrow Y$ such that for every $x,y\in X$

$$g(a_1x + a_2y) = b_1g(x) + b_2g(y) + w$$

and for every $x \in X$

$$||f(x) - g(x)|| \le \frac{|b_1 + b_2|}{|b_1 + b_2| - 1}$$

Proof. By Theorem 4 with $\varphi(x,y) = M$, we complete the proof.

COROLLARY 6. Let X and Y be Banach spaces such that

$$||f(ax + by) - af(x) - bf(y)|| \le \theta(||x||^p + ||y||^p)$$

for every $x, y \in X$, |a+b| > 1 and p < 1 in R. Then there is a unique function $g: X \longrightarrow Y$ such that

$$g(ax + by) = ag(x) + bg(y)$$

for every $x, y \in X$ and

$$||f(x) - g(x)|| \le \frac{2\theta ||x||^p}{|a+b|-|a+b|^p}$$
.

Proof. Let $\varphi(x,y) = \theta(||x||^p + ||y||^p)$ and G(x) = (a+b)x. By Theorem 4, there is a unique function $g: X \longrightarrow Y$ such that

$$g(ax + by) = ag(x) + bg(y)$$

and

$$||f(x) - g(x)|| \le \sum_{n=1}^{\infty} \frac{1}{|a+b|^n} \varphi(G^{n-1}(x), G^{n-1}(x))$$

$$= \sum_{n=1}^{\infty} \frac{1}{|a+b|^n} 2\theta(|a+b|^{n-1})^p ||x||^p$$

$$= \frac{2\theta ||x||^p}{|a+b|^p} \sum_{n=1}^{\infty} (|a+b|^{-(1-p)})^n$$

$$= \frac{2\theta ||x||^p}{|a+b| - |a+b|^p}.$$

Thus we complete the proof of corollary.

References

- [1] P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximate additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci..
- [3] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [4] Th. M. Rassias and J. Tabor, What is left of Hyers-Ulam stability?, J. Nat. Geometry 1 (1992), 65-69.
- [5] S. M. Ulam, "Problems in Modern Mathematics" Chap. VI, Science editions, Wiley, New York,.