I-TORSION-FREE MODULES OVER PULLBACK RINGS

SHAHABADDIN EBRAHIMI ATANI

Dept. of Mathematics, University of Guilan, P.O. Box 1914 Rasht Iran.

1. Introduction

A ring is prime if AB=0 for (2-sided) ideals A,B implies that A=0 or B=0. A ring is semi-prime if it has no non-zero nilpotent ideals. If A is an ideal in a semi-prime ring R, then the left and right annihilators of A, in R, have zero intersection with A (the squares of these intersections are zero) and hence they coincide. Therefore we will write merely $\operatorname{Ann}_R A$. Let R be any ring. A left R-module S is **I-torsion-free** if JT=0, for some left non-zero submodule T of S and some ideal S, implies that S is S for some non-zero ideal S. For semi-prime rings this can be restated: if $\operatorname{Ann}_R J=0$ then $\operatorname{Ann}_M J=0$. Let S be a left S-module. For each (2-sided) ideal S in S, set $\operatorname{Ann}_S J=\{s\in S: Js=0\}$. An **affiliated submodule** of S is any submodule of the form $\operatorname{Ann}_S J$ where S is an ideal of S maximal among the annihilators of non-zero submodules of S.

Systems of linear equations can be regarded as conjunctions of linear equations and repeated conjunction will be denoted by use of \bigwedge (in the same way that \sum is used for repeated addition). Let M be an R-submodule of N. Then M is **pure** in N if any finite system $\bigwedge_{i=1}^n \sum_{j=1}^m r_{ij}x_j = c_i$ of equations over M (that is, R-linear equations with constants from M) with $r_{ij} \in R$, $c_i \in M$ which is solvable in N is also solvable in M. A module I is pure-njective if any (infinite) system of equations in I which is finitely solvable in I, is solvable in I [7, Theorem 2.8]. The module N is a **pure essential extension** of M if M is pure in N and for all non-zero submodules L of N, if $M \cap L = 0$ then $(L \oplus M)/L$ is not pure in N/L. A **pure-injective hull** H(M) of a module M is a pure essential extension of M which is pure-injective. Every module has a pure-injective hull which is unique to isomorphism [8, Proposition 6].

Let $v_1: R_1 \to \bar{R}$ and $v_2: R_2 \to \bar{R}$ be homomorphisms of two prime rings R_i onto a common prime ring \bar{R} . Denote the **pullback**

$$R = \{(r_1, r_2) \in R_1 \oplus R_2 : v_1(r_1) = v_2(r_2)\}$$
 (1)

by $(R_1 \xrightarrow{v_1} \bar{R} \xrightarrow{v_2} R_2)$. Then R is a ring under coordinate-wise multiplication. Denote the kernel of v_i , i=1,2, by P_i and let $P=P_1 \times P_2$. Then $R/P \cong \bar{R} \cong R_i/P_i$, i=1,2. So P_1 , P_2 , and P are prime ideals over R_1 , R_2 , and R respectively and $P_1P_2=P_2P_1=0$ (so R is not a prime ring). Furthermore, for $i \neq j$, the sequence $0 \to P_i \to R \to R_j \to 0$ is an exact sequence of R-modules (see [3]).

An R-module S is called **separated** (here \bar{R} is semi-simple artinian) if there exists an R_i -module S_i , i=1,2, such that S is a submodule of $S_1 \oplus S_2$ (the latter is made into an R-module by $(r_1,r_2)(s_1,s_2)=(r_1s_1,r_2s_2)$). Equivalently, S is separated if it is a pullback of an R_1 -module and an R_2 -module and then, using the same notation for pullbacks of modules as for rings, $S=(S/P_2S) \to S/PS \leftarrow S/P_1S$) [3, Corollary 3.3] and $S \leq (S/P_2S) \oplus (S/P_1S)$. Also S is separated if and only if $P_1S \cap P_2S = 0$ [3, lemma 2.9]. A **separated representation** of an R-module M is an R-module epimorphism $\varphi: S \to M$ such that S is separated and such that, if φ admits a factorization $\varphi: S \xrightarrow{f} S' \to M$ with S' separated, then f is one-to-one. The module $K = Ker(\varphi)$ is then an \bar{R} -module, since $\bar{R} = R/P$ and PK = 0 [3, Proposition 2.3]. For undefined termes we refer to [2] and [6]. Our aim here to prove the following results:

2. Results

The notation below will be kept in this paper. Let R be the pullback ring as described in (1), let J be an ideal in R, and set

$$J_1 = \{r \in R_1 : (r, s) \in J \text{ for some } s \in R_2\}$$

 $J_2 = \{r \in R_2 : (r, s) \in J \text{ for some } r \in R_1\}.$

Then for each i, i = 1, 2, J_i is an ideal in R_i and $J \subseteq J_1 \times J_2$. Put for simplicity $J \times 0 = (J, 0)$ and $0 \times J = (0, J)$. Moreovere, if $J^n = 0$ for some n then $J_1^n = 0 = J_2^n$. This shows that R is semi-prime since R_i is prime.

THEOREM 2.1. The uniform dimension (or Goldie dimension) bimodule $_RR_R$ is equal to 2. In particular, the list of minimal prime ideals of R are $(P_1,0)$ and $(0,P_2)$.

Proof. Since $R/(0, P_2) \cong R_1$ and $R/(P_1, 0) \cong R_2$, so $(0, P_2)$ and $(P_1, 0)$ are prime ideals of R. By [6, 2.15 p.45], it is enough to show that the list of annihilator ideals in R are:

$$R, 0, (P_1, 0), (0, P_2).$$

Clearly, $\operatorname{ann}_R(0) = R$. Let J be a non-zero ideal in R. We divided the proof into three cases:

case 1: Suppose $J_i \neq 0$, i = 1, 2, and Jr = 0 where $r = (r_1, r_2) \in R$. Therefore $J_i r_i = 0$, and so $r_i = 0$ since R_i is a prime ring. This shows that r = 0, so $\operatorname{ann}_R J = 0$.

case 2: $J_1 = 0$, $J_2 \neq 0$. If $(r_1, r_2) \in J$ then $r_1 = 0$ and $v_1(r_1) = 0 = v_2(r_2)$, so $J \subseteq (0, P_2)$. Thus $J(P_1, 0) \subseteq (0, P_2)(P_1, 0) = 0$, and hence $(P_1, 0) \subseteq \operatorname{ann}_R J$. To see that $\operatorname{ann}_R J \subseteq (P_1, 0)$, suppose that $(r_1, r_2)J = 0$. Then $r_2J_2 = 0$, so $r_2 = 0$ since R_2 is prime. Thus $v_1(r_1) = 0$, so $(r_1, r_2) \subseteq (P_1, 0)$, as required.

case 3: $J_1 \neq 0$, $J_2 = 0$. Applying the proof case 2 to this case the ideal $(0, P_2)$ obtained is $\operatorname{ann}_R J = (0, P_2)$.

LEMMA 2.2. Let $R = (R_1 \xrightarrow{v_1} \bar{R} \xrightarrow{v_2} R_2)$ be a pullback ring with $Kerv_i = I_i$, i = 1, 2. Then R_1 and R_2 are prime rings if and only if

- (1) R is semi-prime; and
- (2) Every non-zero annihilator ideal of R different from R is either equal to $(I_1, 0)$ or is equal to $(0, I_2)$.

Proof. (1) and (2) are clear from Theorem 1. Conversely, to see that $R/(0,I_2)\cong R_1$ is prime, suppose that $AB\subseteq (0,I_2)$ for ideals A and B in R. Then $(I_1,0)=\operatorname{ann}_R(0,I_2)\subseteq\operatorname{ann}_R(AB)$, so $A(B(I_1,0)\subseteq(AB)\operatorname{ann}_R(AB)=0$. If $B(I_1,0)=0$ then $B\subseteq (0,I_2)$. If $B(I_1,0)\neq 0$ then since $J(I_1,0)\subseteq (I_1,0)$ we have $(0,I_2)\subseteq\operatorname{ann}_R(B(I_1,0))$. So by (2), $A\subseteq\operatorname{ann}_R(B(I_1,0))=(0,I_2)$. Thus R_1 is a prime ring. Similarly, R_2 is prime.

Why separated R-modules. the classification problem for the class indecomposable modules over a pullback ring R is classical and consists of two parts: 1) the description of all indecomposable separated modules over R and 2) the classification of all indecomposable non-separated modules over R by using indecomposable separated modules. Let

$$R = (R_1 \to \bar{R} \leftarrow R_2) \tag{2}$$

be the pullback of two local dedekind domaims R_1 , R_2 with maximal ideals P_1 , P_2 and $R_1/P_1 \cong R_2/P_2 \cong R/P \cong \bar{R}$ a field, and let $\varphi: S \to M$ be a separated representation of M. By [5, ch. 11], The indecomposable finitely generated non-separated modules in terms of "moduled" graphs where each vertex is replaced by a separated indecomposable and where the kernel of the map S to M is defined in terms of the vertices where two edges meet (also see [1]).

EXAMPLE. Let R be the pullback ring as described in (2), and let $P_i = Rp_i$, i = 1, 2. Given the simple R-graph G

Set $S = (R_1 \to \bar{R} \leftarrow R_2/P_2^3) = Ra$ with $P_2^3 a = 0$ and $S' = (R_1/P_1^7 \to \bar{R} \leftarrow R_2/P_2^2) = Ra'$ with $P_1^7 a' = P_2^2 a' = 0$ (which are separated R-modules). Then one can form the non-separated module

$$M(G) = (S \oplus S')/R(p_2^2 a - p_1^6 a') = Rc + Rc'$$

where $c = a + R(p_2^2 a - p_1^6 a')$, $c' = a' + R(p_2^2 a - p_1^6 a')$, $P_2^3 c = 0 = P_1^7 c' = P_2^2 c'$, and $p_2^2 c = p_1^6 c'$ which is obtained by identifying the " P_2 -part" of the socle of S_1 with the " P_1 -part" of the socle of S_2 .

PROPOSITION 2.3. Let R be the pullback ring as described in (1) with \bar{R} a semi-simple artinian ring. Then every left R-I-torsion-free module is a separated R-module, in fact, if $0 \longrightarrow K \longrightarrow S \xrightarrow{\varphi} M \longrightarrow 0$ is a separated representation of M with M I-torsion-free then $S \cong M$.

Proof. Let M be an I-torsion-free R-module, and let $]T_1 = \operatorname{ann}_{M}(P_1, 0), T_2 = \operatorname{ann}_{M}(0, P_2).$ Then

$$T_1 \cap T_2 = \operatorname{ann}_{M}((P_1, 0) + (0, P_2)) = \operatorname{ann}_{M} P.$$

Since M is I-torsion-free, theorem 2.1 shows that $T_1 \cap T_2 = \operatorname{ann}_M P = 0$. As $(0, P_2)(P_1, 0)M = 0 = (P_1, 0)(0, P_2)M$, it follows that $(P_1, 0)M \cap (0, P_2)M \subseteq T_1 \cap T_2 = 0$, so M is separated by [3, Lemma 2.9].

Suppose that M is an I-torsion-free R-module. Then there is a factorization $\varphi: S \xrightarrow{\varphi} M \xrightarrow{i} M$ (i is the inclusion mapping) with M separated because every I-torsion-free is separated. So $\varphi: S \to M$ is one-to-one, hence $M \cong S$.

THEOREM 2.4. Let R be the pullback ring as described in (1) with \bar{R} a semi-simple artinian ring, and let $S = (S_1 \to \bar{S} \leftarrow S_2)$ be a separated R-module.

- (i) Each S_i is I-torsion-free as an R-module if and only if it is I-torsion-free as an R_i -module.
 - (ii) S is an R-I-torsion-free if and only if each S_i is an R_i -I-torsion-free.
- *Proof.* (i) Let S_1 be an R_1 -I-torsion-free module, and let J be an ideal in R such that $\operatorname{ann}_R J = 0$. If JT = 0 for some left R-submodule T of S_1 (note that S_1 is a module over R) then $J_1T = 0$. Then since $J_1 \neq 0$ (theorem 2.1) and R_1 is prime we have $\operatorname{ann}_{R_1} J_1 = 0$, hence T = 0 and S_1 is R-I-torsion-free. Conversely, let K be a non-zero ideal in R_1 and U a left R_1 -submodule of S_1 such that KU = 0. As R_1 is a prime ring, this implies that $K(P_1, 0) \neq 0$. Set $L = K(P_1, 0) + (0, P_2)$. Then L is an ideal in R such that LT = 0, so T = 0 since S_1 is R-I-torsion-free, as required.
- (ii) Let S be an R-I-torsion-free. By (i), it is enough to show that each S_i is R-I-torsion-free. Suppose J is an ideal in R such that $\operatorname{ann}_R J = 0$, and let $s_1 \in S_1$ such that $s_1 J = 0$. By [3, Lemma 2.9], we can consider $S \subseteq S_1 \oplus S_2$. Call the projection maps π_i . Let $s \in S$ have its 1th projection equal to s_1 . So there is an element $s_2 \in S_2$ such that $s = (s_1, s_2)$. Then $(P_1, 0)Js \subseteq Js_1 = 0$. Since S is R-I-torsion-free $(P_1, 0)s = 0$, and hence $P_1s_1 = 0$. It follows that $P(s_1, 0) = 0$, so $s_1 = 0$ since $\operatorname{ann}_S P = 0$. Thus S_1 is R_1 -I-torsion-free. Similarly, S_2 is R_2 -I-torsion-free. Let each S_i be an R_i -I-torsion-free, and let I be an ideal in I such that $\operatorname{ann}_R I = 0$, so I is I in I in I in I is I in I

PROPOSITION 2.5. Let R be the pullback ring as described in (1) with \bar{R} a field, and let S be R-I-torsion-free. Then the list of non-zero affiliated submodules of S different from S are:

$$(0, P_2S), (P_1S, 0).$$

Proof. By 2.3, we can write $S = (S_1 \xrightarrow{f_1} \bar{S} \xrightarrow{f_2} S_2)$. Let J be an ideal in R such that $\operatorname{ann}_S J \neq 0$, $\operatorname{ann}_S J \neq S$. So either $J_1 = 0$, $J_2 \neq 0$ or $J_1 \neq 0$, $J_2 = 0$. We divided the proof into two cases.

Case 1: $J_1 = 0, J_2 \neq 0$. Clearly, $(0, P_2S) \subseteq \text{ann}_S J$. If $s = (s_1, s_2) \in \text{ann}_S J$ then for each $i, J_i s_i = 0, s_1 = 0$. So $s_2 \in \text{Ker} f_2 = P_2 S_2 \cong P_2 S$. It follows that $\text{ann}_S J \subseteq (0, P_2 S)$, hence $\text{ann}_S J = (0, P_2 S) = \text{Ann}_S (0, P_2)$.

Case 2: $J_1 \neq 0$, $J_2 = 0$. By a similar argument as in case (1), $\operatorname{ann}_S J = (P_1 S, 0) = \operatorname{Ann}_S(P_1, 0)$.

PROPOSITION 2.6. Let R and S be as described in 2.5. Then $Ass(S) = (P_1, 0), (0, P_2)$.

Proof. Let T be an R-submodule of S. First, we show that $\operatorname{ann}_R T = 0$ if and only if $T_1 \neq 0, T_2 \neq 0$ where

$$T_1 = \{t_1 \in S_1 : (t_1, t_2) \in T \text{ for some } t_2 \in S_2\}$$

 $T_2 = \{t_2 \in S_2 : (t_1, t_2) \in T \text{ for some } t_1 \in S_1\}$

Let for each i, $T_i \neq 0$, and let $r = (r_1, r_2) \in \operatorname{ann}_R T$. Then $r_1 T_1 = 0 = r_2 T_2$, so $r_i = 0$, i = 1, 2, since over prime rings, every non-zero submodule of R_i -module T_i is faithful. Thus $\operatorname{ann}_R T = 0$. Conversely, if $T_1 = 0$ and $(t_1, t_2) \in T$ then $f_2(r_2) = 0$, so $T \subseteq (0, P_2 S)$. Hence $(P_1, 0)T \subseteq (P_1, 0)(0, P_2 S) = 0$, a contradiction. Second, suppose that $\operatorname{Ann}_R T \neq 0$. By above consideration we carry out the proof in two cases.

Case 1: $T_1 = 0, T_2 \neq 0$. Clearly, $(P_1, 0) \subseteq \operatorname{ann}_R T$. If $(r_1, r_2)T = 0$ then $r_i T_i = 0$, so $r_2 = 0$, $r_1 \in P_1$ and $(r_1, r_2) \in (P_1, 0)$, as required.

Case 2: $T_1 \neq 0, T_2 = 0$. By a similar argument as in case (1), $\operatorname{ann}_R T = (0, P_2)$, as required.

PROPOSITION 2.7. Let R and S be as described in 2.5. Then H = H(S) (the pure-injective hull of S) and E(S) (the injective hull of S) are separated.

Proof. By 2.3, it is enough to show that H and E(S) are I-torsion-free. If L is a submodule of H and J an ideal of R such that $\operatorname{ann}_R J = 0$, then if JL = 0, $J(L \cap S) = 0$. Since S is R-I-torsion-free, $S \cap L = 0$. Assume that $L \neq 0$. Since S is pure-essential in H and $S \cap L = 0$, it follows that the embedding $(S \oplus L)/L$ into H/L is not pure. We derive a contradiction from this. There is a system of equations:

$$\bigwedge_{i=1}^n \sum_{j=1}^m r_{ij} x_j = a_i + L \text{ with } r_{ij} \in R, \ a_i \in S,$$

which has a solution in H/L, say, $\bigwedge_{i=1}^{n} \sum_{j=1}^{m} r_{ij}(b_j + L) = a_i + L$, but not in (S+L)/L. Let $r \in J$. As JL = 0, the following is true in H:

$$\bigwedge_{i=1}^{n} \sum_{j=1}^{m} rr_{ij}b_{j} = ra_{i}.$$

Since S is pure in H, there are elements $c_i \in S$ such that

$$r(\bigwedge_{i=1}^n \sum_{j=1}^m r_{ij}c_j - a_i) = 0.$$

From this and $\operatorname{ann}_S J = 0$ we have $\bigwedge_{i=1}^n \sum_{j=1}^m r_{ij}(c_j + L) = a_i + L$, a contradiction. Finally, since for every non-zero submodule T of E(S), $S \cap T \neq 0$ we have E(S) is R-I-torsion-free.

References

- 1. S. Ebrahimi-Atani, On pure-injective modules over pullback rings, Comm. Algebra, to appear.
- 2. K.R. Goodearl and R.B. Warfield, An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
- 3. L. Levy, Modules over pullbacks and subdirect sums, J. Algebra 71 (1981), 50-61.
- 4. L. Levy, Unique subdirect sums of prime rings, Trans. Amer. Math. Soc. 106 (1963), 64-76.
- 5. L. Levy, Modules over Dedekind-like rings, J. Algebra 93 (1985), 1-116.
- J.C. Mcconnell and J.C. Robson, Noncommutative Noetherian Rings, J. Wiley, Chichester, 1987.
- 7. M. Prest, *Model Theory and Modules*, London Math. Soc. Lecture Note Series, Vol. 130 (1988), Cambridge University Press.
- 8. R.B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.