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1. Introduction

A ring is prime if AB = 0 for (2-sided) ideals A, B implies that A = 0
or B = 0. A ring is semi-prime if it has no non-zero nilpotent ideals. If A
is an ideal in a semi-prime ring R, then the left and right annihilators of A,
in R, have zero intersection with A (the squares of these intersections are
zero) and hence they coincide. Therefore we will write merely AnngA. Let
R be any ring. A left R-module S is I-torsion-free if JT = 0, for some
left non-zero submodule T of § and some ideal J, implies that KJ = 0
for some non-zero ideal K. For semi-prime rings this can be restated: if
anngJ = 0 then annpsJ = 0. Let S be a left R-module. For each (2-sided)
ideal J in R, set anngJ = {s € §: Js = 0}. An affiliated submodule of
S is any submodule of the form anngJ where J is an ideal of R maximal
among the annihilators of non-zero submodules of S.

Systems of linear equations can be regarded as conjunctions of lin-
ear equations and repeated conjunction will be denoted by use of A (in
the same way that Y is used for repeated addition). Let M be an R-
submodule of N. Then M is pure in N if any finite system AL, 7%, rijz;
= ¢; of equations over M (that is, R-linear equations with constants from
M) with r;; € R,c; € M which is solvable in N is also solvable in M. A
module I is pure-njective if any (infinite) system of equations in I which
is finitely solvable in I, is solvable in I [7, Theorem 2.8]. The module N is
a pure essential extension of M if M is pure in N and for all non-zero
submodules L of N, if MNL =0 then (L & M)/L is not pure in N/L. A
pure-injective hull H(M) of a module M is a pure essential extension of
M which is pure-injective. Every module has a pure-injective hull which
is unique to isomorphism [8, Proposition 6.
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Let v; : By — R and vz : R; — R be homomorphisms of two prime
rings R; onto a common prime ring R. Denote the pullback

R = {(r1,73) € Ry ® Ry : v1(m1) = va2(r2)} (1)

by (R L RS R;). Then R is a ring under coordinate-wise multipli-
cation. Denote the kernel of v;, i = 1,2, by P; and let P = P; x P,. Then
R/P>~R=R;/P;,i=1,2. So P, P, and P are prime ideals over Ry,
R,, and R respectively and P, P, = PP, = 0 (so R is not a prime ring).
Furthermore, for i # j, the sequence 0 - F; - R — R; — 0 is an exact
sequence of R-modules (see [3]).

An R-module S is called separated (here R is semi-simple artinian) if
there exists an R;-module S;, i = 1, 2, such that S is a submodule of S1®5>
(the latter is made into an R-module by (r1,72)(s1,82) = (ri1s1,7282)).
Equivalently, S is separated if it is a pullback of an Rj-module and an
Ry-module and then, using the same notation for pullbacks of modules
as for rings, S = (S/P,S — S/PS « S/P1S) [3, Corollary 3.3] and
S < (S/PyS) & (S/P,S). Also S is separated if and only if LSNPS =0
[3, lemma 2.9]. A separated representation of an R-module M is an
R-module epimorphism ¢ : § — M such that S is separated and such

that, if ¢ admits a factorization ¢ : § ._{) S’ — M with S’ separated, then
f is one-to-one. The module K = Ker(y) is then an R-module, since
R = R/P and PK = 0 [3, Proposition 2.3]. For undefined termes we refer
to [2] and [6]. Our aim here to prove the following results:

2. Results

The notation below will be kept in this paper. Let R be the pullback
ring as described in (1), let J be an ideal in R, and set

Ji={r€Ry:(r,s) € J for some s€ Ry}
Jo={r € Ry:(r,s)€J forsome r € R;}.

Then for each i, ¢ = 1,2, J; is an ideal in R; and J C J; x J;. Put for
simplicity J x 0 = (J,0) and 0 x J = (0, J). Moreovere, if J* = 0 for some
n then Ji' = 0 = J#. This shows that R is semi-prime since R; is prime.

THEOREM 2.1. The uniform dimension (or Goldie dimension) bimod-

ule Ry is equal to 2. In particular, the list of mimimal prime ideals of
R are (Py,0) and (0, Ps).
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Proof. Since R/(0, P;) & R; and R/(Py,0) = Ry, so {0, P;) and (P;,0)
are prime ideals of R. By [6, 2.15 p.45], it is enough to show that the list
of annihilator ideals in R are:

R) 07 (Pl,o)? (O7P2)

Clearly, anng(0) = R. Let J be a non-zero ideal in R. We divided the
proof into three cases:

case 1: Suppose J; # 0,7 = 1,2, and Jr = 0 where r = (r;,73) € R.
Therefore J;r; = 0, and so r; = 0 since R; is a prime ring. This shows
that » = 0, so anngJ = 0.

case 2: J; =0, J, # 0. If (ry,r2) € J then ry = 0 and vy(r1) =

= vz(’l‘z), so J - (O,Pg). Thus J(Pl,O) - (0, Pz)(Pl,O) = O, and hence
(Py,0) C anngJ. To see that anngJ C (P1,0), suppose that (ry,rp)J = 0.
Then raJz = 0, so 7o = 0 since Ry is prime. Thus vi(r;) = 0, so (ry,r2) C
(P, 0), as required.

case 3: J, # 0, J; = 0. Applying the proof case 2 to this case the ideal
(0, P;) obtained is anngJ = (0, P»).

LEMMA 2.2. Let R = (R, — R — Ra) be a pullback ring with
Kerv; = I;, i = 1,2. Then R; and Ry are prime rings if and only if
(1) R is semi-prime; and
(2) Every non-zero annihilator ideal of R different from R is either
equal to (I1,0) or is equal to (0, I3).

Proof. (1) and (2) are clear from Theorem 1. Conversely, to see that
R/(0,1,) = R, is prime, suppose that AB C (0,13) for ideals A and
B in R. Then (I;,0) = anng(0,1;) C anng(AB), so A(B(I,,0) C
(AB)anng(AB) = 0. If B(I;,0) = 0 then B C (0,I2). If B(I;,0) # 0
then since J(I1,0) C (I1,0) we have (0,1y) C anng(B(I3,0)). So by (2),
A C anng(B(I,0)) = (0,13). Thus Ry is a prime ring. Similarly, Ry is
prime.

Why separated R-modules. the classification problem for the class
indecomposable modules over a pullback ring R is classical and consists of
two parts: 1) the description of all indecomposable separated modules over
R and 2) the classification of all indecomposable non-separated modules
over R by using indecomposable separated modules. Let

R=(R1—)R(—-—R2) (2)



4 Shahabaddin Ebrahimi Atani

be the pullback of two local dedekind domaims R, Rz with maximal ideals
P,,P; and R;/P, = Ry/P, = R/P = R a field, and let ¢ : S — M be
a separated representation of M. By [5, ch. 11}, The indecomposable
finitely generated non-separated modules in terms of "moduled” graphs
where each vertex is replaced by a separated indecomposable and where
the kernel of the map S to M is defined in terms of the vertices where two
edges meet (also see [1]).

EXAMPLE. Let R be the pullback ring as described in (2), and let
P, = Rp;, 1 = 1, 2. Given the simple R-graph G

e} > ] [ ] [ ]
1 2 1 2
R, Ry/P} R\/P] Ry/P}

_ Set S = (R; - R« Ry/P}) = Ra with Pfa =0 and §' = (R,/P] -
R « R3/P?) = Rd' with PJa’ = P2a’ = 0 (which are separated R-
modules). Then one can form the non-separated module

M(G) = (S® S')/R(pja - pid’) = Re + Re

where ¢ = a+R(pia—pSa’), ¢ = a'+R(pla—pSa’), P§c = 0= P{c = PZc,
and p2c = p8c’ which is obtained by identifying the ” Py-part” of the socle
of S; with the ” Pi-part” of the socle of S.

_ PROPOSITION 2.3. Let R be the pullback ring as described in (1) with
R a semi-simple artinian ring. Then every left R-I-torsion-Ifree module is a

¥
separated R-module, in fact, if0 — K — § — M — 0 is a separated
representation of M with M I-torsion-free then S = M.

Proof. Let M be an I-torsion-free R-module, and let [T} = annys (P, 0),
Ty = annps(0, Pz). Then

Ty NTy = annp ((P1,0) + (0, P2)) = annp P.

Since M is I-torsion-free, theorem 2.1 shows that T3 N7y = annyP =
0. As (0, P)(P1,0)M = 0 = (P,0)(0, P2)M, it follows that (F;,0)M N
(0, )M C Ty NTy =0, s0 M is separated by [3, Lemma 2.9].

Suppose that M is an I-torsion-free R-module. Then there is a factor-
ization ¢ : S LAY VANV (¢ is the inclusion mapping) with M separated
because every I-torsion-free is separated. So ¢ : S — M is one-to-one,
hence M == S.
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THEOREM 2.4. Let R be the pullback ring as described in (1) with R
a semi-simple artinian ring, and let S = (S; — S « S3) be a separated
R-module.

(i) Each S; is I-torsion-free as an R-module if and only if it is I-torsion-
free as an R;-module.
(ii) S is an R-I-torsion-free if and only if each S; is an R;-I-torsion-free.

Proof. (i) Let S, be an R;-I-torsion-free module, and let J be an ideal
in R such that anngJ = 0. If JT = 0 for some left R-submodule T of
S1 (note that S; is a module over R) then J;T = 0. Then since J; # 0
(theorem 2.1) and R, is prime we have anng, J; = 0, hence T = 0 and S,
is R-I-torsion-free. Conversely, let K be a non-zero ideal in R; and U a
left R;-submodule of S; such that KU = 0. As R; is a prime ring, this
implies that K (P;,0) # 0. Set L = K(Py,0) + (0, P;). Then L is an ideal
in R such that LT = 0, so T = 0 since Sy is R-I-torsion-free, as required.

(ii) Let S be an R-I-torsion-free. By (i), it is enough to show that each
S; is R-I-torsion-free. Suppose J is an ideal in R such that anngJ = 0,
and let s; € S; such that s;J = 0. By [3, Lemma 2.9], we can consider
S C §:88,. Call the projection maps 7;. Let s € S have its 1th projection
equal to s1. So there is an element sy € S» such that s = (51, s2). Then
(P1,0)Js C Jsy = 0. Since S is R-I-torsion-free (P;,0)s = 0, and hence
Pys; = 0. It follows that P(s;,0) = 0, so s; = 0 since anngP = 0. Thus
S; is Rp-I-torsion-free. Similarly, S; is Ry-I-torsion-free. Let each S; be
an R;-I-torsion-free, and let J be an ideal in R such that anngJ = 0, so
J1 # 0, J2 # 0 (by Theorem 2.1). Suppose that s = (s1, s2) € anngJ, so
Jisi =0,1=1,2. As each §; is R;-I-torsion-free, this implies that s; = 0,
so s = 0, as required.

PROPOSITION 2.5. Let R be the pullback ring as described in (1) with
R a field, and let S be R-I-torsion-free. Then the list of non-zero affiliated
submodules of S different from S are:

(0, P2S), (PS,0).

Proof. By 2.3, we can write S = (S5 —f:—> S —f—z» S2). Let J be an ideal
in R such that anngJ # 0, anngJ # S. So either J; =0, Jo #0or J; #0
, J2 = 0. We divided the proof into two cases.

Case 1: J; = 0,J3 # 0. Clearly, (0, P,S) C anngJ. If s = (s1,82) €
anngJ then for each 2z, J;8;, = 0, s1 = 0. So 83 € Kerfy, = P2S; = P,S. It
follows that anngJ C (0, P2S), hence anngJ = (0, P,S) = Anng(0, P,).
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Case 2: J; # 0,J; = 0. By a similar argument as in case (1), anngJ =
(P1S,0) = Anng(Py,0).

PROPOSITION 2.6. Let R and S be as described in 2.5. Then Ass(S) =
(P1,0), (0, P»).

Proof. Let T be an R-submodule of S. First, we show that annpT = 0
if and only if T} # 0, T3 # 0 where

T, = {tl €8;: (tl,tz) € T for some iy € Sz}
Ty = {tg € Sg : (t1,t2) € T for some t; € S1}

Let for each i, T; # 0, and let r = (ry,72) € anngT. Then T} =
0 = 1Ty, so r; = 0, i = 1,2, since over prime rings, every non-zero
submodule of R;-module T; is faithful. Thus anngT = 0. Conversely,
if T1 = 0 and (tl,tz) € T then fz('r‘g) = 0, so T C (O,PQS) Hence
(P,0)T C (Py,0)(0,P,S) = 0, a contradiction. Second, suppose that
AnngT # 0. By above consideration we carry out the proof in two cases.

Case 1: T, = 0,T, # 0. Clearly, (P,0) C anngT. If (r1,72)T = 0
then r;T; = 0,s0 75 =0, ry € Py and (ry,7r2) € (P1,0), as required.

Case 2: T} # 0,T, = 0. By a similar argument as in case (1), anngT =
(0, P;), as required.

PROPOSITION 2.7. Let R and S be as described in 2.5. Then H =
H(S) (the pure-injective hull of S) and E(S) ( the injective hull of S) are
separated.

Proof. By 2.3, it is enough to show that H and E(S) are I-torsion-free.
If L is a submodule of H and J an ideal of R such that anngJ = 0, then
if JL =0, J(LNS) = 0. Since S is R-I-torsion-free, SN L = 0. Assume
that L # 0. Since S is pure-essential in H and SN L = 0, it follows that
the embedding (S L)/L into H/L is not pure. We derive a contradiction
from this. There is a system of equations:

n m
/\ Z’I"ijl'j =a;+ L with r;; € R, a; € 5,
i=1j=1

which has a solution in H/L, say, Al 3_7~, 7i;(b; + L) = a; + L, but not
in (S+ L)/L. Let r € J. As JL =0, the following is true in H:

n

m
/\ Z""rijbj = ra;.

t=1 j=1
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Since S is pure in H, there are elements ¢; € S such that

1‘(/\ ZTUCJ' - ai) = 0.

i=1 3=1

From this and anngJ = 0 we have Ai; 370 rij(c; + L) = a; + L,

a contradiction. Finally, since for every non-zero submodule 7' of E(S5),
SNT # 0 we have E(S) is R-I-torsion-free.

[5)

ot
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