EINSTEIN WARPED PRODUCT SPACES

Dong-Soo Kim

Dept. of Mathematics, College of Natural Sciences, Chonnam National University, Kwangju 500-757, Korea. E-mail: dosokim @ chonnam.chonnam.ac.kr.

Abstract. We study Einstein warped product spaces. As a result, we prove the following: if M is an Einstein warped product space with base a compact 2-dimensional surface, then M is simply a Riemannian product space.

0. Introduction and Preliminaries

Let $B = (B^m, g_B)$ and $F = (F^k, g_F)$ be two Riemannian manifolds. We denote by π and σ the projections of $B \times F$ onto B and F, respectively. For a positive smooth function f on B the warped product $M = B \times_f F$ is the product $M = B \times F$ furnished with metric tensor g defined by $g = \pi^* g_B + f^2 \sigma^* g_F$, where (*) denotes pull back. The function f will be called the warping function.

The notion of warped product $B \times_f F$ generalizes that of a surface of revolution. It was introduced in [3] for studying manifolds of negative curvature.

Obviously, the Riemannian product $M = B \times F$ is Einstein if B and F are Einstein with the same scalar curvarures. A warped product $B \times_f F$ with a constant warping function f can be considered as a Riemannian product.

In search for a new compact Einstein space in ([2], p. 265), A. L. Besse asked the following:

"Does there exist a compact Einstein warped product with nonconstant warping function?"

In this article, we give a negative partial answer as follows(cf. [1], p. 127)

Received May 26, 2000.

¹⁹⁹¹ AMS Subject Classification: 53B20, 53C20.

Key words and phrases: Einstein space, warped product, Ricci tensor, Hessian tensor.

This study was financially supported by Chonnam National University in the program, 1998.

THEOREM 1. Let $M = B \times_f F$ be an Einstein warped product space. If B is a compact 2-dimensional Riemannian surface, then the warped product is simply a Riemannian product.

For warped products with 1-dimensional base, see Theorem 9.110 in [2].

In [2] A. L. Besse state, without proof, a theorem (Theorem 9.119, due to R.S. Palais, C. L. Terng, A. Derdzinski) from which we may deduce Theorem 1. But we couldn't find a proof of the theorem anywhere. So we give an elementary proof of Theorem 1.

1. Proof of Theorem 1

We denote by Ric^B , Ric^F the lifts to M of Ricci curvatures of B and F, respectively. Then we have the following([7]):

PROPOSITION 2. The Ricci curvature Ric of the warped product $M = B \times_f F$ with $k = \dim F$ satisfies

- (1) $\operatorname{Ric}(X,Y) = \operatorname{Ric}^B(X,Y) \frac{k}{f}H^f(X,Y),$
- $(2) \operatorname{Ric}(X, V) = 0,$
- (3) $\operatorname{Ric}(V, W) = \operatorname{Ric}^F(V, W) g(V, W)f^{\#}, f^{\#} = \frac{-\Delta f}{f} + (k-1)\frac{g_B(\nabla f, \nabla f)}{f^2},$ for any horizontal vectors X, Y and any vertical vectors V, W, where H^f and Δf denote the Hessian of f and the Laplacian of f given by $-tr(H^f)$, respectively.

Hence the Einstein equations become

COROLLARY 3. The warped product $M = B \times_f F$ is Einstein(with Ric = λg) if and only if

- $(1.1) \operatorname{Ric}_B = \lambda g_B + \frac{k}{f} H^f,$
- (1.2) (F, g_F) is Einstein(with $Ric_F = \mu g_F$),
- $(1.3) f\Delta f + (k-1)|\nabla f|^2 + \lambda f^2 = \mu.$

Now we give a proof of Theorem 1. Let (B, g_B) be a compact 2-dimensional Riemannian surface. By Theorem 1 in [5], we may assume that $\lambda > 0$. Since B is of 2-dimensional, the Ricci tensor satisfies $\text{Ric}_B = Kg_B$, where K denotes the Gaussian curvature of B. Hence (1.1) becomes

(1.4)
$$H^f = \frac{f}{k}(K - \lambda)g_B.$$

Suppose that the warping function f is nonconstant. Then (1.4) shows that if p, q denote the minimum and maximum points of f, then $(B - \{p, q\}, g_B)$ is isometric with a warped product metric (Theorem 21 of [6])

(1.5)
$$ds^2 = dt^2 + f'(t)^2 d\theta^2$$

on $(a,b)\times S^1$, where f=f(t) and $f'(t)=\frac{df}{dt}$. Obviously, we have

(1.6)
$$f'(a) = f'(b) = 0.$$

Since the metric (1.5) extends to a C^{∞} Riemannian metric on B, we may assume that ([2], p.269 or [6], p. 123)

(1.7)
$$f''(a) = -f''(b) = 1.$$

Note that $\Delta f = -2f''(t)$ in the metric (1.5). Hence (1.3) becomes

$$(1.8) 2f(t)f''(t) + (k-1)f'(t)^2 + \lambda f(t)^2 = \mu.$$

Hereafter, we assume that the dimension k of the fibre F is greater than or equal to 2. Integrating (1.8), we get

(1.9)
$$f'(t)^2 = \frac{\mu}{k-1} - \frac{\lambda}{k+1} f(t)^2 + \nu f(t)^{1-k},$$

and hence

(1.10)
$$f''(t) = -\frac{\lambda}{k+1}f(t) - \frac{k-1}{2}\nu f(t)^{-k},$$

where ν is a constant.

Now if we put

(1.11)
$$g(x) = \frac{\mu}{k-1} - \frac{\lambda}{k+1} x^2 + \nu x^{1-k} \\ = x^{1-k} \left(-\frac{\lambda}{k+1} x^{k+1} + \frac{\mu}{k-1} x^{k-1} + \nu \right),$$

then we have $f'(t)^2 = g(f(t))$ and $f''(t) = \frac{1}{2}g'(f(t))$. If A, B denote the minimum f(a) = f(p) and maximum f(b) = f(q) of f, respectively, then (1.6) and (1.7) imply

$$(1.12) g(A) = 0, g''(A) = 2,$$

and

(1.13)
$$g(B) = 0, \quad g''(B) = -2.$$

From (1.11) and (1.12) we get

(1.14)
$$\nu = \frac{-2}{k^2 - 1} (\sqrt{1 + \mu \lambda} + k) A^k,$$

and

(1.15)
$$A = \frac{1}{\lambda}(\sqrt{1+\mu\lambda} - 1).$$

And from (1.11) and (1.13) we obtain

$$(1.16) B = \frac{1}{\lambda}(\sqrt{1+\mu\lambda}+1).$$

Since g(B) = 0, from (1.11), (1.14), (1.15) and (1.16) we see that the positive constant $y = \sqrt{1 + \mu \lambda}$ is a positive zero of the following polynomial:

$$(1.17) \ h_k(y) = (k-1)(y+1)^{k+1} - (k+1)(y^2-1)(y+1)^{k-1} + 2(y+k)(y-1)^k.$$

It can be easily shown that $h_k(y)$ is a polynomial of degree k-2 which can be expanded as follows:

$$h_k(y) = 8 \sum_{j=1}^{\left[\frac{k-1}{2}\right]} j \binom{k+1}{2j+1} y^{k-2j},$$

where [.] denotes the Gaussian integer function. Since all the coefficients of $h_k(y)$ are positive, it cannot have a positive zero. This contradiction completes the proof of Theorem 1 in case $k \geq 2$. If k = 1, then a similar argument to the above proves the theorem.

Added in Proof. Just before this article comes to be published, Prof. R. S. Palais sent me the preliminary version([8]) of an unpublished article (jointly with C. L. Terng and A. Derdzinski). It only has the statements of their results from which we may deduce Theorem 9.119 in [2]. But his treatments seem to be different from mine. I would like to express my gratitude to Prof. Palais for his kindness.

References

- J. K. Beem, P. E. Ehrlich and K. L. Easley, Global Lorentzian Geometry (2nd ed.), Marcel Dekker, Inc., New York (1996).
- 2. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin Heidelberg (1987).
- R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
- D.-S. Kim and Y. H. Kim, A characterization of space forms, Bull. of Korean Math. Soc. 35(4) (1998), 757-767.
- 5. D.-S. Kim and Y. H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, submitted.
- 6. W. Kühnel, Conformal transformations between Einstein spaces, Conformal Geometry, Aspects of Math., E12, Vieweg, Braunschweig (1988), 105-146.
- 7. B. O'Neill, Semi-Riemannian Geometry with applications to Relativity, Academic Press, New York (1983).
- 8. R. S. Palais, Warped products and Einstein Manifolds (Joint work with A. Derdzinski and C. L. Terng), Proceedings of Differential Geometry Meeting, Münster (1982), 44-47.