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Abstract. We prove that a certain class of real hypersurfaces in P3(C) has the
rigidity. Making use of this we classify all homogeneous real hypersurfaces in P3(C).

0. Introduction

Let P,(C) denote a complex n-dimensional complex projective space.
The second named author , I-B.Kim and B.H.Kim [4] proved the following
rigidity theorem.

THEOREM A. Let M be a (2n — 1)-dimensional connected Riemannian
manifold, and « and i be two isometric immersions of M into P, (C)(n > 4).
If the type number of (M, ) or (M, i) is not equal to 2 at every point of
M, then . and i are rigid, that is, there exists a unique isometry ¢ of
P, (C) such that pot=i.

The purpose of this paper is to prove that Theorem A holds also for
n = 3, which is stated as Theorem 1 in § 2. Making use of this, we obtain
the following classification theorem.

THEOREM 2. Let M be a 5 - dimensuional connected homogeneous
Riemannian manifold. If M admits an isometric immersion into P3(C),
then «(M) is congruent to one of the so-called model spaces of type Ay or
Az or B ([3})
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1. Preliminaries

We fix the Fubini - Study metric on P,(C) such that its constant holo-
morphic sectional curvature is a positive constant 4. Let M be a 5 -
dimensional Riemannian manifold, and ¢ an isometric immersion of M
into Pg(C)

In the sequal, the indices 4, 7, k, £ run over the range {1, 2, 3,4, 5} unless
otherwise stated. Take an orthonormal frame field {e;} locally defined on
M, and denote its dual forms by {6;}. Then the connection forms §;; and
the curvature forms ©;; of M with respect to {e;} are defined by

d0i+§:0ij/\9j = (), 95j+9ﬁ = (),

@,‘j = d9,-j + Z Oir. A Okj,

respectively.

Let I be the complex structure of P3(C), and v be a unit normal vector
field locally defined on ¢(M). Then the almost contact structure (¢, &) of
(M, ) is defined by

I(L*Bi) = Z ¢ji5#ej + SiV7

where it is the differential of i.
Then (¢, £) satisfies

(1.1) Y bindr; = &k — b,
(1.2) > ¢ii6i =0,

(1.3) doet=1

Later, we shall quote (1.1) (resp.(1.2)) in the form (1.1);;(resp. (1.2);)
when we need a precise explanation, and do not quote (1.3) to avoid too
often repeats. The vector field £ = Y £;e; is uniquely determined on M
up to sign, which is called the structure vector field of (M, ).
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Denoting the shape operator or the second fundamental tensor by A =
(Aij), we have the equation of Gauss ;

0y = Z AixAjsbi N Og + 0; N\ 0;
t Z(¢ik¢je + hijdre)Oi N 6,

The rank of A is called the type number of (M, ).

For another isometric immersion i of M into P5(C), we shall denote the
differential forms and tensor fields of (M, L) by the same symbols as ones
of (M, ) but with a hat. Then, since 6; = 6; and 0, = 9”, we have from
(1.4)

(1.4)

AixAje — AieAjr + (Dindje — Pusdjn + 20ijPke)
= Aidje — AuAjk + ($indje — biurdj + 20 bre).

Hereafter we use the following index convention :

(1.5)

i?j’)k = ]')27374; p'xQ)r: 1?2’3

unless otherwise stated and adopt a special orthonormal frame field {e;,
., €5} such that

(1.6) Ais =0,
(1.7) Aps =0,
(1.8) 15 = f25 = 0,
(1.9) $14 = 0.

This is possible. In fact, we define a subset V of M by
V={ze M;Z}iﬁes + fi5585 #0 at z}

and choose a new orthonormal frame field {€;,...,€5} on V so that €5 is
in the direction of 3 A;se; + Asses. Denote this new orthonormal frame
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field by the same letter {e;,...,e5}. Then (1.6) holds on V with respect
to the new one. Of course, (1.6) holds also on M — V if it is not empty.
In the future, using (1.6), we shall prove that es is a common principal
direction of « and i everywhere on V U (M ~ V), and so everywhere on M.
Thus we may assume that (1.6) holds on whole M. In the sequel we shall
omit this argument. Next, we choose a further new orthonormal frame
field {ei,...,€5} so that €5 = e5 and €4 is in the direction of Y Ase;, ..
etc. In such a way, we have a desired frame field.
Now from (1.5) ~ (1.7) we have

PpaPqs — GpsPqa + 2¢pqPas
= Ppadas — Ppsdas + 20pgdbas,
Porbg5s — Pp5Pgr + 2¢pePrs
= GprPgs — Ppsbar + 20pedrs.

Putting (4,7, k) = (p,4,9), (p,4,4), (p,5,49), (p,5,4) and (4, 5, 4) in (1.5),
we have

(1.10)

(1.11)

ApqAys = —PpqPas + Gpsdagq — 20padgs

(112) + BpoBas — Ppsbag + 2dpadys,
(1.13) ApsAss = —3padas + 3Ppadus,
(1.14) ApgAss = —3dysbas + 3bpsdes,
(1.15) ApsAss = —3¢psbas + 3bpsPas,
(1.16) AgsAss — Ags® = 3045 + 3¢as?,
respectively.

Taking the symmetric part of (1.12) we have

2quA45 = “3(¢p4¢q5 + ¢q4¢p5)

+ 3(&;;4‘13(15 + $q4€£p5)~

By the same method as the one in the proof of Lemma 3.1 in (2] we
obtain from (1.11)

(1.18) PpaPrs = Ppgdrs.

(1.17)
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2. Theorems and their proofs

First we prove

THEOREM 1. Let M be a 5— dimensional connected Riemannian man-
ifold, and v and i be two isometric immersions of M into P3(C). If the
type number of (M, ) or (M, ) is not equal to 2 at every point of M, then
¢ and i are congruent, that is, there exists an isometry ¢ of P3(C) such
that po = 1.

Proof. We may assume that rank A > 3. In fact, it is known ([3])
that there is not a non-empty open set U on M such that rank 4 < 1
on U or rank A < 1 on U. Thus, by exchanging the roles of + and i if
necessary, we can set in such a way that for any point p of M there is an
open neighborhood V' of p such that rank A > 3 on V, which proves our
assersion.

If Ags = 0, then from (1.6) and (1.7) we see that the vector e5 is a
common principal direction of ¢ and . Then, the main theorem in [2]
implies that ¢ and ¢ are congruent.

In the remainder we assume

(2.1) Ass # 0,

and derive a contradiction.
First we have from (1.14) and (1.17)1,

(2.2) An =0, ¢15=0.
This and (1.14),2 give
(2.3) App =0.

Hereafter, to avoid the complexity of indices, we put a = ¢12,b = ¢13, ¢ =
$14,Z = @15,C = P23, B = P24,y = P25,7 = P34, 2 = P35, and w = Pys.
Remark that we already set a = & = § = 0 and showed z = 0. Now (1.10)
and (1.18) amount to

(2.4) aw = aw,

(2.5) 2bw = &5 + 2bii,

(2.6) Bz — vy + 2cw = B + 2é,
(2.7) ay=by=cy =0,

(2.8) az = az, bz = bz, cz = é2.
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Assertion 1. Ass # 0.

If As5 = 0, then (1.8),(1.14)22 and (1.14)33 imply ¥ = 0 and 22 = 32.
Moreover, (1.15)3 and (1.16) imply 2w = 2% and w? # w?. These yield
z = 2 = 0. If follows from (1.17) that A,; = 0, which gives rise to a

contradiction rank A < 2. O
Now from (1.14);3 and (1.15); we have
(2.9) A13 = A4 =0.

Assertion 2. & =0.

In fact, from (1.13); and (1.17);3 we have & = &2 = 0. If & # 0, then
we have 2 =% = 0. If a = b = ¢ = 0, then from (2.6) we see Bz — yy = 0,
which gives rise to a contradiction rank ¢ = 3.

Thus a2 + b2 + ¢ > 0. Then from (2.4) ~ (2.8) we have y = z = w =
0. This, (1.4) and (1.15) give Apy = 0 and Aps = 0, which contradicts
rankA < 2. O

Assertion 3. y = 0.

Assume y # 0. Then from (2.7) we have a = b= ¢ = 0 and so e; = &.
If 2 # 0 or W # 0, then from (2.4) and (2.5) we have @ = b = 0 and so
ey = £ = ¢£. Then by a theorem in [1], ¢ and { are congruent. In particular,
Ags = A4 = 0, which is a contrdiction. Therefore we have 3 = 1w = 0.

This and (2.6) give rise to a contradiction rank ¢ < 3. O
Now from (1.14)23, (1.14)23 and (1.15), we have

(2.10) Agy = Agz = Agy = 0.

This, together with (1.13)2 and (1.17),3, gives

(2.11) Bz = Bz, Pw = Bi.
Assertion 4. Neither of the following cases can occur.

(1) 22 =32, 2w = 2.

(2) vy=%=0.

(3) z=4=0.

In fact, since rank A > 3, from (2.2),(2.3),(2.9) and (2.10) we find
A33% + A34% > 0. Then our assertion follows from (1.7), (1.13)3, (1.14)33,
(115)3 and (117)33 0
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Assertion 5. For a non - zero real number ¢ with €2 # 1, we have
a=cea, b=ch, é=cec, stﬁ, z =¢Z, and w = .

In fact, first we shall show Z # 0. If 2 = 0, then z # 0 by (3) of
Assertion 4. Then from (2.8) and (2.11) we find a = b = ¢ = = 0, which
contradicts rank ¢ = 4. Similarly we have z # 0. By a similar argument,
we see w = 0 if and only if & = 0. Then, putting ¢ = z/2, we have assertion
5 from (2.4), (2.5), (2.6), (2.8) and (2.11). From (1) of Assertion 4 we have
e? #£1. O

Assertion 6. bb # 0.

Assume b = 0. Then b = 0 and aa # 0 since & # § as in a previous
argument From (1.1)15 and (1. 1)15 we have £1&5 = {1&, = 0 The case
& = &1 = 0 can not occur since if not so, then we have €2 = 1 from
a? = 42 = 1. Then case & = £ = 0 can not also occur since if not so,
then we have vy = 4 = 0 by (1.1)4 and (1. 1)45, which contradicts (2) of

Assertion 4 . Hence £,&s # 0, and so & = €1 = 0. It follows from (1. 1)14
and (1.1)25 that 8= ¢ =0 and so 8 = & = 0, which contrdicts (1.2);. O

Assertion 7. aa # 0.

Assume a = 0. Then & = 0. Multiply (1.1)45 by £,2 and use (1.1);4 and
(1.1)15. Then we have v = 0. Similarly we have 4 = 0, which contradicts
(2) of Assertion 4. O

Assertion 8. 4 = ¢€7.

In fact, multiply (1.2); by &5 and use (1.1)y5,(1.1)35 and (1.1)45. Then
we have

(2.12) abz + (Bz — cw)y = 0.

Similarly we have ) )

abz + (Bz — éw)y =
This and Assertion 5 imply
(2.13) abz + (Bz — cw)¥ = 0.

It follows from (2.12) and (2.13) that avy = a¥. O
Now, applying Assertions 5 and 8 to (1.2), we see that the vector
(€1, ..., €4, E5/€2) belongs to the kernel of ¢. Thus there is a scalar A such
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that & = A(i = 1,2,3,4) and & = Ae2¢s. Then from (2.20) and (2.20)
we obtain A2 = 1 and so a contradiction ¢2 = 1, which proves Theorem 1.
The proof of Theorem 2 can be done in the same way as the one in [4].
Remark 2.1. Theorem A holds also for a real hypersurface in the hy-
perbolic complex space form H,(C).
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