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1. Introduction

Let G be an affine group and V' be an affine algebric set. We recall that
an action of G on V is given by a mapping

- K xV — V denoted by (k,v) = k-v

such that (i) (k-t)-v=Fk-(t-v)and (it) l-v=vioral k,t € K,veV,
1 being the identity of G. The orbit of an element v of V is

K-v={k-v|keK}

An element v € V is G invariant or, simply, invariant if k- v = v for all
g € G[1,2,3].

The study of the Euclidean motions of conics, by defining the action
of the Euclidean group on conics and using some matrix techniques, was
given in [3].

By analogy with the Euclidean case, Mendes and Ruas have studied
the behavior of conics in the plane under the Lorentzian group action[4].

The present paper deal with the hyperbolic homothetic motion of con-
ics. By defining the hyperbolic homothetic group we analyse its action on
a conic. We present h-invariant polynomials and show that certain poly-
nomials in the coefficients of the conics are h-invariant under the group
mentioned above. Some geometric interpretation related to standard form
of conics are also given. Finally the h-invariant subalgebra I, generated
by some polynomials 7,8, A are investigated.
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2. A hyperbolic homothetic group action

A 2 x 2 matrix N is called h-special hyperbolic homothetic if there
exists h and @ such that

chf shé

(2.1) N =N(,h)=h (Sh() g

), h,8 € IR,h #0

where ch@, sh@ are usual hyperbolic functions.

The set of all such matrices, with usual multiplication constitutes a
group, called the group of hyperbolic homothetic rotations, or proper ho-
mothetic Lorentz group.

Each N € G defines a linear transformation

N:IL?> - IL?
!
()= ()-+()
Y y Y

Then the Lorentz inner product is defined by < ¢, W >= z122 — y1¥2,
where ¥ = (mlv yl); W= ($2ay2)'

It follows easily that the eigenvectors of N are € = (1, —1) and € = (1,1)
and corresponding eigenvalues A\, = h(chf — shf) and Az = h(ché + shf)
are positive real numbers.

Let I, II, II1, IV, V and VI be the sets in figure 1. The I U III, IT U IV

and V U VI remain h-invariant, that is, if (z,y) € A, then N(z,y) € A,
VN € G, where A denotes any one of these sets.
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To see, for instance, that I U III G h-invariant, let ¥ = (z,y) be any
element in this set(In I or in III). Then ¥ = €} + PBé,, where o and 3
are positive numbers. Hence, N7’ = (aA,)é) + (BA;)€2 with al;, B, are
positive and so N7 € I or Nv € III.

Vectors in I or III are called spacelike, in II or IV are timelike, and in
V or VI are null.

Furthermore, the points of the G h-invariant sets,, I U III, II U IV, slide
along the hyperbolas z2 — y? = constant. Now, A\;As = h2 for all . If
6 > 0, the plane shrinks A, times to the straight line z = —y and stretches
in the orthogonal direction away from z = y. When 8 < 0, we just reverse
the directions of stretching and compression, and the directin of motion
of the points along the hyperbolas.

In analogy with the Euclidean case [3] and with the hyperbolic case [4],
we shall denote by K, consists of all 3 x 3 real matrices of the form

(2.2) k(8 h) = (N(()") lf) ,

where N (@) is a special hyperbolic homothetic matrix and B is a 2 x 1
column matrix.

We can identify the plane IR? with the plane z = 1 in TR3, that is, we
can write

(2.3) p.—z[ﬁHP= 215

Then each matrix k € K gives rise to a motion Mg (p) = kP = Np+ B.
Let V be the vector space of all 3 x 3 real symmetric matrices. For
k€ K and @ € V, we define

(2.4) k-Q=(k"1tQk1.
It is easy to verify that (2.2) gives an action of G on V.

We want to study the orbit under G of an element Q in V. To do this
let us denote a typical element @ in V by

a b d
_ [ AQ) DE
(2:5) Q“(Z ‘ j)“(ut(@) f(Q))’
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where A(Q) = (‘; ) D(Q) = ( )and Q) =

We can 1dent1fy a matrix Q € V with the polynomlal Q(P) =Q(z,y)
=az? +2bzy + cy? + 2dz + 2ey + f. Note that Q(p) = PtQP.

Let Q' = k-Q = (k~1)!Qk~! and C, C’ be the conics associated to Q,
Q’, respectively; that is C = {p|Q(p) = 0} and C’ = {p| Q’(p) = 0}. The
equation

Q(p) = P'QP = P'k'Q'kP = (kP)'Q'(kP) = Q' (kp)

shows that p lies on C if and only if Mi(p) = kp is on C’. The following
explicit expression can be given for the matrix A(Q’):

ach20 + bsh28 + csh?0 (S-i:)—) sh20 + bch26 )

(2.6) A(Q') = h?
) ) (19-;,:2) sh26 + bch20  ash?0 + bsh20 + csh20

3. h-invariant polynomials on K

Let R = IR[z, 23, 23,24, 25, 26] be the polynomial ring in six inde-
terminates over the reals. We can identify R with the ring of polyno-
mial functions on V' by defining P(Q) = P(a,b,c,d,e, f), where P =
P(21,22,23,24,25,2) isin R and Q is in V.

A polynomial P in R is called K h-invariant with respect to the action
of the hyperbolic homothetic group if P(k-Q) = Y"1 p; for all k € K
and Q € V, where

pi =pi(k-Q) =h"p;(Q), ti€Z.

Thus p;i‘s, (1 < i < n), are also h-invariant polynomials. The set of such
h-invariants polynomials, denoted by I, is an algebra over reals.

Now, we define three polynomials in R and show that they are K h-
invariant. Let

8(Q) = det A(Q), A(Q) = det(Q) and #(Q) = a - c.
LEMMA 3.1. 6, A and 7 are K h-invariant.

Proof. We see that 7 (respectively, §) K h-invariant by taking the
trace(respectively, determinant) of the equation A(Q') = NA(Q)N. The
h-invariance of A follows by taking the determinant of both sides of

Q =k-Q=(k")Qk".
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4. Canonical forms

As in (2.5), let

a b d o b
Q=1]1b c e andA(Q):(b c)’
d e f
Under the hyperbolic homothetic motions we want to find conditions to

reduces A(Q) to a diagonal form. As we shall see the possibility of this
reduction will depend upon the sign of

AQ) = [F(Q))? + 46(Q) = (a — )% + 4(ac - b?) = (a + ¢)? — 4b°.
So a Lemma, follows.

LEMMA 4.1. Ifb # 0, A(Q) > 0 if and only if |%t¢| > 1 and A(Q) is
h-invariant.

ProposITION 4.1. If A(Q) > 0, then in the orbit of Q there exists a
Q' which is of the form

a 0 d
Q=10 ¢ ¢€].
d/ el fl

Proof. We can assume b # 0. From (2.6) we need 8 such that

b = hz{ (“ + C) sh26 + bch29} =0,

2

or equivalently
a-+c

2b
This is possible if and only if [2£€] > 1, or by the Lemma 4.1, A(Q) > 0.

Now, to obtain @', we take k! = (N(g’ h) (1)), as in (2.2).

The diagonal element a’ and ¢’ are solutions of the system
{ o' —cd =h*F(Q)=h%*a~c)
a'c = h46(Q) = h*(ac - b?)
Thus from (2.6) we get 2’ — ¢* = (¢/ = ¢)(a' + ¢') = h4§g—_’;—3A(Q)ch20.

Since A(Q) > 0, it follows that the sign of (a’)? — (¢/)? is eqaul to the sign
a? — 2. These conditions determine a’ and ¢’ uniquely.

coth20 = —
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PROPOSITION 4.2. If A(Q) <)(b # 0), then the orbit of Q) contains the

matrix
W*F(Q)  +h?V/-6(Q) d
Q' = | £h?\/-6(Q) 0 e
d e f
(where the sign of the square root is equal to the sign of b).

Proof. We want to make ¢/ = 0.
It follows from (2.6) that we need 6 such that

a’ = h*{ach?@ + bsh20 + csh?6}
(4.1) B = h2{£€sh2 + beh2o)
0 = h*{ash?@ + bsh20 + cch?®f

The h-invariance of 7(Q) and 6(Q) imply a’ = h%(a — ¢)= h?7(Q) and
b = Fh%,/-4(Q). We shall be assuming that b’ has the same sign as b,
that is, bb' > 0. Because of the first and last equation of (4.1) are linearly
dependent we obtain

b = h2{%£°sh26 + beh26}
(4.2) ,
0 = h%{ash?@ + bsh26 + cch?8

or
{ 20 = h*{(a + c)sh20 + 2bch26}
a—c = 2bsh28+ (a+ c)ch26
For a moment, let us consider the system:
2y = h?{(a + c)y + 2b
ws) { {(a+ )y +2ba}
a—-c =2by+ (a+c)x

Since the determinant A(Q) = (a+c)%—4b% < 0, (4.3) has unique solutions

_ h*(a® — %) - 4bV

and o = 2V (a + ¢) — 2bh%*(a - ¢)
RA(Q) - EIN) |
It is easy to show that 2 — y? = 1. To finish the proof, we must show

that £ > 0. In fact, since A(Q) < 0, it is only necessary to show that
h2(a® — c?) — 4bb’ < 0. Now,

(44) A@ = FQF +46@ = @ + X&),
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From the h-invariance of §(Q), we also have

(4.5) AQ) = [FQN — -

From (4.4) and (4.5), the condition A(Q) < 0 is equivalent to the inequal-
ities
, b .. 2|v|
(i) la+ecl <2|blor (it) la—c|l< R
By multiplying (i) and (ié) we obtain: a® — ¢® < |a? — ¢?| < 75|b||b'| or,
since bb’ > 0, h?(a? — c?) — 4bb’ < 0, as desired.
PROPOSITION 4.3. If A(Q) =0, then :

(i) If a®> — ¢* > 0, the orbit of Q) contains the matrix

pFQ)  FrZ@ g
Q=|zr@ 5
d e’ f

plas sign if b > 0 minus sign if b < 0.
(ii) If a® — ¢? < 0, the matrix

R F( Q)] !

Q' = ___hzl(‘)"’inl i 2~2 d/
- F 3 —h T(Q) €

d e’ f

plas sign if b > 0 minus sign if b < 0, belong to the orbit of Q.
(iii) If a = ¢, then b = +a and

a =*a d
Q = “+a a [4 .
d e f

(iv) Ifa = —c, then b= 0 and

a 0 d
Q=10 —a e].
d e f
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Proof. First, let us suppose a2 — ¢? > 0. In this case, we shall assume
that b’ has the same sign as b. As in the proof of Proposition 4.2 we obtain
the system

20" = (a + c)y + 2bx

(46) a—c=2by+(a+c)z

The determinant A(Q) = (a + ¢)?> — 4b? is equal to zero. The system
(4.6) admits a line of solutions, with slope m = +1, which intercepts the
z-axis in o = £ > 0.

Thus, this line intercepts the hyperbola 2 — y2 =1, 2 > 0 and we can
take 6 such that = = ch26 and y = sh26.

When a? — ¢ < 0, we shall make o’ = 0. In this case, we proceed as

before, just solving the system

{ 20 = h*{(a+ c)y + 2bz}
c—a =2by+ (a+c)z '

Of course, (¢1i) and (iv) follow directly from the hypothesis.

Up to now, we analysed the action of a hyperbolic homothetic rotation
on the matrix Q. Now, we shall be using translation to bring @ to a
normal form.

PROPOSITION 4.4. If §(Q) # 0 and (i) A(Q) > 0 or (i1) A(Q) = 0,
with b = 0, then the orbit of ) contains the matrix:

h%a’ 0 0
(4.7) 0 h% 0 |.
o ' 4y
In (ii), we also have a = —¢'.

Proof. (i) Since A(Q) > 0, from the Proposition 4.1, the orbit of Q
contains the matrix:

a 0 d
(4.8) Q=0 ¢ €}.
d e f

Because o' - ¢ = §(Q’) = h*5(Q) # 0, there exist real numbers s and ¢
such that:
a's+d =0and dt+¢ =0.
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If we take k™! as in the form (2.2) with N = hl, and B* = [s t], where I,
is 2 x 2 unit matrix. Then Q" = k - Q' is diagonal, with entries &', ¢ and
f'. From h*A(Q) = A(Q") = a'df' = &(Q) - f', it follows that Q" is as
we expected.

(44) When b = 0 and A(Q) = 0, it also follows that @’ = —¢'.

PROPOSITION 4.5. If §(Q) # 0 and A(Q) < 0, then the orbit of Q
contains the matrix

M7Q)  Fh*/-4@Q) 0
Fhty/-6(Q) 0 0
0 0 -5
(Sgn \/—4(Q) equals sgn of b).

Proof. Let us suppose b > 0(the case b < 0 is analogous). From Propo-
sition 4.2, the orbit of () contains the matrix

RFQ)  FhPV/-4Q) o
Fh?/=8(Q) 0 e |-

d e f
Since 6(Q) # 0, there exist real numbers s and ¢ such that
sh27(Q) + th2\/=8(Q) + d’ = 0 and sh?/=5(Q) + € = 0.

Now, let k=1 replace k in (2.2), with N = hl; and B* = [st]. Then,
Q" =k - Q' is as above.

PROPOSITION 4.6. If§(Q) # 0 and A(Q) = 0, then
(i) a2 — % > 0, the orbit of Q contains the matrix
MAQ) FEEQL g
FEHAL 0 o |-
AFQ}
(ii) If a® — ¢® < 0, the orbit of Q contains the matrix
0 @
e L )
0 0 -2(4

The proof is analogous to the proof of the Proposition 4.5, and we shall
omit it.



70 Z. Unan and M. Yilmaz

PropPoOSITION 4.7. If §(Q) = 0, 7(Q) # O(hence, A(Q) > 0) and
A(Q) # 0, then

(i) If 7(Q) - A(Q) < 0, the orbit of Q contains the matrix

h7(Q) 0 O
0 0 €],
0 e’ 0

where ' = :Flhl\/%%.
(ii) If 7(Q) - A(Q) > 0, the orbit of Q contains the matrix

0 0 d"
0 —-h*7(Q) 0 |,
d" 0 0

Proof. (i) The hypothesis imply that A(Q) > 0.
Since 6(Q) = 0, and 7(Q) - A(Q) < 0, we may assume in (4.8) that:

hR2F(Q) 0 d
0 0 € }.
dl el f

We note that A(Q’) = A*A(Q) = —'*h?#(Q) # 0, so that ¢’ # 0. Then,
we can find s and ¢ such that A%2s7(Q) + d’ = 0 and h?s27(Q) + 2(d's +
e't) + f = 0. To obtain the normal form, let Q" = k- Q’, where k~! has
the form (2.2) with N = hl; and B* = [s t].

(#3) Follows analogously.

PROPOSITION 4.8. If §(Q) = 0, 7(Q) # O(hence, A(Q) > 0) and
A(Q) = 0, then the orbit of Q contains either the matrix

(i)
(h‘*v‘-(Q) 0 0
o o0 0],
o o0 f

when |c| < |b] or (b= 0 and a # 0),
or

' sy
where d” = F|h| ‘;‘%‘)l
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0 0 0
0 —h*7(Q) 0 |,
0 0 f

when |c| > |b| or (b=10 and ¢ # 0).
In either case, f' = f — %‘

71

(ii)

Proof. From the Proposition 4.1, we may assume

a 0 d
QI — 0 C’ eI ,
d e f

where a’ - ¢/ =0, since § =0
If ¢ =0, A(Q) = 0 implies ¢’ = 0.
Now, choosing k~! as in (4.8), with N = hl, and B! = [s 0] we have

KAF(Q) 0 0
Q=k-Q= o 0 0],
o 0 f

where h?s7(Q) +d' = 0.
With the same procedure, when o’ = 0, we obtain (ii).

Using the expression for f' = f(Q') as in (2.5) and the invariance of
d? — e? with respect to a hyperbolic homothetic rotation, we can find f’.

PROPOSITION 4.9. If§(Q) = 7(Q) = O(hence, A(Q) = 0), then
(i) If b = a, the orbit of Q contains either the matrix

h%a h2%a d'
h%a h%a 0 |, whend#e

d 0 0

h*a h%a 0
h%c h%a 0 |, whend=ce.

0o o f

or the matrix

Furthermore, d’' = (d —e)h? and f' = f — 4:».
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(ii) If b = —a, the orbit of Q contains either the matrix

h’a —-h2a d
~h%a h%a 0 |, whend+# —e
d 0 0
or the matrix
h%a —h%a 0
—h%a h%a 0 |, whend= —e.
o o0 f
Furthermore, d' = (d + e)h? and f' = f — %2-.

The proof in analogous to the previous Propositions, and we shall omit
it.

5. Geometric Interpretation

As we saw in the section 4, according to A(Q) > 0 and A(Q) < 0, a
given hyperbola may or may not reduced to the form a’z? + ¢’y + f' = 0.
Now, we want to find a geometric interpretation for this fact.

We recall here that the group of hyperbolic homothetic rotations leave
h-invariant some sets of figure 1, in section 2 to simplify notation, we shall
denote by S = I U III, the set of spacelike vectors and by 7' = II U IV,
the set of timelike vectors.

PROPOSITION 5.1. If§(Q) < 0 and A(Q) > 0, then both asymptotes of
the hyperbola C' associated to @) are timelike or both are spacelike. That
is if a® — ¢ > 0, they are both in T and if a® — ¢? < 0, they are in S.

Proof. Since S and T are h-invariant, we may analyse the position of
the asymptotes of the reduced form.

First, let a?—c? > 0. The standard equation of C after a hyperbolic ho-
mothetic rotation is a’z? + c'y? = — ?( i, where a’? — ¢* > 0(Proposition
4.1). Then, the asymptotes of this reduced conic are the lines

Ly : |hlv]a'|z + |hlV/]c'ly =0,
Ly : |hlv/]a’|lz — |h{v/|c'ly = 0.
respectively.

Since a’> ~ /% > 0, E,i'l > 1 and it follows that L, lies in T. The second
case a? — ¢ < 0 is analogous. In this case, L, and L, are both in §.
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PRrOPOSITION 5.2. If6(Q) < 0 and A(Q) < 0O, then the hyperbola C
has one asymptote which is timelike and one which is spacelike.

Proof. From the Proposition 4.1, the standard equation of C is

()  AYF(Q)x?® +2n*/-6(Q)zy - = A(Q) =0

Q)
or
(1)  AF(Q)z? - 2h*/-6(Q)zy — ((g)) 0.

Let’s assume that (¢) holds. The asymptotes are the lines:
Ly:z=0and Ly : h*7(Q)z + 2h*/-6(Q)y = 0.

To finish the proof, we just observe that the slope of L, is in the interval
(—1,1). The case (i) is analogous.

PROPOSITION 5.3. If§(Q) < 0 and A(Q) = 0, at least one of the lines
y =z and y = — is an asymptotes of C'(may be both).

Proof. (i) Let b= 0. Then, from Proposition 4.1, the standard equation

s AQ
5Q)

which has y = zr and y = —z as asymptotes.
Since these lines are h-invariant, the result is also true for the original
C.

(i) Let b # 0. Then A(Q) = 0 & 7(Q) = F2/-40(Q). From the
Proposition 4.3, the standard equation is

h%a'z? + hic'y? + =22

(51) Q) F HQley = S
or
(52) FHTQloy - QI = 5

If, for instance, (5.1) holds, then the asymptotes are
Li:z=0and Ly:y=zo0ory=—

The orginal C inherits the properties: L, lies in S and L; is y = = or
y = —zx.
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6. The Ring of h-invariants

The exposition of this paragraph is devoted to showing that any polyn-
imial in R = IR|z, 29, 23, 24, %5, 6] h-invariant under the action of the
hyperbolic homothetic group K is a polynomial in 7,6 and A. Now, we
prove that they are algebraically independent over IR.

THEOREM 6.1. If R[7,d, Aldenote the subalgebra of R, generated by
7,0 and A, and K is the algebra of h-invariant polynomials, then R =
IR[7,4, A]. Moreover, 7,8 and A are algebraically independent over R.

To simplify notation, we shall denote a matrix

a b d
Q=|b ¢ e | byl(abede/f).
d e f

We recall that R can be identifed with the ring of polynomial functions
over V, as we saw in §3.
Now, we define the following subsets of V:
X1 = {(h*a,h*b,0,0,0, f | b #0,a* — 4b* < 0}
X2 = {(h*a,0,h*,0,0, f | ac # 0,a # —c}
Ur={QeV |éQ)<0veAQ) <0}
U ={Q €V |4Q)#0 ve A(Q) >0}
Any element of U; is transformed by H in an element in X;. Also, any

element in U, is K-invariant to an element in X,.
We need the following lemma:

LEMMA 6.1. Any h-invariant polynomial is even in the variable b.

Proof. First, we observe that if (a,b,c,d, e, f) € Us, then (a, -b,¢,d, ¢, f)
€ U;. Hence, given any h-invariant polynomial P, we define in U, the
polynomial:

P(a,b,c,d,e, f) = P(a,b,c,d,e, f) — P(a,~b,c,d,e, f).

Now, we saw that any element (a,b,c,d,e, f) in U, is equvalent to an
element (a,0,¢,0,0, f). The h-invariance of P implies

(6.1) P(a,b,c,d,e, f) = P(h%a,0,h%,0,0, f).
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Hence, P = 0 in U,. Since U, is an open set in V, it follows that p = 0 in
V, that is, P is even in b.

We divide the proof of Theorem 6.1 into three main steps:

Proof of Theorem 6.1. We divide the prrof of Theorem 6.1 into three
main steps:

Step 1. Let B be the ring of the polynomial functions over X, and,
as before, P be the set of h-invariant polynomials. We define a mapping
H:I— Aby P— H(P) = P|x,, restriction of P to X, that is

(6.2) P(a,b,c,d,e, f) — P(h*a, h*b,0,0,0, f).

It follows that H is a one-to-one homomorphism. In fact, from the invari-
ance of P, H(P) = P|x, = 0 implies P|y, = 0. Since U, is open in V, the
polynomial P must be identically zero in V.

We conclude this step by noting that:

H(7(Q") = #(Q)|x, = K*7(Q)Ix, = h*a = K H(#(Q)),
H(3(Q)) = 8(Q")x, = h*(Q)|x, = —h*b? = B*H(5(Q)),
H(AW@Q")) = A@)|x, = K*AQ)|x, = —h*b®f = h*H(A(Q)).

Step 2. Let P be a h-invariant polynomial. There are unique polyno-
mials go(a,b), - , gm(a,b), such that

(6.3) H(P) = gola,b)f™ + - -+ gm(a,b).
From the previous Lemma 6.1, P is even in the variable b. Hence
(6.4) H(P) = ho(a, =b®)f™ + - + him(a, —b?).

Next, let us consider the hinvariant polynomials 6™ P and ho(7,8)A™
+ hi(7,6)0A™"1 4+ ... + R, (7,6)0™. The image by H of each of one
these polynomials is equal to (—b*)™H(P).

As we saw in step 1. H is 1-1, and we have the equality:

(6.5) 8™ P = ho(F,8)A™ + hy(F,8)6A™ L 4 -« 4 hpy (7, 0)0™.

Step 3. This part of the proof follows as in §3. We repeat it here for
completeness. We rewrite the right-hand side of (6.5) as:

(6.6) 8™P = 6"[jo(F, A)6* + - - - + ji(F, Q)]
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where ji(7,4A) # 0.
If n > m, it follows that P is a polynomial in 7,4 and A.
Now, assuming n < m, we obtain a contradiction. In fact,

"™ = jo(F,A)0% + - - + jx(F,A), where m —n > 0.

Since jx(7,A) # 0, there are real numbers o and 3 such that jx(e, 3) #0
and af < 0. Now, we take v = \/~—§ and @ = (,0,0,0,7,0).

Evaluating both sides of (6.6) in @, gives 0 = jx(7,A) # 0. Finally,
7,0 and A are algebraically independent since their images under H are.
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