HYPERBOLIC HOMOTHETIC MOTIONS OF CONICS

Z. ÜNAN AND M. YILMAZ

Ondokuz Mayis University, Faculty of Art and Sciences, Dept. of Mathematics, Kurupelit 55139, Samsun-Turkey.

E-mail: zuhalu@Samsun.omu.edu.tr.

E-mail: Murtezay@Samsun.omu.edu.tr.

1. Introduction

Let G be an affine group and V be an affine algebric set. We recall that an action of G on V is given by a mapping

$$\cdot: K \times V \to V$$
 denoted by $(k, v) \to k \cdot v$

such that (i) $(k \cdot t) \cdot v = k \cdot (t \cdot v)$ and (ii) $1 \cdot v = v$ for all $k, t \in K$, $v \in V$, 1 being the identity of G. The orbit of an element v of V is

$$K \cdot v = \{k \cdot v \mid k \in K\}.$$

An element $v \in V$ is G invariant or, simply, invariant if $k \cdot v = v$ for all $g \in G[1,2,3]$.

The study of the Euclidean motions of conics, by defining the action of the Euclidean group on conics and using some matrix techniques, was given in [3].

By analogy with the Euclidean case, Mendes and Ruas have studied the behavior of conics in the plane under the Lorentzian group action[4].

The present paper deal with the hyperbolic homothetic motion of conics. By defining the hyperbolic homothetic group we analyse its action on a conic. We present h-invariant polynomials and show that certain polynomials in the coefficients of the conics are h-invariant under the group mentioned above. Some geometric interpretation related to standard form of conics are also given. Finally the h-invariant subalgebra I, generated by some polynomials $\tilde{\tau}, \delta, \Delta$ are investigated.

Received May 25, 2000.

2. A hyperbolic homothetic group action

A 2 \times 2 matrix N is called h-special hyperbolic homothetic if there exists h and θ such that

(2.1)
$$N = N(\theta, h) = h \begin{pmatrix} ch\theta & sh\theta \\ sh\theta & ch\theta \end{pmatrix}, \quad h, \theta \in IR, h \neq 0$$

where $ch\theta$, $sh\theta$ are usual hyperbolic functions.

The set of all such matrices, with usual multiplication constitutes a group, called the group of hyperbolic homothetic rotations, or proper homothetic Lorentz group.

Each $N \in G$ defines a linear transformation

$$\begin{split} N: IL^2 &\to IL^2 \\ \begin{pmatrix} x \\ y \end{pmatrix} &\to \begin{pmatrix} x' \\ y' \end{pmatrix} = N \begin{pmatrix} x \\ y \end{pmatrix}. \end{split}$$

Then the Lorentz inner product is defined by $\langle \vec{v}, \vec{w} \rangle = x_1 x_2 - y_1 y_2$, where $\vec{v} = (x_1, y_1), \vec{w} = (x_2, y_2)$.

It follows easily that the eigenvectors of N are $\vec{e} = (1, -1)$ and $\vec{e} = (1, 1)$ and corresponding eigenvalues $\lambda_1 = h(ch\theta - sh\theta)$ and $\lambda_2 = h(ch\theta + sh\theta)$ are positive real numbers.

Let I, II, III, IV, V and VI be the sets in figure 1. The I \cup III, II \cup IV and V \cup VI remain h-invariant, that is, if $(x, y) \in A$, then $N(x, y) \in A$, $\forall N \in G$, where A denotes any one of these sets.

Figure 1

To see, for instance, that $I \cup III$ G h-invariant, let $\vec{v} = (x, y)$ be any element in this set(In I or in III). Then $\vec{v} = \alpha \vec{e_1} + \beta \vec{e_2}$, where α and β are positive numbers. Hence, $N\vec{v} = (\alpha \lambda_1)\vec{e_1} + (\beta \lambda_2)\vec{e_2}$ with $\alpha \lambda_1$, $\beta \lambda_2$ are positive and so $N\vec{v} \in I$ or $N\vec{v} \in III$.

Vectors in I or III are called spacelike, in II or IV are timelike, and in V or VI are null.

Furthermore, the points of the G h-invariant sets,, $I \cup III$, $II \cup IV$, slide along the hyperbolas $x^2 - y^2 = \text{constant}$. Now, $\lambda_1 \lambda_2 = h^2$ for all θ . If $\theta > 0$, the plane shrinks λ_1 times to the straight line x = -y and stretches in the orthogonal direction away from x = y. When $\theta < 0$, we just reverse the directions of stretching and compression, and the direction of motion of the points along the hyperbolas.

In analogy with the Euclidean case [3] and with the hyperbolic case [4], we shall denote by K, consists of all 3×3 real matrices of the form

(2.2)
$$k(\theta, h) = \begin{pmatrix} N(\theta) & B \\ 0 & 1 \end{pmatrix},$$

where $N(\theta)$ is a special hyperbolic homothetic matrix and B is a 2×1 column matrix.

We can identify the plane IR^2 with the plane z=1 in IR^3 , that is, we can write

$$(2.3) p = \begin{bmatrix} x \\ y \end{bmatrix} \leftrightarrow P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$$

Then each matrix $k \in K$ gives rise to a motion $M_k(p) = kP = Np + B$. Let V be the vector space of all 3×3 real symmetric matrices. For $k \in K$ and $Q \in V$, we define

$$(2.4) k \cdot Q = (k^{-1})^t Q k^{-1}.$$

It is easy to verify that (2.2) gives an action of G on V.

We want to study the orbit under G of an element Q in V. To do this let us denote a typical element Q in V by

(2.5)
$$Q = \begin{pmatrix} a & b & d \\ b & c & e \\ d & e & f \end{pmatrix} = \begin{pmatrix} A(Q) & D(Q) \\ D^t(Q) & f(Q) \end{pmatrix},$$

where
$$A(Q) = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
, $D(Q) = \begin{pmatrix} d \\ e \end{pmatrix}$ and $f(Q) = f$.

We can identify a matrix $Q \in V$ with the polynomial $Q(P) = Q(x, y) = ax^2 + 2bxy + cy^2 + 2dx + 2ey + f$. Note that $Q(p) = P^tQP$.

Let $Q' = k \cdot Q = (k^{-1})^t Q k^{-1}$ and C, C' be the conics associated to Q, Q', respectively; that is $C = \{p \mid Q(p) = 0\}$ and $C' = \{p \mid Q'(p) = 0\}$. The equation

$$Q(p) = P^t Q P = P^t k^t Q^t k P = (kP)^t Q'(kP) = Q'(kp)$$

shows that p lies on C if and only if $M_k(p) = kp$ is on C'. The following explicit expression can be given for the matrix A(Q'):

$$(2.6) \quad A(Q') = h^2 \begin{pmatrix} ach^2\theta + bsh2\theta + csh^2\theta & \left(\frac{(a+c)}{2}\right)sh2\theta + bch2\theta \\ \left(\frac{(a+c)}{2}\right)sh2\theta + bch2\theta & ash^2\theta + bsh2\theta + csh^2\theta \end{pmatrix}.$$

3. h-invariant polynomials on K

Let $R = IR[z_1, z_2, z_3, z_4, z_5, z_6]$ be the polynomial ring in six indeterminates over the reals. We can identify R with the ring of polynomial functions on V by defining P(Q) = P(a, b, c, d, e, f), where $P = P(z_1, z_2, z_3, z_4, z_5, z_6)$ is in R and Q is in V.

A polynomial P in R is called K h-invariant with respect to the action of the hyperbolic homothetic group if $P(k \cdot Q) = \sum_{i=1}^{n} p_i$ for all $k \in K$ and $Q \in V$, where

$$p_i = p_i(k \cdot Q) = h^{t_i}p_i(Q), \quad t_i \in Z.$$

Thus p_i 's, $(1 \le i \le n)$, are also h-invariant polynomials. The set of such h-invariants polynomials, denoted by I, is an algebra over reals.

Now, we define three polynomials in R and show that they are K h-invariant. Let

$$\delta(Q) = \det A(Q), \quad \Delta(Q) = \det(Q) \text{ and } \tilde{\tau}(Q) = a - c.$$

LEMMA 3.1. δ , Δ and $\tilde{\tau}$ are K h-invariant.

Proof. We see that $\tilde{\tau}$ (respectively, δ) K h-invariant by taking the trace(respectively, determinant) of the equation A(Q') = NA(Q)N. The h-invariance of Δ follows by taking the determinant of both sides of $Q' = k \cdot Q = (k^{-1})^t Q k^{-1}$.

4. Canonical forms

As in (2.5), let

$$Q = \begin{pmatrix} a & b & d \\ b & c & e \\ d & e & f \end{pmatrix} \text{ and } A(Q) = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

Under the hyperbolic homothetic motions we want to find conditions to reduces A(Q) to a diagonal form. As we shall see the possibility of this reduction will depend upon the sign of

$$\Lambda(Q) = \left[\tilde{\tau}(Q)\right]^2 + 4\delta(Q) = (a-c)^2 + 4(ac-b^2) = (a+c)^2 - 4b^2.$$

So a Lemma follows.

LEMMA 4.1. If $b \neq 0$, $\Lambda(Q) > 0$ if and only if $\left|\frac{a+c}{2b}\right| > 1$ and $\Lambda(Q)$ is h-invariant.

PROPOSITION 4.1. If $\Lambda(Q) > 0$, then in the orbit of Q there exists a Q' which is of the form

$$Q'=egin{pmatrix} a'&0&d'\0&c'&e'\d'&e'&f' \end{pmatrix}.$$

Proof. We can assume $b \neq 0$. From (2.6) we need θ such that

$$b' = h^2 \left\{ \left(\frac{a+c}{2} \right) sh2\theta + bch2\theta \right\} = 0,$$

or equivalently

$$coth2\theta = -\frac{a+c}{2h}.$$

This is possible if and only if
$$\left|\frac{a+c}{2b}\right| > 1$$
, or by the Lemma 4.1, $\Lambda(Q) > 0$. Now, to obtain Q' , we take $k^{-1} = \begin{pmatrix} N(\theta,h) & 0 \\ 0 & 1 \end{pmatrix}$, as in (2.2).

The diagonal element a' and c' are solutions of the system

$$\begin{cases} a'-c' = h^2 \tilde{\tau}(Q) = h^2(a-c) \\ a'c' = h^4 \delta(Q) = h^4(ac-b^2) \end{cases}$$

Thus from (2.6) we get $a'^2 - c'^2 = (a' - c')(a' + c') = h^4 \frac{(a-c)}{(a+c)} \Lambda(Q) ch 2\theta$. Since $\Lambda(Q) > 0$, it follows that the sign of $(a')^2 - (c')^2$ is equal to the sign a^2-c^2 . These conditions determine a' and c' uniquely.

PROPOSITION 4.2. If $\Lambda(Q) < (b \neq 0)$, then the orbit of Q contains the matrix

$$Q' = egin{pmatrix} h^2 ilde{ au}(Q) & \pm h^2 \sqrt{-\delta(Q)} & d' \ \pm h^2 \sqrt{-\delta(Q)} & 0 & e' \ d' & e' & f \end{pmatrix}$$

(where the sign of the square root is equal to the sign of b).

Proof. We want to make c' = 0.

It follows from (2.6) that we need θ such that

(4.1)
$$\begin{cases} a' = h^2 \{ach^2\theta + bsh2\theta + csh^2\theta\} \\ b' = h^2 \{\frac{a+c}{2}sh2\theta + bch2\theta\} \\ 0 = h^2 \{ash^2\theta + bsh2\theta + cch^2\theta\} \end{cases}$$

The h-invariance of $\tilde{\tau}(Q)$ and $\delta(Q)$ imply $a' = h^2(a-c) = h^2\tilde{\tau}(Q)$ and $b' = \mp h^2\sqrt{-\delta(Q)}$. We shall be assuming that b' has the same sign as b, that is, bb' > 0. Because of the first and last equation of (4.1) are linearly dependent we obtain

(4.2)
$$\begin{cases} b' = h^2 \left\{ \frac{a+c}{2} sh2\theta + bch2\theta \right\} \\ 0 = h^2 \left\{ ash^2\theta + bsh2\theta + cch^2\theta \right\} \end{cases}$$

or

$$\begin{cases} 2b' &= h^2\{(a+c)sh2\theta + 2bch2\theta\} \\ a-c &= 2bsh2\theta + (a+c)ch2\theta \end{cases}$$

For a moment, let us consider the system:

(4.3)
$$\begin{cases} 2b' = h^2\{(a+c)y + 2bx\} \\ a-c = 2by + (a+c)x \end{cases}.$$

Since the determinant $\Lambda(Q) = (a+c)^2 - 4b^2 < 0$, (4.3) has unique solutions

$$x = \frac{h^2(a^2 - c^2) - 4bb'}{h^2\Lambda(Q)}$$
 and $y = \frac{2b'(a+c) - 2bh^2(a-c)}{h^2\Lambda(Q)}$.

It is easy to show that $x^2 - y^2 = 1$. To finish the proof, we must show that $x \ge 0$. In fact, since $\Lambda(Q) < 0$, it is only necessary to show that $h^2(a^2 - c^2) - 4bb' < 0$. Now,

(4.4)
$$\Lambda(Q) = [\tilde{\tau}(Q)]^2 + 4\delta(Q) = [\tilde{\tau}(Q)]^2 + \frac{4\delta(Q')}{h^4}.$$

From the h-invariance of $\delta(Q)$, we also have

(4.5)
$$\Lambda(Q) = [\tilde{\tau}(Q)]^2 - \frac{4b'^2}{h^4}.$$

From (4.4) and (4.5), the condition $\Lambda(Q) < 0$ is equivalent to the inequalities

(i)
$$|a+c| < 2|b|$$
 or (ii) $|a-c| < \frac{2|b'|}{h^2}$.

By multiplying (i) and (ii) we obtain: $a^2 - c^2 \le |a^2 - c^2| < \frac{4}{h^2}|b||b'|$ or, since bb' > 0, $h^2(a^2 - c^2) - 4bb' < 0$, as desired.

PROPOSITION 4.3. If $\Lambda(Q) = 0$, then:

(i) If $a^2 - c^2 > 0$, the orbit of Q contains the matrix

$$Q' = egin{pmatrix} h^2 ilde{ au}(Q) & \mp rac{h^2 | ilde{ au}(Q)|}{2} & d' \ \mp rac{h^2 | ilde{ au}(Q)|}{2} & 0 & e' \ d' & e' & f \end{pmatrix}$$

plas sign if b > 0 minus sign if b < 0.

(ii) If $a^2 - c^2 < 0$, the matrix

$$Q'' = \begin{pmatrix} 0 & \mp \frac{h^2 |\tilde{\tau}(Q)|}{2} & d' \\ \mp \frac{h^2 |\tilde{\tau}(Q)|}{2} & -h^2 \tilde{\tau}(Q) & e' \\ d' & e' & f \end{pmatrix}$$

plas sign if b > 0 minus sign if b < 0, belong to the orbit of Q.

(iii) If a = c, then $b = \pm a$ and

$$Q = \begin{pmatrix} a & \pm a & d \\ \pm a & a & e \\ d & e & f \end{pmatrix}.$$

(iv) If a = -c, then b = 0 and

$$Q = \begin{pmatrix} a & 0 & d \\ 0 & -a & e \\ d & e & f \end{pmatrix}.$$

Proof. First, let us suppose $a^2 - c^2 > 0$. In this case, we shall assume that b' has the same sign as b. As in the proof of Proposition 4.2 we obtain the system

(4.6)
$$2b' = (a+c)y + 2bx a - c = 2by + (a+c)x$$

The determinant $\Lambda(Q) = (a+c)^2 - 4b^2$ is equal to zero. The system (4.6) admits a line of solutions, with slope $m = \pm 1$, which intercepts the x-axis in $x_0 = \frac{a-c}{a+b} > 0$.

Thus, this line intercepts the hyperbola $x^2 - y^2 = 1$, x > 0 and we can take θ such that $x = ch2\theta$ and $y = sh2\theta$.

When $a^2 - c^2 < 0$, we shall make a' = 0. In this case, we proceed as before, just solving the system

$$\begin{cases} 2b' &= h^2\{(a+c)y + 2bx\} \\ c-a &= 2by + (a+c)x \end{cases}.$$

Of course, (iii) and (iv) follow directly from the hypothesis.

Up to now, we analysed the action of a hyperbolic homothetic rotation on the matrix Q. Now, we shall be using translation to bring Q to a normal form.

PROPOSITION 4.4. If $\delta(Q) \neq 0$ and (i) $\Lambda(Q) > 0$ or (ii) $\Lambda(Q) = 0$, with b = 0, then the orbit of Q contains the matrix:

(4.7)
$$\begin{pmatrix} h^2 a' & 0 & 0 \\ 0 & h^2 c' & 0 \\ 0 & 0 & \frac{\Delta(Q)}{\delta(Q)} \end{pmatrix}.$$

In (ii), we also have a = -c'.

Proof. (i) Since $\Lambda(Q) > 0$, from the Proposition 4.1, the orbit of Q contains the matrix:

(4.8)
$$Q' = \begin{pmatrix} a' & 0 & d' \\ 0 & c' & e' \\ d' & e' & f \end{pmatrix}.$$

Because $a' \cdot c' = \delta(Q') = h^4 \delta(Q) \neq 0$, there exist real numbers s and t such that:

$$a's + d' = 0$$
 and $c't + e' = 0$.

If we take k^{-1} as in the form (2.2) with $N = hI_2$ and $B^t = [s\ t]$, where I_2 is 2×2 unit matrix. Then $Q'' = k \cdot Q'$ is diagonal, with entries a', c' and f'. From $h^4 \Delta(Q) = \Delta(Q'') = a'c'f' = \delta(Q) \cdot f'$, it follows that Q'' is as we expected.

(ii) When b = 0 and $\Lambda(Q) = 0$, it also follows that a' = -c'.

PROPOSITION 4.5. If $\delta(Q) \neq 0$ and $\Lambda(Q) < 0$, then the orbit of Q contains the matrix

$$egin{pmatrix} h^4 ilde{ au}(Q) & \mp h^4\sqrt{-\delta(Q)} & 0 \ \mp h^4\sqrt{-\delta(Q)} & 0 & 0 \ 0 & 0 & -rac{\Delta(Q)}{\delta(Q)} \end{pmatrix}$$

 $(\operatorname{Sgn} \sqrt{-\delta(Q)} \text{ equals sgn of } b).$

Proof. Let us suppose b > 0 (the case b < 0 is analogous). From Proposition 4.2, the orbit of Q contains the matrix

$$egin{pmatrix} h^2 ilde{ au}(Q) & \mp h^2\sqrt{-\delta(Q)} & d' \ \mp h^2\sqrt{-\delta(Q)} & 0 & e' \ d' & e' & f \end{pmatrix}.$$

Since $\delta(Q) \neq 0$, there exist real numbers s and t such that

$$sh^2\tilde{\tau}(Q) + th^2\sqrt{-\delta(Q)} + d' = 0$$
 and $sh^2\sqrt{-\delta(Q)} + e' = 0$.

Now, let k^{-1} replace k in (2.2), with $N = hI_2$ and $B^t = [s\ t]$. Then, $Q'' = k \cdot Q'$ is as above.

PROPOSITION 4.6. If $\delta(Q) \neq 0$ and $\Lambda(Q) = 0$, then

(i) $a^2 - c^2 > 0$, the orbit of Q contains the matrix

$$\begin{pmatrix} h^4 \tilde{\tau}(Q) & \mp \frac{h^4 |\tilde{\tau}(Q)|}{2} & 0 \\ \mp \frac{h^4 |\tilde{\tau}(Q)|}{2} & 0 & 0 \\ 0 & 0 & -\frac{\Delta(Q)}{\delta(Q)} \end{pmatrix}.$$

(ii) If $a^2 - c^2 < 0$, the orbit of Q contains the matrix

$$\begin{pmatrix} 0 & \mp \frac{h^4 |\tilde{\tau}(Q)|}{2} & 0 \\ \mp \frac{h^4 |\tilde{\tau}(Q)|}{2} & -h^4 \tilde{\tau}(Q) & 0 \\ 0 & 0 & -\frac{\Delta(Q)}{\delta(Q)} \end{pmatrix}.$$

The proof is analogous to the proof of the Proposition 4.5, and we shall omit it.

PROPOSITION 4.7. If $\delta(Q)=0$, $\tilde{\tau}(Q)\neq 0$ (hence, $\Lambda(Q)>0$) and $\Delta(Q)\neq 0$, then

(i) If $\tilde{\tau}(Q) \cdot \Delta(Q) < 0$, the orbit of Q contains the matrix

$$egin{pmatrix} h^4 ilde{ au}(Q) & 0 & 0 \ 0 & 0 & e'' \ 0 & e'' & 0 \end{pmatrix},$$

where $e'' = \mp |h| \sqrt{\frac{\Delta(Q)}{\tilde{\tau}(Q)}}$.

(ii) If $\tilde{\tau}(Q) \cdot \Delta(Q) > 0$, the orbit of Q contains the matrix

$$\left(egin{array}{ccc} 0 & 0 & d'' \ 0 & -h^4 ilde{ au}(Q) & 0 \ d'' & 0 & 0 \end{array}
ight),$$

where $d'' = \mp |h| \sqrt{\frac{\Delta(Q)}{\tilde{\tau}(Q)}}$.

Proof. (i) The hypothesis imply that $\Lambda(Q) > 0$. Since $\delta(Q) = 0$, and $\tilde{\tau}(Q) \cdot \Delta(Q) < 0$, we may assume in (4.8) that:

$$egin{pmatrix} h^2 ilde au(Q) & 0 & d' \ 0 & 0 & e' \ d' & e' & f \end{pmatrix}.$$

We note that $\Delta(Q') = h^4 \Delta(Q) = -e'^2 h^2 \tilde{\tau}(Q) \neq 0$, so that $e' \neq 0$. Then, we can find s and t such that $h^2 s \tilde{\tau}(Q) + d' = 0$ and $h^2 s^2 \tilde{\tau}(Q) + 2(d's + e't) + f = 0$. To obtain the normal form, let $Q'' = k \cdot Q'$, where k^{-1} has the form (2.2) with $N = hI_2$ and $B^t = [s \ t]$.

(ii) Follows analogously.

PROPOSITION 4.8. If $\delta(Q) = 0$, $\tilde{\tau}(Q) \neq 0$ (hence, $\Lambda(Q) > 0$) and $\Delta(Q) = 0$, then the orbit of Q contains either the matrix

(i)

$$\begin{pmatrix} h^4 \tilde{\tau}(Q) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & f' \end{pmatrix},$$

when |c| < |b| or $(b = 0 \text{ and } a \neq 0)$, or

(ii)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & -h^4 \tilde{\tau}(Q) & 0 \\ 0 & 0 & f' \end{pmatrix},$$

when |c| > |b| or $(b = 0 \text{ and } c \neq 0)$. In either case, $f' = f - \frac{d^2 - e^2}{\tilde{\tau}(Q)}$.

Proof. From the Proposition 4.1, we may assume

$$Q'=egin{pmatrix} a'&0&d'\0&c'&e'\d'&e'&f \end{pmatrix},$$

where $a' \cdot c' = 0$, since $\delta = 0$

If c'=0, $\Lambda(Q)=0$ implies e'=0.

Now, choosing k^{-1} as in (4.8), with $N = hI_2$ and $B^t = [s \ 0]$ we have

$$Q' = k \cdot Q = egin{pmatrix} h^4 ilde{ au}(Q) & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & f' \end{pmatrix},$$

where $h^2 s \tilde{\tau}(Q) + d' = 0$.

With the same procedure, when a' = 0, we obtain (ii).

Using the expression for f' = f(Q') as in (2.5) and the invariance of $d^2 - e^2$ with respect to a hyperbolic homothetic rotation, we can find f'.

PROPOSITION 4.9. If $\delta(Q) = \tilde{\tau}(Q) = 0$ (hence, $\Lambda(Q) = 0$), then

(i) If b = a, the orbit of Q contains either the matrix

$$\begin{pmatrix} h^2a & h^2a & d' \\ h^2a & h^2a & 0 \\ d' & 0 & 0 \end{pmatrix}, \text{ when } d \neq e$$

or the matrix

$$\begin{pmatrix} h^2a & h^2a & 0 \\ h^2a & h^2a & 0 \\ 0 & 0 & f' \end{pmatrix}, \text{ when } d = e.$$

Furthermore, $d' = (d - e)h^2$ and $f' = f - \frac{d^2}{a}$.

(ii) If b = -a, the orbit of Q contains either the matrix

$$\begin{pmatrix} h^2a & -h^2a & d' \\ -h^2a & h^2a & 0 \\ d' & 0 & 0 \end{pmatrix}, \text{ when } d \neq -e$$

or the matrix

$$\begin{pmatrix} h^2 a & -h^2 a & 0 \\ -h^2 a & h^2 a & 0 \\ 0 & 0 & f' \end{pmatrix}$$
, when $d = -e$.

Furthermore, $d' = (d+e)h^2$ and $f' = f - \frac{d^2}{a}$.

The proof in analogous to the previous Propositions, and we shall omit it.

5. Geometric Interpretation

As we saw in the section 4, according to $\Lambda(Q) > 0$ and $\Lambda(Q) < 0$, a given hyperbola may or may not reduced to the form $a'x^2 + c'y^2 + f' = 0$. Now, we want to find a geometric interpretation for this fact.

We recall here that the group of hyperbolic homothetic rotations leave h-invariant some sets of figure 1, in section 2 to simplify notation, we shall denote by $S = I \cup III$, the set of spacelike vectors and by $T = II \cup IV$, the set of timelike vectors.

PROPOSITION 5.1. If $\delta(Q) < 0$ and $\Lambda(Q) > 0$, then both asymptotes of the hyperbola C associated to Q are timelike or both are spacelike. That is if $a^2 - c^2 > 0$, they are both in T and if $a^2 - c^2 < 0$, they are in S.

Proof. Since S and T are h-invariant, we may analyse the position of the asymptotes of the reduced form.

First, let $a^2 - c^2 > 0$. The standard equation of C after a hyperbolic homothetic rotation is $a'x^2 + c'y^2 = -\frac{\Delta(Q)}{\delta(Q)}$, where $a'^2 - c'^2 > 0$ (Proposition 4.1). Then, the asymptotes of this reduced conic are the lines

$$L_1: |h|\sqrt{|a'|}x + |h|\sqrt{|c'|}y = 0,$$

$$L_2: |h|\sqrt{|a'|}x - |h|\sqrt{|c'|}y = 0.$$

respectively.

Since $a'^2 - c'^2 > 0$, $\frac{|a'|}{|c'|} > 1$ and it follows that L_1 lies in T. The second case $a^2 - c^2 < 0$ is analogous. In this case, L_1 and L_2 are both in S.

PROPOSITION 5.2. If $\delta(Q) < 0$ and $\Lambda(Q) < 0$, then the hyperbola C has one asymptote which is timelike and one which is spacelike.

Proof. From the Proposition 4.1, the standard equation of C is

$$h^4 ilde{ au}(Q)x^2+2h^4\sqrt{-\delta(Q)}xy-rac{\Delta(Q)}{\delta(Q)}=0$$

or

(ii)
$$h^4 \tilde{\tau}(Q) x^2 - 2h^4 \sqrt{-\delta(Q)} xy - \frac{\Delta(Q)}{\delta(Q)} = 0.$$

Let's assume that (i) holds. The asymptotes are the lines:

$$L_1: x = 0 \text{ and } L_2: h^4 \tilde{\tau}(Q) x + 2h^4 \sqrt{-\delta(Q)} y = 0.$$

To finish the proof, we just observe that the slope of L_2 is in the interval (-1,1). The case (ii) is analogous.

PROPOSITION 5.3. If $\delta(Q) < 0$ and $\Lambda(Q) = 0$, at least one of the lines y = x and y = -x is an asymptotes of C(may be both).

Proof. (i) Let b = 0. Then, from Proposition 4.1, the standard equation is

$$h^2 a' x^2 + h^2 c' y^2 + \frac{\Delta(Q)}{\delta(Q)} = 0.$$

which has y = x and y = -x as asymptotes.

Since these lines are h-invariant, the result is also true for the original C.

(ii) Let $b \neq 0$. Then $\Lambda(Q) = 0 \Leftrightarrow \tilde{\tau}(Q) = \mp 2\sqrt{-\delta(Q)}$. From the Proposition 4.3, the standard equation is

(5.1)
$$h^{4}\tilde{\tau}(Q)x^{2} \mp h^{4}|\tilde{\tau}(Q)|xy = \frac{\Delta(Q)}{\delta(Q)}$$

or

If, for instance, (5.1) holds, then the asymptotes are

$$L_1: x = 0 \text{ and } L_2: y = x \text{ or } y = -x.$$

The original C inherits the properties: L_1 lies in S and L_2 is y = x or y = -x.

6. The Ring of h-invariants

The exposition of this paragraph is devoted to showing that any polynimial in $R = IR[z_1, z_2, z_3, z_4, z_5, z_6]$ h-invariant under the action of the hyperbolic homothetic group K is a polynomial in $\tilde{\tau}, \delta$ and Δ . Now, we prove that they are algebraically independent over IR.

THEOREM 6.1. If $R[\tilde{\tau}, \delta, \Delta]$ denote the subalgebra of R, generated by $\tilde{\tau}, \delta$ and Δ , and K is the algebra of h-invariant polynomials, then $R = IR[\tilde{\tau}, \delta, \Delta]$. Moreover, $\tilde{\tau}, \delta$ and Δ are algebraically independent over R.

To simplify notation, we shall denote a matrix

$$Q = \begin{pmatrix} a & b & d \\ b & c & e \\ d & e & f \end{pmatrix}$$
 by (a, b, c, d, e, f) .

We recall that R can be identified with the ring of polynomial functions over V, as we saw in §3.

Now, we define the following subsets of V:

$$X_{1} = \left\{ (h^{4}a, h^{4}b, 0, 0, 0, f \mid b \neq 0, a^{2} - 4b^{4} < 0 \right\}$$

$$X_{2} = \left\{ (h^{4}a, 0, h^{4}c, 0, 0, f \mid ac \neq 0, a \neq -c \right\}$$

$$U_{1} = \left\{ Q \in V \mid \delta(Q) < 0 \text{ ve } \Lambda(Q) < 0 \right\}$$

$$U_{2} = \left\{ Q \in V \mid \delta(Q) \neq 0 \text{ ve } \Lambda(Q) > 0 \right\}$$

Any element of U_1 is transformed by H in an element in X_1 . Also, any element in U_2 is K-invariant to an element in X_2 .

We need the following lemma:

LEMMA 6.1. Any h-invariant polynomial is even in the variable b.

Proof. First, we observe that if $(a, b, c, d, e, f) \in U_2$, then $(a, -b, c, d, e, f) \in U_2$. Hence, given any h-invariant polynomial P, we define in U_2 the polynomial:

$$\tilde{P}(a, b, c, d, e, f) = P(a, b, c, d, e, f) - P(a, -b, c, d, e, f).$$

Now, we saw that any element (a, b, c, d, e, f) in U_2 is equivalent to an element (a, 0, c, 0, 0, f). The h-invariance of P implies

(6.1)
$$P(a,b,c,d,e,f) = P(h^4a,0,h^4c,0,0,f).$$

Hence, $\tilde{P} \equiv 0$ in U_2 . Since U_2 is an open set in V, it follows that $\tilde{p} \equiv 0$ in V, that is, P is even in b.

We divide the proof of Theorem 6.1 into three main steps:

Proof of Theorem 6.1. We divide the prrof of Theorem 6.1 into three main steps:

Step 1. Let B be the ring of the polynomial functions over X_1 , and, as before, P be the set of h-invariant polynomials. We define a mapping $H: I \to A$ by $P \to H(P) = P|_{X_1}$, restriction of P to X_1 , that is

(6.2)
$$P(a,b,c,d,e,f) \to P(h^4a,h^4b,0,0,0,f).$$

It follows that H is a one-to-one homomorphism. In fact, from the invariance of P, $H(P) = P|_{X_1} = 0$ implies $P|_{U_1} = 0$. Since U_1 is open in V, the polynomial P must be identically zero in V.

We conclude this step by noting that:

$$\begin{split} H(\tilde{\tau}(Q')) &= \tilde{\tau}(Q')|_{X_1} = h^2 \tilde{\tau}(Q)|_{X_1} = h^2 a = h^2 H(\tilde{\tau}(Q)), \\ H(\delta(Q')) &= \delta(Q')|_{X_1} = h^4 \delta(Q)|_{X_1} = -h^4 b^2 = h^4 H(\delta(Q)), \\ H(\Delta(Q')) &= \Delta(Q')|_{X_1} = h^4 \Delta(Q)|_{X_1} = -h^4 b^2 f = h^4 H(\Delta(Q)). \end{split}$$

Step 2. Let P be a h-invariant polynomial. There are unique polynomials $g_0(a,b), \dots, g_m(a,b)$, such that

(6.3)
$$H(P) = g_0(a,b)f^m + \dots + g_m(a,b).$$

From the previous Lemma 6.1, P is even in the variable b. Hence

(6.4)
$$H(P) = h_0(a, -b^2)f^m + \dots + h_m(a, -b^2).$$

Next, let us consider the hinvariant polynomials $\delta^m P$ and $h_0(\tilde{\tau}, \delta)\Delta^m + h_1(\tilde{\tau}, \delta)\delta\Delta^{m-1} + \cdots + h_m(\tilde{\tau}, \delta)\delta^m$. The image by H of each of one these polynomials is equal to $(-b^2)^m H(P)$.

As we saw in step 1. H is 1-1, and we have the equality:

(6.5)
$$\delta^{m} P = h_{0}(\tilde{\tau}, \delta) \Delta^{m} + h_{1}(\tilde{\tau}, \delta) \delta \Delta^{m-1} + \dots + h_{m}(\tilde{\tau}, \delta) \delta^{m}.$$

Step 3. This part of the proof follows as in §3. We repeat it here for completeness. We rewrite the right-hand side of (6.5) as:

(6.6)
$$\delta^m P = \delta^n [j_0(\tilde{\tau}, \Delta) \delta^k + \dots + j_k(\tilde{\tau}, \Delta)],$$

where $j_k(\tilde{\tau}, \Delta) \neq 0$.

If $n \geq m$, it follows that P is a polynomial in $\tilde{\tau}, \delta$ and Δ .

Now, assuming n < m, we obtain a contradiction. In fact,

$$\delta^{n-m} = j_0(\tilde{\tau}, \Delta)\delta^k + \cdots + j_k(\tilde{\tau}, \Delta), \text{ where } m-n > 0.$$

Since $j_k(\tilde{\tau}, \Delta) \neq 0$, there are real numbers α and β such that $j_k(\alpha, \beta) \neq 0$ and $\alpha\beta < 0$. Now, we take $\gamma = \sqrt{-\frac{\beta}{\alpha}}$ and $Q = (\alpha, 0, 0, 0, \gamma, 0)$.

Evaluating both sides of (6.6) in Q, gives $0 = j_k(\tilde{\tau}, \Delta) \neq 0$. Finally, $\tilde{\tau}, \delta$ and Δ are algebraically independent since their images under H are.

References

- 1. J.A. Dieudonne and J.B. Carrell, *Invariant Theory*, *Old and New*, Academic Press, New York and London, 1970.
- 2. J. Foggarty, Invariant Theory, W.A. Benjamin Inc., New York, 1969.
- 3. F.D. Grosshans, Rigid motions of conics: An introduction to invariant theory, Amer. Math. Monthly 88 (1981), 407-413.
- 4. C.M. Mendes and N.A.S. Ruas, Hyperbolic motions of conics, Amer. Math. Monthly 94(9) (1987), 825-845.