ON THE INTERSECTION OF TWO TORUS KNOTS

Sang Youl Lee and Yongdo Lim

Abstract We show that the intersection of two standard torus knots of type (λ_1, λ_2) and (β_1, β_2) induces an automorphism of the cyclic group \mathbb{Z}_d, where d is the intersection number of the two torus knots and give an elementary proof of the fact that all non-trivial torus knots are strongly invertible knots. We also show that the intersection of two standard knots on the 3-torus $S^1 \times S^1 \times S^1$ induces an isomorphism of cyclic groups.

1. Introduction

Throughout this paper, we shall denote the set of all integers by \mathbb{Z} and the cyclic group of order d by $\mathbb{Z}_d = \{0, 1, \ldots, d - 1\}$. For any two integers p and q, by $(p, q) = 1$ we shall mean that p and q are relatively prime integers.

Let $S^3 = \{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 2\}$ be the 3-sphere in the complex 2-space \mathbb{C}^2. A simple closed curve embedded into S^3 is called a knot and the torus knots are simple closed curves embedded on the standard torus $T^2 = S^1 \times S^1 = \{(z, w) \in S^3 \mid |z| = |w| = 1\}$. For $A = (\lambda_1, \lambda_2) \in \mathbb{Z} \times \mathbb{Z}$ with $(\lambda_1, \lambda_2) = 1$, let $\alpha_A = \{\alpha_A(t) = (e^{2\pi i \lambda_1 t}, e^{2\pi i \lambda_2 t}) \in T^2 \mid t \in [0, \pi]\}$ be a standard torus knot. A torus knot is said to be of type (λ_1, λ_2), denoted by $T(\lambda_1, \lambda_2)$ or simply T_A, if it is

Received November 15, 1999.

1991 Mathematics Subject Classification: 57M25.

Key words and phrases: Pointwise convergence, Function space, oq-space, Weak functional tightness, Strongly functionally generate.

The first author was supported by Pusan National University Research Grant, 1999.
homologous to the knot α_A. The torus knot $T(\lambda_1, \lambda_2)$ is said to be trivial (or unknotted) if either $\lambda_1 = \pm 1$ or $\lambda_2 = \pm 1$. Two non-trivial torus knots $T(\lambda_1, \lambda_2)$ and $T(\beta_1, \beta_2)$ are of the same type if and only if (β_1, β_2) is equal to one of $(\lambda_1, \lambda_2), (\lambda_2, \lambda_1), (-\lambda_1, \lambda_2),$ and $(-\lambda_1, -\lambda_2)$ [1].

In this paper, we show that the intersection of two standard torus knots of type (λ_1, λ_2) and (β_1, β_2) induces an automorphism of the cyclic group \mathbb{Z}_d of order $d = |\lambda_1 \beta_2 - \lambda_2 \beta_1|$, the intersection number of $T(\lambda_1, \lambda_2)$ with $T(\beta_1, \beta_2)$, and give an elementary proof of the fact that all non-trivial torus knots are strongly invertable knots (cf. [2]). We also show that the intersection of two standard knots on the 3-torus $S^1 \times S^1 \times S^1$ induces an isomorphism of cyclic groups.

2. Intersection of two torus knots

Let $A = (\lambda_1, \lambda_2)$ and $B = (\beta_1, \beta_2)$ with $\lambda, \beta > 0$ and $(\lambda_1, \lambda_2) = (\beta_1, \beta_2) = 1$. Suppose that $A \neq B$. Then for $t \in [0, \frac{\pi}{\lambda})$ and $s \in [0, \frac{\pi}{\beta})$, $\alpha_A(t) = \alpha_B(s)$ if and only if $\lambda \lambda_k t - \beta \beta_k s \in \pi \mathbb{Z}(k = 1, 2)$ if and only if there exist $m, n \in \mathbb{Z}$ such that

\[(*) \quad t = \frac{|\beta_2 m - \beta_1 n|}{\lambda d} \pi \in [0, \frac{\pi}{\lambda}), s = \frac{|\lambda_2 m - \lambda_1 n|}{\beta d} \pi \in [0, \frac{\pi}{\beta}) ,
\]

where $d = |\lambda_1 \beta_2 - \lambda_2 \beta_1|$.

Lemma 2.1. Let (λ_1, λ_2) and (β_1, β_2) be two pairs of relatively prime integers. If $\lambda_1 \beta_2 - \lambda_2 \beta_1 > 0$ (respectively, $\lambda_1 \beta_2 - \lambda_2 \beta_1 < 0$), then there exists a unique $(m_0, n_0) \in \mathbb{Z} \times \mathbb{Z}$ such that

\[m_0 \beta_2 - n_0 \beta_1 = 1, \quad (\lambda_2 m_0 - \lambda_1 n_0, \lambda_1 \beta_2 - \lambda_2 \beta_1) = 1,
\]

and $0 < \lambda_2 m_0 - \lambda_1 n_0 < \lambda_1 \beta_2 - \lambda_2 \beta_1$ (respectively, $\lambda_1 \beta_2 - \lambda_2 \beta_1 < \lambda_2 m_0 - \lambda_1 n_0 < 0$).

Proof. Replacing (β_1, β_2) by $(-\beta_1, -\beta_2)$ it suffices to show for the case $\lambda_1 \beta_2 - \lambda_2 \beta_1 > 0$. Since $(\beta_1, \beta_2) = 1$, we can choose $m, n \in \mathbb{Z}$ such that $m \beta_2 - n \beta_1 = 1$. Pick an integer k (unique) such that $\frac{\lambda_1 n - \lambda_2 m}{\lambda_1 \beta_2 - \lambda_2 \beta_1} \leq k < 1 + \frac{\lambda_1 n - \lambda_2 m}{\lambda_1 \beta_2 - \lambda_2 \beta_1}$. Then $\lambda_1 m - \lambda_2 n \leq k(\lambda_1 \beta_2 - \lambda_2 \beta_1)$ < $\lambda_1 \beta_2 -$
\[\lambda_2 \beta_1 + \lambda_1 n - \lambda_2 m. \] This implies that \(0 \leq \lambda_2 (m - k \beta_1) - \lambda_1 (n - k \beta_2) < \lambda_1 \beta_2 - \lambda_2 \beta_1 \). By setting \(m_0 = m - k \beta_1 \) and \(n_0 = n - k \beta_2 \), we have that \(m_0 \beta_2 - n_0 \beta_1 = 1 \).

Suppose that \(c \) is a common divisor of \(\lambda_2 m_0 - \lambda_1 n_0 \) and \(\lambda_1 \beta_2 - \lambda_2 \beta_1 \). Then \(\lambda_2 m_0 - \lambda_1 n_0 = cx \lambda_1 \beta_2 - \lambda_2 \beta_1 = cy \) for some \(x, y \in \mathbb{Z} \). It then follows that \(\lambda_2 m_0 \beta_2 - \lambda_1 n_0 \beta_2 = cx \beta_2, \lambda_1 \beta_2 n_0 - \lambda_2 \beta_1 n_0 = cy n_0 \). By adding these two equations, we get \(\lambda_2 (\beta_2 m_0 - \beta_1 n_0) = c(x \beta_2 + y n_0) \). Since \(\beta_2 m_0 - \beta_1 n_0 = 1 \), \(c \) is a divisor of \(\lambda_2 \). Similarly by adding the two equations \(\lambda_2 m_0 \beta_1 - \lambda_1 n_0 \beta_1 = cx \beta_1, \lambda_1 \beta_2 m_0 - \lambda_2 \beta_1 m_0 = cy m_0 \), we have that \(c \) is a divisor of \(\lambda_1 \). Since \(\lambda_2 \)'s are relatively prime, \(c \) must be \(\pm 1 \). Therefore \((\lambda_2 m_0 - \lambda_1 n_0, \lambda_1 \beta_2 - \lambda_2 \beta_1) = 1 \).

Now suppose that \(m_1 \beta_2 - n_1 \beta_1 = 1 \) and \(0 < \lambda_2 m_1 - \lambda_1 n_1 < \lambda_1 \beta_2 - \lambda_2 \beta_1 \). Then \((m_1 - m_0)\beta_2 = (n_1 - n_0)\beta_1 \). Since \(\beta_1 \) and \(\beta_2 \) are relatively prime, \(n_1 - n_0 = \beta_2 \mu \) for some \(\mu \in \mathbb{Z} \). Now since \(0 < \lambda_2 m_1 - \lambda_1 n_1 < \lambda_1 \beta_2 - \lambda_2 \beta_1 \) for \(\mu = 0, 1 \), it then follows that

\[-(\lambda_1 \beta_2 - \lambda_2 \beta_1) < \lambda_2 (m_0 - m_1) + \lambda_1 (n_1 - n_0) < \lambda_1 \beta_2 - \lambda_2 \beta_1.\]

Note that \(\lambda_2 (m_0 - m_1) + \lambda_1 (n_1 - n_0) = k (\lambda_1 \beta_2 - \lambda_2 \beta_1) \). This implies that \(-1 < \mu < 1 \) and hence \(\mu = 0 \). Therefore, \(n_1 = n_0 \) and \(m_1 = m_0 \).

Theorem 2.2. Let \(A = (\lambda_1, \lambda_2) \) and \(B = (\beta_1, \beta_2) \) be two pairs of relatively prime integers and let \(d = |\lambda_1 \beta_2 - \lambda_2 \beta_1| > 0 \). Then the standard torus knots \(T_A \) and \(T_B \) intersect at \(d \) points, and there is an automorphism \(\sigma : \mathbb{Z}_d \rightarrow \mathbb{Z}_d \) such that \(\alpha_A (\frac{k \pi}{d}) = \alpha_B (\frac{\sigma(k) \pi}{d}) \) for each \(k \in \mathbb{Z}_d \).

Proof. Suppose that \(\lambda_1 \beta_2 - \lambda_2 \beta_1 = d > 0 \). By Lemma 2.1, there exist \(m_0, n_0 \in \mathbb{Z} \) such that \(\beta_2 m_0 - \beta_1 n_0 = 1, (\lambda_2 m_0 - \lambda_1 n_0, d) = 1 \), and \(0 < \lambda_2 m_0 - \lambda_1 n_0 < d \). Let \(\sigma \) be the automorphism on \(\mathbb{Z}_d \) defined by \(\sigma (1) = \lambda_2 m_0 - \lambda_1 n_0 \). For \(k \in \mathbb{Z}_d \), let \(\sigma (k) = p \). Then \((\lambda_2 m_0 - \lambda_1 n_0)k = p + q d \) for some \(q \in \mathbb{Z} \). Set \(t_k = \frac{k}{d} \pi, s_k = \frac{p}{d} \pi = \frac{\sigma(k) \pi}{d} \).

Since \(\beta_2 m_0 - \beta_1 n_0 = 1 \),

\[
\lambda_1 t_k - \beta_1 s_k = \frac{\pi}{d} [k \lambda_1 (\beta_2 m_0 - \beta_1 n_0) - \beta_1 (\lambda_2 m_0 k - \lambda_1 n_0 k - q d)]
= \frac{\pi}{d} [k m_0 (\lambda_1 \beta_2 - \lambda_2 \beta_1) + \beta_1 q d]
= \frac{\pi}{d} (k m_0 + \beta_1 q) d \in \pi \mathbb{Z}.
\]
Similarly, we have $\lambda_2 t_k - \beta_2 s_k = \frac{\pi}{2} (n_0 k + q \beta_2) d \in \pi \mathbb{Z}$. Therefore (t_k, s_k) satisfies the equation (*) for the case that $\lambda = \beta = 1$. By observing that α_A and α_B intersect at most d points, we conclude that these are all solutions of $\alpha_A(t) = \alpha_B(s)$ for $(t, s) \in [0, \pi) \times [0, \pi)$.

If $\lambda_1 \beta_2 - \lambda_2 \beta_1 < 0$, then the automorphism σ is defined by $\sigma(1) = d + (\lambda_2 m_0 - \lambda_1 n_0)$, where (m_0, n_0) is the unique pair of the integers satisfying $\beta_2 m_0 - \beta_1 n_0 = 1, \lambda_1 \beta_2 - \lambda_2 \beta_1 < \lambda_2 m_0 - \lambda_1 n_0 < 0$ and $(\lambda_2 m_0 - \lambda_1 n_0, d) = 1$.

Example 2.3 (1) Let $A = (3, 5), B = (2, 5)$. Then $d = 5$ and so the torus knots T_A and T_B intersect at 5 points and the corresponding automorphism $\sigma : \mathbb{Z}_5 \to \mathbb{Z}_5$ is given by $\sigma(1) = 4 (m_0 = -1, n_0 = -3)$.

(2) Let $A = (3, 4), B = (3, 5)$. Then $d = 3, \sigma(1) = 2 (m_0 = -1, n_0 = -2)$.

(3) Let $A = (7, 9), B = (3, 5)$. Then $d = 8, \sigma(1) = 5 (m_0 = -1, n_0 = -2)$.

A knot K in S^3 is said to be strongly invertible if there exists an orientation preserving involution of S^3 such that the fixed points of the involution are exactly two points lie in the knot K.

Let $J : S^3 \to S^3$ be the orientation preserving involution of S^3 defined by $J(z, w) = (-\bar{z}, -\bar{w})$, where \bar{z} denotes the complex conjugate of z. Then $Fix(J) = \{ (z, w) \in S^3 | J((z, w)) = (z, w) \} = \{ (ix, iy) \in \mathbb{C}^2 | x, y \in \mathbb{R}, x^2 + y^2 = 2 \} \cong S^1$. It is easy to see that the torus knot T_A of type $A = (\lambda_1, \lambda_2)$ is invariant under J if and only if both λ_1 and λ_2 are relatively prime odd integers. In this case, we have that $Fix(J) \cap T_A = \{(i, i), (-i, -i)\}$ and T_A is a strongly invertible knot.

Now let $A = (\lambda_1, \lambda_2)$ and $B = (\beta_1, \beta_2)$ be two pairs of relatively prime odd integers such that $|\lambda_1 \beta_2 - \lambda_2 \beta_1| = 2$. Then it is clear that the intersection points of T_A and T_B are the points $\alpha_A(0) = \alpha_B(0) = (1, 1)$ and $\alpha_A(\frac{\pi}{2}) = \alpha_B(\frac{\pi}{2}) = (-1, -1)$. Define two simple closed curves $T_k(A, B) : [0, \pi] \to T^2(k = 1, 2)$ by

$$ T_1(A, B) = \begin{cases} \alpha_A(t) & 0 \leq t \leq \frac{\pi}{2} \\ \alpha_B(\pi - t) & \frac{\pi}{2} \leq t \leq \pi, \end{cases} $$

$$ T_2(A, B) = \begin{cases} \alpha_A(t) & 0 \leq t \leq \frac{\pi}{2} \\ \alpha_B(t) & \frac{\pi}{2} \leq t \leq \pi. \end{cases} $$
Then we have the following:

THEOREM 2.4.
(1) \(T_1(A, B) \) is the strongly invertible torus knot of type \(\left(\frac{|\lambda_1 - \beta_1|}{2}, \frac{|\lambda_2 - \beta_2|}{2} \right) \).
(2) \(T_2(A, B) \) is the strongly invertible torus knot of type \(\left(\frac{|\lambda_1 + \beta_1|}{2}, \frac{|\lambda_2 + \beta_2|}{2} \right) \).

PROOF. Since \(T_A \) and \(T_B \) are invariant under the involution \(J \), one may easily see that \(T_1(A, B) \) and \(T_2(A, B) \) are invariant under the involution \(J \). Note that \(\text{Fix}(J) \cap T^2 = \{ (z, i), (i, -z), (-i, -i), (-i, i) \} \) and \(\alpha_X(z) = (\epsilon_1 z, \epsilon_2 i), \alpha_X(z) = (\epsilon_1' i, \epsilon_2' z) \), where \(X = A \) or \(B \) and \(\epsilon_k, \epsilon_k' \in \{ 1, -1 \} \) \((k = 1, 2) \). Thus \(\text{Fix}(J) \cap T_k(A, B) \) are two points lie in \(T_k(A, B) \) for each \(k = 1, 2 \). Hence \(T_k(A, B) \) is a strongly invertible knot.

Now let \(p : \mathbb{C} \rightarrow T^2 \) be the universal covering projection of \(T^2 \) defined by \(p(x + iy) = (e^{2ix}, e^{2iy}) \) for \(x, y \in \mathbb{R} \). The group of covering transformations of \(p \) is isomorphic to the group \(\mathbb{Z} \oplus \mathbb{Z} \). For each pair \((m, n) \in \mathbb{Z} \oplus \mathbb{Z} \), the map \(t_m : \mathbb{C} \rightarrow \mathbb{C} \) defined by

\[
t_m(z) = z + \pi a, \text{ where } a = m + in \in \mathbb{C},
\]

is a covering transformation and so \(p t_m = p \). It is well known that a torus knot represented by a loop \(K : [0, \pi] \rightarrow T^2 \) is of type \((u, v) \) if and only if \(K \) lifts to a path \(\tilde{K} : [0, \pi] \rightarrow \mathbb{C} \) such that \(\tilde{K}(\pi) = \tilde{K}(0) = \pi(u + iv) \).

By considering the lifts of \(T_k(A, B)(k = 1, 2) \) to the universal cover \(\mathbb{C} \) of the torus \(T^2 \) and using the covering transformations, it is not difficult to see that \(T_1(A, B) \) is the torus knot of type \(\left(\frac{|\lambda_1 - \beta_1|}{2}, \frac{|\lambda_2 - \beta_2|}{2} \right) \) and \(T_2(A, B) \) is the torus knot of type \(\left(\frac{|\lambda_1 + \beta_1|}{2}, \frac{|\lambda_2 + \beta_2|}{2} \right) \). This completes the proof.

COROLLARY 2.5. Every torus knots is strongly invertible.

PROOF. Let \(A = (p, q) \) be an arbitrary given pair of relatively prime integers. If both \(p \) and \(q \) are odd integers, then we know already that the torus knot \(T_A \) is a strongly invertible knot. Thus we may assume that \(p(\neq 0) \) is even and \(q \) is odd. By Theorem 2.4, it is sufficient to show that there exist two pairs of relatively prime odd integers \(B = (\lambda_1, \lambda_2) \)
and \(C = (\beta_1, \beta_2) \) such that either \(p = \frac{|\beta_1 + \lambda_1|}{2} \) and \(q = \frac{|\beta_2 - \lambda_2|}{2} \) or \(p = \frac{|\beta_1 - \lambda_1|}{2} \) and \(q = \frac{|\beta_2 - \lambda_2|}{2} \). To do this we present a method for finding the integers satisfying the required conditions.

Step 1. By Euclidean algorithm, find \(m \) and \(n \) such that \(pm - qn = 1 \).

Step 2. Replace \(m \) and \(n \) by \(m' := m + q \) and \(n' := n + p \) if \(m \) is odd.

Step 3. Find an odd integer \(k \) such that \(m' - qk > 0, n' - pk > 0 \).

Step 4. Set \(\lambda_1 := n' - pk \) and \(\lambda_2 := m' - qk \).

Step 5. Set \(\beta_1 := 2p + \lambda_1 \), \(\beta_2 := 2q + \lambda_2 \).

One may easily check that \(\lambda_i \) and \(\beta_i \) are odd integers for \(i = 1, 2 \). This implies that the torus knot of type \((p, q)\) can be represented by \(T_k(A, B) \) for some \(k \) which is a strongly invertible knot.

Example 2.6. (1) \(p = 2, q = 3 \):

\[
(m, n) = (-1, -1) \rightarrow (m', n') = (m + q, n + p) = (2, 1) \\
\rightarrow (m' - qk, n' - pk) = (2 - 3k, 1 - 2k) \\
\rightarrow k = -1 \\
\rightarrow (\lambda_1, \lambda_2) = (n' - pk, m' - qk) = (3, 5) \\
\rightarrow (\beta_1, \beta_2) = (2p + \lambda_1, 2q + \lambda_2) = (7, 11).
\]

(2) \(p = 8, q = 3 \):

\[
(m, n) = (2, 5) \rightarrow (m', n') = (m, n) = (2, 5) \\
\rightarrow (m' - qk, n' - pk) = (2 - 3k, 5 - 8k) \\
\rightarrow k = -1 \\
\rightarrow (\lambda_1, \lambda_2) = (13, 5) \\
\rightarrow (\beta_1, \beta_2) = (29, 11).
\]

3. Intersection of two standard knots in \(S^1 \times S^1 \times S^1 \)

Let \(A = (\lambda_1, \lambda_2, \lambda_3) \), \(B = (\beta_1, \beta_2, \beta_3) \in (\mathbb{Z}^*)^3 = \mathbb{Z}^* \times \mathbb{Z}^* \times \mathbb{Z}^* \), where \(\mathbb{Z}^* = \mathbb{Z} - \{0\} \). Suppose that \(\text{g.c.d.} \{\lambda_1, \lambda_2, \lambda_3\} = \text{g.c.d.} \{\beta_1, \beta_2, \beta_3\} = 1 \)
Then we have the following simple closed curves $\alpha_A, \alpha_B : [0, \pi) \to T^3 = S^1 \times S^1 \times S^1$, the 3-torus, defined by
\[
\alpha_A(t) = (e^{i2\lambda_1 t}, e^{i2\lambda_2 t}, e^{i2\lambda_3 t}),
\alpha_B(t) = (e^{i2\beta_1 t}, e^{i2\beta_2 t}, e^{i2\beta_3 t}).
\]

Suppose that $A \neq \pm B$ in $(\mathbb{Z}^*)^3$. For $1 \leq i < j \leq 3$, let $D_{ij} = \lambda_i \beta_j - \lambda_j \beta_i$. Then by hypothesis $D_{ij} \neq 0$ for some $i \neq j$. Without loss of the generality, we may assume that $i = 1, j = 2$. Let $\lambda = \text{g.c.d.}\{\lambda_1, \lambda_2\}, \beta = \text{g.c.d.}\{\beta_1, \beta_2\}$ and let $A' = (\lambda_1, \lambda_2) = (\lambda \lambda'_1, \lambda \lambda'_2), B' = (\beta_1, \beta_2) = (\beta \beta'_1, \beta \beta'_2)$, and $d = |\lambda_1 \beta'_2 - \lambda_2 \beta'_1|$. Since $D_{12} \neq 0, d \neq 0$

Theorem 3.1. There exist two subgroups H_1 and H_2 of $\mathbb{Z}_{\lambda d}$ and $\mathbb{Z}_{\beta d}$, respectively, and an isomorphism $\sigma : H_1 \to H_2$ such that the two simple closed curves α_A and α_B has $|H_1|$-intersection points and $\alpha_A(m_{\lambda d}^2 \pi) = \alpha_B(m_{\beta d}^2 \pi)$ for $m \in H_1$.

Proof. Let σ' be the automorphism of \mathbb{Z}_d defined in the Theorem 2.2 viewed as $A = (\lambda'_1, \lambda'_2), B = (\beta'_1, \beta'_2)$. Then for $t \in [0, \pi), s \in [0, \pi)$, $\alpha_A(t) = \alpha_B(s)$ if and only if $t = \frac{m}{\lambda d} \pi, s = \frac{\sigma'(m)}{\beta d} \pi$ for some $m \in \mathbb{Z}_d$.

In particular, for $t, s \in [0, \pi)$, we have that $\alpha_A(t) = \alpha_B(s)$ if and only if $t = \frac{mk - m}{\lambda d} \pi, s = \frac{\lambda k' - \sigma'(m) \lambda}{\beta d} \pi$ for some $m \in \mathbb{Z}_d, k \in \mathbb{Z}_{\lambda}, k' \in \mathbb{Z}_{\beta}$.

Since $\alpha_A(t) = \alpha_B(s)$ for $t, s \in [0, \pi)$ if and only if $\alpha_A(t) = \alpha_B(s)$, and $\lambda_3 t - \beta_3 s \in \pi \mathbb{Z}$. Thus there is a bijection from $\{(t, s) \in [0, \pi) \times [0, \pi) \mid \alpha_A(t) = \alpha_B(s)\}$ to
\[
F := \{(mk - m, dk' + \sigma'(m)) \in \mathbb{Z}_{\lambda d} \times \mathbb{Z}_{\beta d} \mid m \in \mathbb{Z}_d, \lambda \frac{dk + m}{d} - \beta \frac{d \lambda k' - \sigma'(m)}{\beta d} \in \mathbb{Z}\}
\]

Let H_1 be the image of the first projection of F. That is,
\[
H_1 = \{l \in \mathbb{Z}_{\lambda d} \mid \exists m \in \mathbb{Z}_d, k \in \mathbb{Z}_{\lambda}, k' \in \mathbb{Z}_{\beta} \text{ such that } (l = dk + m, dk' + \sigma'(m)) \in F\},
\]
and let H_2 be the image of the second projection of F. Since σ is an automorphism of \mathbb{Z}_d, H_1 and H_2 are subgroups of $\mathbb{Z}_{\lambda d}$ and $\mathbb{Z}_{\beta d}$.

respectively. The map \(\sigma : H_1 \rightarrow H_2 \) defined by \(\sigma(dk + m) = dk' + \sigma'(m) \) is an isomorphism satisfying \(\alpha_A\left(\frac{k}{\lambda d}\right) \pi = \alpha_B\left(\frac{\sigma(k)}{\beta d}\right) \pi \) for \(k \in H_1 \).

Corollary 3.2. If the components \(A \) and \(B \) are all odd integers, then the number of the intersection points of \(\alpha_A \) with \(\alpha_B \) are even.

Proof. Since \(\alpha_A\left(\frac{n}{2}\right) = \alpha_B\left(\frac{n}{2}\right) \), the group \(H_1 \) contains \(\frac{\lambda d}{2} \) which is an element of order 2. Hence \(|H_1| \) is divisible by 2.

Example 3.3.

(1) Let \(A = (6, 10, 15), B = (6, 15, 10) \). Then in our notation, \(A' = 2(3, 5), B' = 3(2, 5), \lambda = 2, \beta = 3, d = 5 \) and by Example 2.3, \(\sigma'(1) = 4 \). One may check that \((1, k) \notin F \) for any \(k \in \mathbb{Z}_{15} \). If \(k = 0, m = 2, \) and \(k' = 0 \) then \((2, 3) \in F \). Hence \(H_1 = \{0, 2, 4, 6, 8\}, H_2 = \{0, 3, 6, 9, 12\} \) and \(\sigma(2) = 3 \).

(2) Let \(A = (7, 9, 15), B = (3, 5, 3) \). Then \(A' = (7, 9), B' = (3, 5), d = 8 \) and \(\sigma'(1) = 5 \) (\(\lambda = \beta = 1 \)). It satisfies that \(15 \frac{m}{8} - 3 \frac{\sigma'(m)}{8} \in \mathbb{Z} \) for each \(m \in \mathbb{Z}_8 \). Hence the number of intersection points of \(\alpha_A \) with \(\alpha_B \) is 8.

(3) Let \(A = (6, 8, 7), B = (6, 10, 5) \). Then \(A' = 2(3, 4), B' = 2(3, 5), d = 3 \) and \(\sigma'(1) = 2 \) (\(\lambda = \beta = 2 \)). One may determine that \((1, 5) \in F \), and thus \(H_1 = H_2 \cong \mathbb{Z}_6, \sigma(1) = 5 \).

References

Sang Youl Lee
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail: sangyoul@hyowon.pusan.ac.kr

Yongdo Lim
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea
E-mail: ylim@knu.ac.kr