PRIMITIVE POLYNOMIAL RINGS

Mi Hyang Kwon, Chol On Kim and Chan Huh

Abstract. We show that the intersection of two standard torus knots of type (λ_1, λ_2) and (β_1, β_2) induces an automorphism of the cyclic group \mathbb{Z}_d, where d is the intersection number of the two torus knots and give an elementary proof of the fact that all non-trivial torus knots are strongly invertible knots. We also show that the intersection of two standard knots on the 3-torus $S^1 \times S^1 \times S^1$ induces an isomorphism of cyclic groups.

Throughout this paper all rings are associative with identity. Given a ring R, $R[x]$ denotes the polynomial ring over R with x its indeterminate. In this note we study the primitivity of polynomial rings, concerning the contraposition of the condition in [8] that is both a Morita invariant property and a generalization of the following two conditions:

1. the quasi-duo condition, which was initiated by Yu in [9] and is related to the Bass’ conjecture in [2],
2. the pm condition that was studied by Birkenmeier-Kim-Park in [3].

A ring R is called maximally right bounded if every maximal right ideal of R contains a maximal ideal of R. Consider a condition: (*)

Received January 12, 2000.
1991 Mathematics Subject Classification. 16D15, 16D30, 16S36.
Key words and phrases: Primitive ring, polynomial ring, maximal ideal and maximal one-sided ideal.

The second and third named authors were supported by the Research Grant, Pusan National University in 2000.
there exists a maximal right ideal that does not contain a maximal ideal. Clearly a ring R satisfies (*) if and only if R is not maximally right bounded. A ring is called right (left) duo if every right ideal is two-sided, and a ring is called right (left) quasi-duo if every maximal right (left) ideal of is two-sided. Commutative rings and abelian regular rings are right duo, right duo rings are right quasi-duo, and right quasi-duo rings are maximally right bounded. The n by n full matrix ring over a division ring, with n any positive integer ≥ 2, is not right quasi-duo and does not satisfy (*); but it is maximally right bounded. However the ring of row finite infinite matrices over a division ring, say R, satisfies (*) but is not maximally right bounded because there exist maximal right ideals of R that do not contain the nonzero proper ideal $\{ f \in R \mid \text{rank}(f) \text{ is finite} \}$ of R. A ring R is said to satisfy pm if every prime ideal of R is maximal. Such rings are maximally right bounded, but there are rings which are maximally right bounded but do not satisfy pm as in [3, Example 3.3]. In this note we also obtain direct proofs for the contrapositions of main results in [8].

We first take the contraposition of [8, Proposition 1] as follows.

Proposition 1. Given a ring R the following statements are equivalent:

1. R satisfies (*).
2. There exists a right primitive ideal of R that is not maximal.

Proof. (1)\Rightarrow(2). Since R satisfies (*), there exists a maximal right ideal M of R that does not contain a maximal ideal of R. But M contains a right primitive ideal of R which is the bound of M, say P. Thus P is not a maximal ideal of R.

(2)\Rightarrow(1). Let P be a right primitive ideal of R that is not maximal. There is a maximal right ideal of R whose bound is P, so R satisfies (*).

Corollary 2. [8, Proposition 1] Given a ring R the following statements are equivalent:

1. R is a maximally right bounded ring.
2. Every right primitive ideal of R is maximal.
PRIMITIVE POLYNOMIAL RINGS

PROOF. By Proposition 1

We next recall some properties of maximally right bounded rings in [8]. A ring \(R \) is called a PI-ring if \(R \) satisfies a polynomial identity with coefficients in the ring of integers.

LEMMA 3. [8, Corollary 2, Corollary 3 and Lemma 4] Given a ring \(R \) we have the following statements:

1. If every right primitive factor ring of \(R \) is artinian then \(R \) is maximally right bounded.
2. If \(R \) is a PI-ring then \(R \) is maximally right bounded.
3. If \(R \) is a division ring that is finite dimensional over its center then \(R[x] \) is maximally right bounded.
4. A semiprimitive maximally right bounded ring is a subdirect product of simple rings.
5. If a ring \(R \) is maximally right bounded, then so is every homomorphic image of \(R \).

Note that if given a ring \(R \) is a right primitive, then \(eRe \) is also a right primitive ring for every nonzero idempotent \(e \in R \). The following is one of our main results in this note.

THEOREM 4. Let \(R \) be a ring and \(0 \neq e^2 = e \in R \). Suppose that \(eRe \trianglelefteq eRe \) for each proper left ideal \(I \) of \(R \). Then the following statements are equivalent:

1. \(R \) satisfies (\(\ast \)).
2. \(eRe \) satisfies (\(\ast \)).

PROOF. (2)\(\Rightarrow \) (1) By [8, Lemma 7]

(1)\(\Rightarrow \) (2). We use the proof of [8, Theorem 8]. Let \(I \) be a maximal right ideal of \(R \) whose bound is \(P \), such that \(P \) is not maximal. Then \(P \) is a right primitive ideal of \(R \). We will show that \(ePe \) is not a maximal ideal in \(eRe \). For convenience, let \(\overline{R} = R/P \), and \(\overline{r} = r + P \) for all \(r \in R \). Then \(\overline{R} \) is a right primitive ring. Since \(ePe = eRe \cap P \) and \(ePe \neq eRe \) by hypothesis, we have \(e \notin P \) and hence \(\overline{e} \) is a nonzero idempotent in \(\overline{R} \). Thus \(\overline{eRe} \) is also a right primitive ring. Since \(eRe/ePe \trianglelefteq \overline{eRe} \), \(ePe \) is a right primitive ideal of \(eRe \). Now let \(Q \) be a maximal ideal of \(R \) that contains \(P \) (of course \(P \trianglelefteq Q \)). Then \(ePe \subseteq eQe \trianglelefteq eRe \) by hypothesis
and eQe is maximal in eRe by Lemma 2.6. Assume $ePe = eQe$. Then $eQe = ePe \subseteq P$, and hence $(Re)Q(Re) = R(eQe) \subseteq RP = P$. Since P is right primitive and $e \notin P$, we get $Q \subseteq P$, a contradiction to the fact that $P \subseteq Q$. Therefore $ePe \subseteq eQe$ and this completes the proof.

COROLLARY 5. [8, Theorem 8] Let R be a ring and $0 \neq e^2 = e \in R$. Suppose that $e1e \subseteq eRe$ for each proper ideal I of R. Then the following statements are equivalent:

1. R is maximally right bounded.
2. eRe is maximally right bounded.

We may compare the following result with [9, Proposition 2.1].

PROPOSITION 6. For a ring R the following statements are equivalent:

1. R satisfies (*).
2. Every n by n upper triangular matrix ring over R satisfies (*).
3. Every n by n lower triangular matrix ring over R satisfies (*), where n is any finite (in this case assume $n \geq 2$) or an infinite cardinal number.

PROOF. We use the proofs of [8, Corollary 9]. (1)⇒(2). Let S be the n by n upper triangular matrix ring over R. Note that every right primitive ideal J of S is of the form the (i,i)-entry of J is a right primitive ideal of R for some $i \in \{1, 2, \ldots \}$, say P, and every other entry of J is R. By Proposition 1 and the condition (1), we may take a right primitive ideal P in R that is not a maximal ideal of R. So J is not maximal in S and this gives (2).

(2)⇒(1). Let e be the matrix such that $(1,1)$-entry of e is 1_R and other entries of e are 0_R. Then $0 \neq e^2 = e \in S$ and $eSe \subseteq R$. So R satisfies (*) by the condition (2) and [8, Lemma 7].

We next obtain the equivalence (1)⇔(3) by the symmetry.

COROLLARY 7. [8, Corollary 9] For a ring R the following statements are equivalent:

1. R is maximally right bounded.
(2) Every $n \times n$ upper triangular matrix ring over R is maximally right bounded.

(3) Every $n \times n$ lower triangular matrix ring over R is maximally right bounded, where n is any finite or an infinite cardinal number.

We denote the $n \times n$ full matrix ring over a ring R by $\text{Mat}_n(R)$ for any positive integer n.

Lemma 8. [8, Corollary 24] For a ring R and any positive integer n, the following statements are equivalent:

1. R is maximally right bounded.
2. $\text{Mat}_n(R)$ is maximally right bounded.

By Lemma 8, we have the following equivalence for rings that satisfy (*).

Corollary 9. For a ring R and any positive integer n, the following statements are equivalent:

1. R satisfies (*).
2. $\text{Mat}_n(R)$ satisfies (*).

Therefore we have the following by Theorem 4, Corollary 9 and [1, Corollary 22.7].

Corollary 10. Suppose that a ring R satisfies (*). Then for every finitely generated projective right R-module P, $\text{End}_R(P)$ also satisfies (*); especially the condition (*) is a Morita invariant property, where $\text{End}_R(P)$ is the endomorphism ring of P over R.

Next we study the primitivity of polynomial rings over division rings. First we observe the polynomial rings over rings satisfying (*).

Proposition 11. If a ring R satisfies (*), then $R[x]$ satisfies (*).

Proof. Notice first that $I + R[x]x$, with I a right primitive ideal of R, is also a right primitive ideal of $R[x]$. Since R satisfies (*), we may take I such that I is not a maximal ideal. So $I + R[x]x$ is also not a maximal ideal of $R[x]$, but a right primitive ideal of $R[x]$, hence $R[x]$ satisfies (*) by Proposition 1.
As the converse of Proposition 11, we may raise the following question.

Question. Does a ring \(R \) satisfy (*) if \(R[x] \) satisfies (*)?

However the answer is negative by the following example.

Example 12. Let \(W = W_1[Q] \) be the first Weyl algebra over the field \(Q \) of rational numbers, subject to \(yx = xy + 1 \), and let \(R \) be the right quotient division ring of \(W \). Then the center of \(R \) is \(Q \), and since \(R \) is purely transcendental over \(Q \), it follows that \(A = R \otimes Q Q(t) \) is not a division ring by [5, Theorem 3.21], where \(Q(t) \) is the quotient field of the polynomial ring \(Q[t] \) in an indeterminate \(t \). Hence \(A \neq R(t) \); so \(R[t] \) is right primitive by [5, Theorem 3.21], where \(R[t] \) is the polynomial ring over \(R \) in \(t \) and \(R(t) \) is the right quotient division ring of \(R[t] \). Clearly \(R \) does not satisfy (*). But the zero ideal of \(R[t] \) is right primitive which is not maximal. Therefore \(R[t] \) satisfy (*) by Proposition 1.

The following is also one of our main results in this paper.

Theorem 13. For a simple ring \(R \) the following statements are equivalent:

1. \(R[x] \) satisfies (*).
2. \(R[x] \) is right primitive.

Proof. (2)\(\Rightarrow \) (1). Note that the zero ideal of \(R[x] \) is always not maximal. Since \(R[x] \) is right primitive by the condition, \(R[x] \) satisfies (*) by Proposition 1.

(1)\(\Rightarrow \) (2). Suppose that the condition (1) holds. Then there is a right primitive ideal \(P \) of \(R[x] \) that is not maximal by Proposition 1. Let \(M \) be a maximal ideal of \(R[x] \) such that \(P \subseteq M \). Here assume \(P \neq 0 \). Then [5, Lemma 15] implies that \(P \) is generated by a nonzero central monic polynomial in \(R[x] \) because \(R \) is simple by hypothesis, say \(P = f(x)R[x] \). Also by [5, Lemma 15], \(M = h(x)R[x] \) for some nonzero central monic polynomial \(h(x) \in R[x] \). Since \(M \) contains \(P \), \(f(x) = h(x)g(x) \) for some \(g(x) \in R[x] \) and so \(P = f(x)R[x] = h(x)R[x]g(x)R[x] \). But \(P \) is right primitive (hence prime), so \(M = h(x)R[x] \subseteq P \) (a contradiction to the fact that \(P \subseteq M \))
or \(g(x)R[x] \subseteq P \) if \(g(x)R[x] \subseteq P \), then \(g(x) = f(x)m(x) \) for some \(m(x) \in R[x] \) and so \(f(x) = h(x)f(x)m(x) = f(x)h(x)m(x) \). It then follows that \(h(x)m(x) = m(x)h(x) = 1_{R[x]} \) since \(f(x) \) is monic; hence \(M = R[x] \), a contradiction to the fact that \(M \) is a maximal ideal of \(R[x] \). Consequently \(P \) must be the zero ideal and therefore \(R[x] \) is right primitive.

By Theorem 13, we obtain the following result.

COROLLARY 14. [8, Theorem 16] For a simple ring \(R \) the following statements are equivalent:

1. \(R[x] \) is maximally right bounded.
2. \(R[x] \) is not right primitive.

We do not know whether the condition (*) is left-right symmetric. But if \(R \) is a division ring, then \(R[x] \) satisfies (*) if and only if \(R[x] \) satisfies the "left-handed" version of (*) as in the following.

COROLLARY 15. Let \(R \) be a division ring. Then the following statements are equivalent:

1. \(R[x] \) satisfies (*).
2. \(R[x] \) is right primitive.
3. \(R[x] \) is left primitive.
4. \(R[x] \) satisfies the left version of (*)

PROOF. By [8, Lemma 18] and Theorem 13.

Due to Jacobson [7], a ring is called strongly right (left) bounded if every nonzero right (left) ideal contains a nonzero ideal; and a ring is called right (left) bounded if every essential right (left) ideal contains a nonzero ideal. Strongly right bounded rings are clearly right bounded. In [4], we have that a ring \(R \) is right duo if and only if every factor ring of \(R \) is strongly right bounded. In the following arguments we obtain the connections among the preceding conditions, right duoness, maximally right boundedness and the condition (*).
Lemma 16. [6, Theorem 15.2] Let R be a simple Artinian ring. Then the following statements are equivalent:

1. $R[x]$ is right bounded.
2. $R[x]$ is not right primitive.

A ring R is called right Ore if given $a, b \in R$ with b regular there exist $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. It is a well-known fact that R is a right Ore ring if and only if there exists the classical right quotient ring of R. Left case may be defined similarly. Given a division ring D, $D[x]$ is an Ore (i.e., both right and left Ore) domain, so every nonzero right (left) ideal is essential; hence $D[x]$ is strongly right (left) bounded if and only if it is right (left) bounded. Consequently we have the following results.

Proposition 17. Let R be a simple Artinian ring. Then the following statements are equivalent:

1. $R[x]$ is right bounded.
2. $R[x]$ is not right primitive.
3. $R[x]$ is maximally right bounded.

Proof. By Corollary 14 and Lemma 16.

Corollary 18. Let D be a division ring. Then the following statements are equivalent:

1. $D[x]$ is strongly right bounded.
2. $D[x]$ is right bounded.
3. $D[x]$ is not right primitive.
4. $D[x]$ is maximally right bounded.
5. The left versions of the statements (1)–(4).

Proof. By Corollary 15, Proposition 17 and the argument prior to Proposition 17.

There exists a division ring that does not satisfy the statements in Corollary 18. Let R be the Weyl division algebra over a field of characteristic zero. Then $R[x]$ is right primitive by [6, Theorem 15.16].
REFERENCES

Mi Hyang Kwon
Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea

Chol On Kim and Chan Huh
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail: chuh@hyowon.pusan.ac.kr