FUZZY ALMOST PRECONTINUOUS MAPPINGS

G.I. Chae, S.S. Thakur and S. Singh

Abstract. The purpose of this paper is to introduce a new type of weakened fuzzy continuity called fuzzy almost precontinuous and investigate properties of it.

1. Preliminaries

Let X be a set and I be the closed unit interval $[0,1]$. In $[14]$, a fuzzy set $\mu \in X$ is defined to be a mapping $\mu : X \rightarrow I$ and we will denote it by $\mu \in \mathcal{I}^X$. The fuzzy null set 0 and the fuzzy whole set 1 $\in \mathcal{I}^X$ are fuzzy sets such that $0(x) = 0$ and $1(x) = 1$ for all $x \in X$, respectively. For a class $\{\lambda_\alpha \in \mathcal{I}^X : \alpha \in \Lambda\}$, the union $\bigcup_{\alpha \in \Lambda} \lambda_\alpha$ and the intersection $\bigwedge_{\alpha \in \Lambda} \lambda_\alpha$ are, respectively, defined by $\sup_{\alpha \in \Lambda} \{\lambda_\alpha\}$ and $\inf_{\alpha \in \Lambda} \{\lambda_\alpha\}$.

Let $\lambda, \mu \in \mathcal{I}^X$. Then λ is said to be contained in μ, denoted by $\lambda \leq \mu$, if $\lambda(x) \leq \mu(x)$ for every $x \in X$. The complement of λ, denoted by $1 - \lambda$, is defined by $(1 - \lambda)(x) = 1 - \lambda(x)$ for each $x \in X$. A fuzzy point x_β of X is a fuzzy set in X which is taking the value 0 for all $y \in X$ except for x and taking β at x. A fuzzy point x_β of X is said to be contained in a fuzzy set λ, denoted by $x_\beta \in \lambda$, if $\beta \leq \lambda(x)$.

Definition 1.1. [9] Let $\lambda, \mu \in \mathcal{I}^X$. Then

1. A fuzzy point x_β is said to be quasi-coincident with λ, denoted by $x_\beta \approx \lambda$, if $\beta + \lambda(x) > 1$.

2. λ is said to be quasi-coincident with μ, denoted by $\lambda \approx \mu$, if there exists a point $x \in X$ such that $\lambda(x) + \mu(x) > 1$.

Received February 12, 2000
Authors wish to acknowledge the financial support of University of Ulsan made in the program year of 1999.
Remark 1.1. It is shown in [9] that for any λ,

1. $\mu \in \mathcal{I}^X$, $\lambda \leq \mu$ if and only if λ and $1 - \mu$ are not quasi-coincident,
2. $x_\beta \in \lambda$ if and only if x_β is not quasi-coincident with $1 - \lambda$.

Let $f : X \to Y$ be a mapping and let $\lambda \in \mathcal{I}^X$, $\mu \in \mathcal{I}^Y$. Then $f(\lambda) \in \mathcal{I}^Y$ such that $f(\lambda)(y) = \bigvee_{x \in f^{-1}(y)} \lambda(x)$ if $f^{-1}(y) \neq \emptyset$ and 0, otherwise. And $f^{-1}(\mu) \in \mathcal{I}^X$ such that $f^{-1}(\mu)(x) = \mu(f(x))$ for all $x \in X$.

We use in this paper the definition of fuzzy topology on a set X in the sense of [5], denote it by $\tau(X)$, and the ordered pair $(X, \tau(X))$ is called a fuzzy topological space (fts, for short). $\mu \in \tau(X)$ is called fuzzy open in X and the complement $(1 - \mu)$ is called fuzzy closed in X.

Definition 1.2.

1. $\text{Int}(\lambda) = \bigvee \{\mu : \mu \leq \lambda, \mu \in \tau(X)\}$ is called the interior of λ.
2. $\text{Cl}(\lambda) = \bigwedge \{\mu : \lambda \leq \mu, (1 - \mu) \in \tau(X)\}$ is called the closure of λ.

Let $(X, \tau(X))$ be an fts. Then $\mu \in \mathcal{I}^X$ is called a Q-neighborhood (shortly, Q-nbd) of a fuzzy point x_β [9] (resp. pre Q-nbd [8, 12]) if there exists a $\mu \in \tau(X)$ (resp. $\lambda \in \text{FPO}(X)$) such that $x_\beta \in \text{Q} \lambda \leq \mu$.

Definition 1.3. [1, 2, 10] Let x be an fts. Then $\lambda \in \mathcal{I}^X$ is said to be:

1. fuzzy regular open if $\lambda = \text{Int}(\text{Cl}(\lambda))$,
2. fuzzy feebly open (≡ α-open) if $\lambda \leq \text{Int}(\text{Cl}(\text{Int}(\lambda)))$,
3. fuzzy preopen if $\lambda \leq \text{Int}(\text{Cl}(\lambda))$,
4. fuzzy semi open if $\lambda \leq \text{Cl}(\text{Int}(\lambda))$,
5. fuzzy regular closed if $\lambda = \text{Cl}(\text{Int}(\lambda))$,
6. fuzzy feebly closed (≡ α-closed) if $\text{Cl}(\text{Int}(\text{Cl}(\lambda))) \leq \lambda$,
7. fuzzy preclosed if $\text{Cl}(\text{Int}(\lambda)) \leq \lambda$,
8. fuzzy semi closed if $\text{Int}(\text{Cl}(\lambda)) \leq \lambda$.

In this paper, we will denote the family of all fuzzy open (resp. fuzzy regular open, fuzzy α-open, fuzzy pre-open, fuzzy semi-open and fuzzy regular closed) sets in an fts X by $\tau(X)$ (resp. $\text{FRO}(X)$, $\text{FRO}(X)$, $\text{FPO}(X)$, $\text{FSO}(X)$ and $\text{FRC}(X)$).
REMARK 1.2. For an fts \((X, \tau(X))\), the following holds:
\[
\text{FRO}(X) \subset \tau(X) \subset \text{F}_\alpha \text{O}(X) \subset \text{FPO}(X) \quad \text{(or, FSO}(X))
\]

DEFINITION 1.4. \([1, 2, 5, 10, 12]\) Let \(\lambda \in I^X\). Then
(1) \(\alpha\text{Int}(\lambda) = \bigvee \{\mu : \mu \leq \lambda, \mu \in \text{F}_\alpha \text{O}(X)\}\) is called the \(\alpha\)-interior of \(\lambda\) (feeble interior \(\text{Int}(\lambda)\)),
(2) \(p\text{Int}(\lambda) = \bigvee \{\mu : \mu \leq \lambda, \mu \in \text{FPO}(X)\}\) is called the preinterior of \(\lambda\),
(3) \(s\text{Int}(\lambda) = \bigvee \{\mu : \mu \leq \lambda, \mu \in \text{FSO}(X)\}\) is called the semi interior of \(\lambda\),
(4) \(\alpha\text{Cl}(\lambda) = \bigwedge \{\mu : \mu \leq \lambda, (1 - \mu) \in \text{F}_\alpha \text{O}(X)\}\) is called \(\alpha\)-closure of \(\lambda\) (feeble closure \(\text{Cl}(\lambda)\)),
(5) \(p\text{Cl}(\lambda) = \bigwedge \{\mu : \lambda \leq \mu, (1 - \mu) \in \text{FPO}(X)\}\) is called preclosure of \(\lambda\),
(6) \(s\text{Cl}(\lambda) = \bigwedge \{\mu : \lambda \leq \mu, (1 - \mu) \in \text{FSO}(X)\}\) is called semi closure of \(\lambda\).

REMARK 1.3. Let \(\lambda, \mu \in I^X\). Then
(1) \(\lambda \in \text{FPO}(X)\) if and only if for every fuzzy points \(x_\delta \in \lambda\), there exists \(\delta \in \text{FPO}(X)\) such that \(x_\delta \in \delta \leq \lambda\) \([11]\),
(2) \(\lambda \in \text{FPO}(X)\) if and only if \(\lambda = p\text{Int}(\lambda)\) \([12]\),
(3) \(1 - \lambda \in \text{FPO}(X)\) if and only if \(\lambda = p\text{Cl}(\lambda)\) \([12]\).

DEFINITION 1.5. \([1, 2, 4, 5, 8, 10, 11]\) A mapping \(f : X \rightarrow Y\) is said to be:
(1) fuzzy continuous if \(f^{-1}(\lambda) \in \tau(Y)\) for each \(\lambda \in \tau(Y)\)
(2) fuzzy feebly continuous (fuzzy \(\alpha\)-continuous, fuzzy strongly semi continuous) if \(f^{-1}(\lambda) \in \text{F}_\alpha \text{O}(X)\) for each \(\lambda \in \tau(Y)\).
(3) fuzzy precontinuous if \(f^{-1}(\lambda) \in \text{FPO}(X)\) for each \(\lambda \in \tau(Y)\).
(4) fuzzy M-precontinuous (fuzzy pre-irresolute) if \(f^{-1}(\lambda) \in \text{FPO}(X)\) for each \(\lambda \in \text{FPO}(Y)\),
(5) fuzzy almost continuous if \(f^{-1}(\lambda) \in \tau(X)\) for each \(\lambda \in \text{FRO}(Y)\).

REMARK 1.4. In the above Definition 1.5,
(1) fuzzy M-precontinuity of \([7]\) and fuzzy pre-irresoluteness of \([8]\) are the same mappings on any fts, and
fuzzy feeble continuity of [2] and fuzzy strongly semicontinuity of [10] are also the same mappings and in [4] it was also renamed by fuzzy \(\alpha \)-continuity. So, from now on, we will call it a fuzzy \(\alpha \)-continuous mapping.

2. Fuzzy almost precontinuous mappings

Definition 2.1. Let \(X \) and \(Y \) be fts's. A mapping \(f : X \to Y \) is said to be **fuzzy almost precontinuous** (written as \(f.a.p.C. \)) if \(f^{-1}(\lambda) \in \text{FPO}(X) \) for each \(\lambda \in \text{FRO}(Y) \).

Remark 2.1. Every fuzzy precontinuous and fuzzy almost continuous mapping are \(f.a.p.C. \). But the converses may not be true, as shown by the following examples.

Example 2.1. Let \(X = \{a, b\}, Y = \{x, y\} \) and let \(\lambda \in \mathcal{I}^{X}, \mu \in \mathcal{I}^{Y} \) such that \(\lambda(a) = 0.4, \lambda(b) = 0.3 \), and \(\mu(x) = 0.5, \mu(y) = 0.5 \). and let \(\tau(X) = \{0, \lambda, 1\} \) and \(\tau(Y) = \{0, \mu, 1\} \). Define \(f : (X, \tau(X)) \to (Y, \tau(Y)) \) by \(f(a) = x \) and \(f(b) = y \). Then \(f \) is \(f.a.p.C. \), but not fuzzy precontinuous.

Example 2.2. Let \(X = \{a, b\}, Y = \{x, y\} \) and let \(\lambda \in \mathcal{I}^{X}, \mu \in \mathcal{I}^{Y} \) such that \(\lambda(a) = 0.5, \lambda(b) = 0.4 \), and \(\mu(x) = 0.4, \mu(y) = 0.4 \). and let \(\tau(X) = \{0, \lambda, 1\} \) and \(\tau(Y) = \{0, \mu, 1\} \). Define \(g : (X, \tau(X)) \to (Y, \tau(Y)) \) by \(g(a) = x \) and \(g(b) = y \). Then \(g \) is \(f.a.p.C. \), but not fuzzy almost continuous.

In general, the composition of \(f.a.p.C. \) mappings may be not \(f.a.p.C. \), as shown by the following.

Example 2.3. Let \(f : (X, \tau(X)) \to (Y, \tau(Y)) \) be the mapping defined in Example 2.1, then \(f \) is \(f.a.p.C. \). Let \(Z = \{v, w\} \) and \(\eta \in \mathcal{I}^{Z} \) such that \(\eta(x) = 0.4, \eta(y) = 0.4 \) and let \(\tau(Z) = \{0, \eta, 1\} \). Define \(g : (Y, \tau(Y)) \to (Z, \tau(Z)) \) by \(g(x) = v \) and \(g(y) = w \). Then \(g \) is also \(f.a.p.C. \). However, the composition \(g \circ f : (X, \tau(X)) \to (Z, \tau(Z)) \) is not \(f.a.p.C. \), because \(\text{Int} \left(\text{Cl} \left((g \circ f)^{-1}(\eta)) \right) \right) < (g \circ f)^{-1}(\eta) \) and thus \((g \circ f)^{-1}(\eta) \notin \text{FPO}(X) \) for \(\eta \in \text{FRO}(Z) \). Note that \(f \) is not fuzzy precontinuous.
THEOREM 2.1. Let \(f : X \to Y \) is fuzzy precontinuous and \(g : Y \to Z \) is f.a.p.C., then \(g \circ f : X \to Z \) is f.a.p.C.

PROOF. Let \(\lambda \in \text{FRO}(Z) \). Then \(g^{-1}(\lambda) \in \tau(X) \), because \(g \) is f.a.p.C. Since \(f \) is fuzzy precontinuous, \(f^{-1}(g^{-1}(\lambda)) = (g \circ f)^{-1}(\lambda) \in \text{FPO}(X) \). Hence \(g \circ f \) is f.a.p.C.

THEOREM 2.2. Let \(f : X \to Y \) is fuzzy \(M \)-precontinuous and \(g : Y \to Z \) is f.a.p.C., then \(g \circ f : X \to Z \) is f.a.p.C.

PROOF. Let \(\lambda \in \text{FRO}(Z) \), then \(f^{-1}(\lambda) \in \text{FPO}(Y) \). Thus \(f^{-1}(g^{-1}(\lambda)) \in \text{FPO}(X) \). Hence \(g \circ f \) is f.a.p.C.

THEOREM 2.3. Let \(f \) be a mapping from an fts \(X \) to an fts \(Y \), then the following are equivalent:

1. \(f \) is f.a.p.C.,
2. \((1 - f^{-1}(\mu)) \in \text{FPO}(X) \) for each \(\mu \in \text{FRC}(Y) \),
3. \(f^{-1}(\lambda) \leq p\text{Int}(f^{-1}(\text{cl}(\lambda))) \) for each \(\lambda \in \tau(Y) \),
4. \(p\text{cl}(f^{-1}(\text{cl}(\mu))) \leq f^{-1}(\mu) \) for each \((1 - \mu) \in \tau(Y) \),
5. for each fuzzy point \(x_\beta \) of \(X \) and \(\mu \in \text{FRO}(Y) \) containing \(f(x_\beta) \), there exists \(\lambda \in \text{FRO}(X) \) such that \(x_\beta \in \lambda \) and \(\lambda \leq f^{-1}(\mu) \),
6. for each fuzzy point \(x_\beta \) of \(X \) and \(\mu \in \text{FRO}(Y) \) containing \(f(x_\beta) \), there exists \(\lambda \in \text{FPO}(X) \) such that \(x_\beta \in \lambda \) and \(f(\lambda) \leq \mu \),
7. for each fuzzy point \(x_\beta \) of \(X \) and \(\mu \in \text{FRO}(Y) \) with \(f(x_\beta) \) containing \(\mu \), there exists \(\lambda \in \text{FPO}(X) \) such that \(x_\beta \in \lambda \) and \(f(\lambda) \leq \mu \),
8. for each fuzzy point \(x_\beta \) of \(X \) and \(\mu \in \text{FRO}(Y) \) with \(f(x_\beta) \) containing \(\mu \), there exists \(\lambda \in \text{FPO}(X) \) such that \(x_\beta \in \lambda \) and \(\lambda \leq f^{-1}(\mu) \).

PROOF. (1) \(\Rightarrow \) (2). The proofs are obvious.

(1) \(\Rightarrow \) (3). Let \(\lambda \in \tau(Y) \), then \(\lambda \leq \text{Int}(\text{cl}(\lambda)) \) and hence \(f^{-1}(\lambda) \leq f^{-1}(\text{Int}(\text{cl}(\lambda))) \). From [1, Theorem 5.6-(b)], \(\text{Int}(\text{cl}(\lambda)) \in \text{FRO}(Y) \). Thus \(f^{-1}(\text{Int}(\text{cl}(\lambda))) \in \text{FPO}(X) \) since \(f \) is f.a.p.C. So. \(f^{-1}(\lambda) \leq f^{-1}(\text{Int}(\text{cl}(\lambda))) = \text{pInt}(f^{-1}(\text{Int}(\text{cl}(\lambda)))) \) from Remark 1.3.

(3) \(\Rightarrow \) (1). Let \(\lambda \in \text{FRO}(Y) \), then \(f^{-1}(\lambda) \leq \text{pInt}(f^{-1}(\text{Int}(\text{cl}(\lambda)))) \) = \(\text{pInt}(f^{-1}(\lambda)) \) by (3). So \(f^{-1}(\lambda) = \text{pInt}(f^{-1}(\lambda)) \). Hence \(f^{-1}(\lambda) \in \text{FPO}(X) \).
(2) ⇒ (4): Let $1 - \mu \in \tau(Y)$, then $\text{Cl}(\mu) = \mu$. Thus $\text{Cl}(\text{Int}(\mu)) \leq \mu$ and so $f^{-1}(\text{Cl}(\text{Int}(\mu))) \leq f^{-1}(\mu)$. From [1, Theorem 5.6-(a)], $\text{Cl}(\text{Int}(\mu)) \in \text{FRC}(Y)$. So $(1 - f^{-1}(\text{Cl}(\text{Int}(\mu))) \in \text{FPO}(X)$ by (2). Thus $p\text{Cl}(f^{-1}(\text{Cl}(\text{Int}(\mu))) = f^{-1}(\text{Cl}(\text{Int}(\mu))) \leq f^{-1}(\mu)$.

(4) ⇒ (2): Let $\mu \in \text{FRC}(Y)$, then $p\text{Cl}(f^{-1}(\mu)) = p\text{Cl}(f^{-1}(\text{Cl}(\text{Int}(\mu)))) \leq f^{-1}(\mu)$. Thus $p\text{Cl}(f^{-1}(\mu)) = f^{-1}(\mu)$. So $(1 - f^{-1}(\mu)) \in \text{FPO}(X)$.

(1) ⇒ (5): Let x_β be a fuzzy point of X and $\mu \in \text{FRO}(Y)$ with $f(x_\beta) \in \mu$. Putting $\lambda = f^{-1}(\mu)$, then by (1) $\lambda \in \text{FPO}(X)$, $x_\beta \in \lambda$ and $\lambda \leq f^{-1}(\mu)$.

(5) ⇒ (6): Let x_β be a fuzzy point of X and $\mu \in \text{FRO}(Y)$ containing $f(x_\beta)$. Then by (5) there exists $\lambda \in \text{FPO}(X)$ such that $x_\beta \in \lambda$ and $\lambda \leq f^{-1}(\mu)$. So $x_\beta \in \lambda$, $f(\lambda) \leq f(f^{-1}(\mu)) \leq \mu$.

(6) ⇒ (1): Let $\mu \in \text{FRO}(Y)$ and let x_β be a fuzzy point of X such that $x_\beta \in f^{-1}(\mu)$. Then $f(x_\beta) \in f(f^{-1}(\mu)) \leq \mu$. So by (6) there exists $\lambda \in \text{FPO}(X)$ such that $x_\beta \in \lambda$ and $f(\lambda) \leq \mu$, that is, $x_\beta \in \lambda \leq f^{-1}(\mu)$. Thus by Remark 1.3-(1), $f^{-1}(\mu) \in \text{FPO}(X)$. So f is f.a.p.C.

(1) ⇒ (7): Let x_β be a fuzzy point of X and $\mu \in \text{FRO}(Y)$ such that $f(x_\beta) \text{ Q } \mu$. Then $f^{-1}(\mu) \in \text{FPO}(X)$ by (1) and $x_\beta \text{ Q } f^{-1}(\mu)$. Taking $\lambda = f^{-1}(\mu)$, then $\lambda \in \text{FPO}(X)$, $x_\beta \text{ Q } \lambda$ and $f(\lambda) = f(f^{-1}(\mu)) \leq \mu$.

(7) ⇒ (8): Let x_β be a fuzzy point of X and $\mu \in \text{FRO}(Y)$ such that $f(x_\beta) \text{ Q } \mu$, then by (7) there exists $\lambda \in \text{FPO}(X)$ such that $x_\beta \text{ Q } \lambda$ and $f(\lambda) \leq \mu$. Thus we have $\lambda \leq f^{-1}(f(\lambda)) \leq f^{-1}(\mu)$.

(8) ⇒ (1): Let $\mu \in \text{FRO}(Y)$. To show $f^{-1}(\mu) \in \text{FPO}(X)$ we use Remark 1.3-(1). Let x_β be a fuzzy point of X such that $x_\beta \in f^{-1}(\mu)$. Then $f(x_\beta) \in \mu$. Choosing the fuzzy point $x_{(1-\beta)}$, then $f(x_{(1-\beta)}) \text{ Q } \mu$. So by (8) there exists $\delta \in \text{FPO}(X)$ such that $x_{(1-\beta)} \text{ Q } \delta$ and $f(\delta) \leq \mu$. Now $x_{(1-\beta)} \text{ Q } \delta$ implies that $x_{(1-\beta)}(x) + \lambda(x) = 1 - \beta + \mu(x) > 1$. It follows that $x_\beta \in \lambda \leq f^{-1}(\mu)$. So by Remark 1.3-(1), $f^{-1}(\mu) \in \text{FPO}(X)$. Thus f is f.a.p.C.

Definition 2.2. [6] An fts X said to be fuzzy semi regular if for each $\lambda \in \tau(X)$ and for each fuzzy point x_β of X with $x_\beta \text{ Q } \lambda$, there exists $\mu \in \tau(X)$ such that $x_\beta \text{ Q } \mu$ and $\mu \leq \text{Int}(\text{Cl}(\mu)) \leq \lambda$.

Theorem 2.4. Let $f : X \rightarrow Y$ be a mapping from an fts X to a fuzzy semi regular space Y, then f is f.a.p.C.s if and only if f is fuzzy precontinuous.
FUZZY ALMOST PRECONTINUOUS MAPPINGS

PROOF. Necessity: Let \(x_\beta \) be a fuzzy point of \(X \) and \(\lambda \in \tau(Y) \) such that \(f(x_\beta) \cap \lambda \). Since \(Y \) is fuzzy semi regular, there exists \(\mu \in \tau(Y) \) such that \(f(x_\beta) \cap \mu \) and \(\mu \leq \text{Int(Cl}(\mu)) \leq \lambda \). Since \(\text{Int(Cl}(\mu)) \in \text{FRO}(Y) \) and \(f \) is \(\text{f.a.p.C.} \), by Theorem 2.3-(7) there exists \(\mu_1 \in \text{FPO}(X) \) such that \(x_\beta \cap \mu_1 \) and \(f(\mu_1) \leq \text{Int(Cl}(\mu)) \). Thus \(\mu_1 \in \text{FPO}(X) \) such that \(x_\beta \cap \mu \) and \(f(\mu_1) \leq \lambda \). So by [11, Theorem 3.4] \(f \) is fuzzy precontinuous.

Sufficiency is obvious and is thus omitted.

Theorem 2.5. Let \(f \) be a mapping from an fts \(X \) to an fts \(Y \). If the graph mapping \(G_f : X \to X \times Y \) of \(f \) is \(\text{f.a.p.C.} \), then \(f \) is \(\text{f.a.p.C.} \).

Proof. Let \(\mu \in \text{FRO}(Y) \), then \(f^{-1}(\mu) = 1 \cap f^{-1}(\mu) = (G_f)^{-1}(1 \times \mu) \). Since \(1 \times \mu = 1 \times \text{Int(Cl}(\mu)) = \text{Int}(1 \times \text{Cl}(\mu)) = \text{Int}(\text{Cl}(1 \times \mu)) \), \(1 \times \mu \in \text{FRO}(X \times Y) \). Since \(G_f \) is \(\text{f.a.p.C.} \), \(f^{-1}(\mu) = (G_f)^{-1}(1 \times \mu) \in \text{FPO}(X) \). Hence \(f \) is \(\text{f.a.p.C.} \).

From the above, we have the following implication diagram:

\[
\begin{array}{ccc}
\text{f.m.p.C.} & \Rightarrow & \text{f.p.C.} \\
\downarrow & & \Rightarrow \\
\text{f.a.C.} & & \text{f.a.p.C.} \\
\uparrow & & \uparrow \\
\text{f.C.} & \Rightarrow & \text{f.a.C.}
\end{array}
\]

where \(\text{f.m.p.C.} \), \(\text{f.a.C.} \), \(\text{f.p.C.} \), \(\text{f.a.p.C.} \), \(\text{f.C.} \) and \(\text{f.a.C.} \) denote fuzzy \(M \)-precontinuous [7, 8], fuzzy \(\alpha \)-continuous [2, 4], fuzzy precontinuous [10], fuzzy almost precontinuous, fuzzy continuous [5] and fuzzy almost continuous [1].

References

[12] S S Thakur and S. Singh, Fuzzy M-precontinuous mappings,

G. I Chae
Dept. of Mathematics
University of Ulsan
Ulsan 680-749, Korea
E-mail: gichae@uou.ulsan.ac.kr

S. S. Thakur and S. Singh
Dept. of Applied Math.
Govt Engin. Coll.
Jabalpur 482011, India