UNIFORM N-DICHOTOMY FOR EVOLUTIONARY PROCESS IN BANACH SPACES

C. Buse, Y. C. Seo and Y. M. Nam

Abstract. We study some properties of N-dichotomy for evolutionary process and generalize the theory of the uniform N-equistability using these properties.

1. Introduction

Throughout this paper, X is a real or complex Banach space and $L(X)$ is the set of all bounded linear operators from X into itself. Let T be the set defined by $T = \{(t, s) : 0 \leq s \leq t < \infty\}$. A mapping $P : T \to L(X)$ is called an evolutionary process ([1], [6]) if the following are satisfied:

(i) $P(t, s)P(s, t_0) = P(t, t_0)$ for all $0 \leq t_0 \leq s \leq t$,
(ii) $P(t, t)x = x$ for all $x \in X$,
(iii) $P(t, s)$ is strongly continuous in s on $[0, t]$ and in t on $[s, \infty)$,
(iv) there is a nondecreasing function $p : [0, \infty) \to (0, \infty)$ such that

$$\|P(t, s)\| \leq p(t - s) \quad \text{for all } (t, s) \in T.$$

Let $L^\infty_{t_0}(X)$ be the space of X-valued functions f defined almost everywhere on $[t_0, \infty)$ such that f is strongly measurable and essentially bounded, and let $X_1(t_0)$ be the set $X_1(t_0) = \{x \in X : P(\cdot, t_0)x \in \ldots$
$L^\infty_t(X_1)$. If $X_2(t_0)$ is a complementary subspace of $X_1(t_0)$ then we denote by $P_1(t_0)$ the projection along $X_2(t_0)$ and $P_2(t_0) = I - P_1(t_0)$ the projection along $X_1(t_0)$.

We also denote:

\[P_1(t, t_0) = P(t, t_0)P_1(t_0) \quad \text{and} \quad P_2(t, t_0) = P(t, t_0)P_2(t_0). \]

In what follows we denote by N the set of all functions $N : R_+ \rightarrow R_+$ satisfying the following conditions:

(i) N is nondecreasing on $[0, \infty)$,

(ii) N is continuous on $[0, \infty)$ and $N(0) = 0$,

(iii) $N(uv) \leq N(u)N(v)$ for all $u \geq 0$ and $v \geq 0$.

EXAMPLE. Let $N : R_+ \rightarrow R_+$, $N(u) = u$ for $u \in [0, 1]$ and $N(u) = u^2$ for $u > 1$. Then we know that $N \in N$.

DEFINITION 1.1. (cf. [2], [3], [4]) An evolutionary process P is said to be:

(i) uniformly exponentially dichotomic (and we write P is u.e.d) if there are $M_1, M_2, \nu_1, \nu_2 > 0$ such that

\[\|P_1(t, t_0)x\| \leq M_1 \cdot \exp[-\nu_1(t - s)] \cdot \|P_1(s, t_0)x\| \]

and

\[\|P_2(t, t_0)x\| \geq M_2 \cdot \exp[\nu_2(t - s)] \cdot \|P_2(s, t_0)x\|, \]

for all $t \geq s \geq t_0 \geq 0$ and $x \in X$,

(ii) N-uniformly exponentially dichotomic (and we write P is N-u.e.d) if there are $M_1, M_2, \nu_1, \nu_2 > 0$ such that

\[N(\|P_1(t, t_0)x\|) \leq M_1 \cdot \exp[-\nu_1(t - s)] \cdot N(\|P_1(s, t_0)x\|), \]

and

\[N(\|P_2(t, t_0)x\|) \geq M_2 \cdot \exp[\nu_2(t - s)] \cdot N(\|P_2(s, t_0)x\|), \]

for all $t \geq s \geq t_0 \geq 0$ and $x \in X$.

It is clear that the uniform exponential dichotomy is a particular case (when $N(u) = u$) of the N-uniformly exponential dichotomy.
Lemma 1.1. Let \(\varphi : T \to R_+ \) be a function. If there exist positive numbers \(H, \delta, \eta \) with \(\eta > 1 \) such that

\[
\eta \varphi(s + \delta, t_0) \leq \varphi(s, t_0) \quad \text{and} \quad \varphi(t, t_0) \leq H\varphi(s, t_0),
\]

for all \(t \geq s \geq t_0 \geq 0 \), then there are \(K, \nu > 0 \) such that

\[
\varphi(t, t_0) \leq K \cdot \exp[-\nu(t - s)]\varphi(s, t_0),
\]

for all \(t \geq s \geq t_0 \geq 0 \).

Proof. Let \(t \geq s \geq t_0 \geq 0 \) and \(n = [(t - s) \cdot \delta^{-1}] \). Then we have

\[
\varphi(t, t_0) \leq H\varphi(s + n\delta, t_0) \leq \eta^{-n} H\varphi(s, t_0) = K \cdot \exp[-\nu(t - s)] \cdot \varphi(s, t_0),
\]

where \(K = \eta H \) and \(\nu = \delta^{-1} \cdot \ln \eta \). This completes the proof.

By the same method, we can also prove the following lemma.

Lemma 1.2. Let \(\Psi : T \to [0, \infty) \) be a function. If there exist positive numbers \(H, \delta, \eta > 0 \), with \(\eta \in (0, 1) \) such that

\[
\eta \Psi(s + \delta, t_0) \geq \Psi(s, t_0) \quad \text{and} \quad \Psi(t, t_0) \geq H\Psi(s, t_0),
\]

for all \(t \geq s \geq t_0 \geq 0 \), then there are \(K, \nu > 0 \) such that

\[
\Psi(t, t_0) \geq K \cdot \exp[\nu(t - s)]\Psi(s, t_0).
\]

Lemma 1.3. Let \(g : R_+ \to R_+^* \) be a continuous function on \(R_+ \) with \(\inf\{g(u) : u \geq 0\} < 1 \) and \(x \in X \) such that

\[
N(\|P_1(t, t_0)x\|) \leq g(t - s) \cdot N(\|P_1(s, t_0)x\|),
\]

for all \(t \geq s \geq t_0 \geq 0 \). Then there exist \(M, \nu > 0 \) such that

\[
N(\|P_1(t, t_0)x\|) \leq M \cdot \exp[-\nu(t - s)] \cdot N(\|P_1(s, t_0)x\|).
\]
Proof. Since \(\inf \{ g(u) : u \geq 0 \} < 1 \), there is \(\delta > 0 \) such that \(g(\delta) < 1 \). Let \(n = \lceil (t-s) \cdot \delta^{-1} \rceil \in N \). It is clear that there is \(r \in [0, \delta) \) such that \(t = s + n\delta + r \). Hence we have

\[
N(||P_1(t, t_0)x||) = N(||P(t, s + n\delta)P_1(s + n\delta, t_0)x||)
\leq N(P(t - s - n\delta)) \cdot N(||P_1(s + n\delta, t_0)||)N(P(\delta))
\cdot g(\delta) \cdot N(||P_1(s + (n-1)\delta, t_0)||)
\leq \cdots
\leq N(P(\delta)) \cdot (g(\delta))^n \cdot N(||P_1(s, t_0)x||)
= N(P(\delta)) \cdot \exp(-\nu n\delta) \cdot N(||P_1(s, t_0)x||)
= N(P(\delta)) \cdot \exp(-\nu(t-s)) \cdot \exp(\nu r) \cdot N(||P_1(s, t_0)x||)
= M \cdot \exp(-\nu(t-s)) \cdot N(||P_1(s, t_0)x||),
\]
for all \(t \leq s \leq t_0 \leq 0 \), where \(\nu = \delta^{-1} \cdot \ln(g(\delta)) > 0 \) and \(M = N(P(\delta)) \times \exp(\nu r) > 0 \). This completes the proof.

And we have the following corresponding lemma.

Lemma 1.4. Let \(h : [0, \infty) \to (0, \infty) \) be a continuous function on \([0, \infty)\) with \(\sup \{ h(u) : u \geq 0 \} > 1 \) and \(x \in X \) such that

\[
(1.11) \quad N(||P_2(t, t_0)x||) \geq h(t-s)N(||P_2(s, t_0)x||),
\]
for all \(t \geq s \geq t_0 \geq 0 \). Then there exist \(M', \nu' > 0 \) such that

\[
(1.12) \quad N(||P_2(t, t_0)x||) \geq M' \cdot \exp[\nu'(t-s)] \cdot N(||P_2(s, t_0)x||).
\]

2. \(N \)-dichotomy for evolutionary process

Theorem 2.1. The following statements are equivalent:

(a) There exists \(N \in \mathcal{N} \) such that \(P \) is \(N \)-u.e.d.;
(b) The evolutionary process \(P \) is u.e.d.;
(c) For every \(N \in \mathcal{N} \) the evolutionary process \(P \) is \(N \)-u.e.d.
PROOF. (a) ⇒ (b): Let \(s \geq t_0 \geq 0, \ u \geq 0 \) and \(x \in X \). From (1.3) we obtain

\[
M_1^{-1} \exp(\nu_1 u) \cdot N(\|P_1(s + u, t_0)x\|) \leq N(\|P_1(s, t_0)x\|).
\]

Since

\[
\lim_{u \to \infty} M_1^{-1} \exp(\nu_1 u) = \infty,
\]

there exists \(\delta > 0 \) such that

\[
N(2) \cdot N(\|P_1(s + u, t_0)x\|) \leq N(\|P_1(s, t_0)x\|),
\]

for all \(s \geq t_0 \geq 0, \ u \geq \delta \), and consequently

\[
2\|P_1(s + u, t_0)x\| \leq \|P_1(s, t_0)x\|
\]

for all \(s \geq t_0 \geq 0, \ u \geq \delta \) and \(x \in X \). On the other hand, if \(s \leq t \leq s + \delta \), then

\[
\|P_1(t, t_0)x\| = \|P(t, s)P_1(s, t_0)x\|
\]

\[
\leq M \exp[\omega(t - s)] \cdot \|P_1(s, t_0)x\|
\]

\[
\leq M \exp(\omega \delta) \cdot \|P_1(s, t_0)x\|.
\]

From (2.3), (2.4) and Lemma 1.1, we obtain that there exist \(M'_1, \nu'_1 > 0 \) such that

\[
\|P_1(t, t_0)x\| \leq M'_1 \exp[-\nu'(t - s)] \cdot \|P_1(s, t_0)x\|
\]

for all \(t \geq s \geq t_0 \geq 0 \) and \(x \in X \).

Let \(t \geq s \geq t_0 \geq 0 \) and \(\eta > 0 \) such that \(N(\eta) \leq M_2 \). Then

\[
N(\|P_2(t, t_0)x\|) \geq N(\eta) \cdot N(\|P_2(s, t_0)x\|)
\]

\[
\geq N(\eta \cdot \|P_2(s, t_0)x\|),
\]

and hence

\[
\|P_2(t, t_0)x\| \geq \eta \|P_2(s, t_0)x\|
\]
for all \(t \geq s \geq t_0 \geq 0 \). Since \(\lim_{u \to \infty} M_2 \cdot \exp(\nu_2 u) = \infty \), there exists \(\tau > 0 \) such that

\[
N(\|P_2(s+\delta,t_0)x\|) \geq N(2) \cdot N(\|P_2(s,t_0)x\|),
\]

and hence

(2.6) \[\|P_2(s+\delta,t_0)x\| \geq 2\|P_2(s,t_0)x\| \]

for all \(s \geq t_0 \geq 0 \) and \(x \in X \). From (2.5), (2.6) and Lemma 1.2, we obtain that there exist \(M'_2, \nu'_2 > 0 \) such that

\[
\|P_2(t,t_0)x\| \geq M'_2 \exp[\nu'_2(t-s)] \cdot \|P_2(s,t_0)x\|
\]

for all \(t \geq s \geq t_0 \geq 0 \) and \(x \in X \).

(b) \Rightarrow (c): Let \(t \geq s \geq t_0 \geq 0 \) and \(N \in \mathcal{N} \). From (1.1) it follows that

(2.7) \[N(\|P_1(t,t_0)x\|) \leq N(M_1 \exp[-\nu_1(t-s)]) \cdot N(\|P_1(s,t_0)x\|) \]

and from \(\lim_{u \to 0} N(u) = 0 \), there exists \(\delta_1 > 0 \) such that

(2.8) \[N(\|P_1(s+\delta_1,t_0)x\|) \leq \frac{1}{2} N(\|P_1(s,t_0)x\|) \]

for all \(s \geq t_0 \geq 0 \) and \(x \in X \). On the other hand, it follows from (1.1) that

\[
\|P_1(t,t_0)x\| \leq M_1\|P_1(s,t_0)x\|
\]

for all \(t \geq s \geq t_0 \geq 0 \) and \(x \in X \). Using Lemma 1.1, we obtain that there exist \(M''_1, \nu''_1 > 0 \) such that

\[
N(\|P_1(t,t_0)x\|) \leq M''_1 \exp[-\nu''_1(t-s)] \cdot N(\|P_1(s,t_0)x\|)
\]

for all \(t \geq s \geq t_0 \geq 0 \) and \(x \in X \). From (1.2) we obtain

\[
M_2^{-1} \exp[-\nu_2(t-s)] \cdot \|P_2(t,t_0)x\| \geq \|P_2(s,t_0)x\|
\]
for all $t \geq s \geq t_0 \geq 0$, and hence

$$N(M_2^{-1}\exp[-\nu_2(t-s)]) \cdot N(||P_2(t,t_0)x||) \geq N(||P_2(s,t_0)x||).$$

Hence $\lim_{u \to 0} N(u) = 0$. Therefore, there exists $\tau_1 > 0$ such that

$$\frac{1}{2}N(||P_2(s+\tau_1,t_0)x||) \geq N(||P_2(s,t_0)x||)$$

for all $t \geq s \geq t_0 \geq 0$ and $x \in X$.

By (1.2) it follows

$$M_2^{-1}||P_2(t,t_0)x|| \geq ||P_2(s,t_0)x||$$

for all $t \geq s \geq t_0 \geq 0$, and consequently

$$N(||P_2(t,t_0)x||) \geq [N(M_2^{-1})]^{-1} \cdot N(||P_2(s,t_0)x||)$$

for all $t \geq s \geq t_0 \geq 0$ and $x \in X$.

(c) \Rightarrow (a) is obvious.

Seo-Nam [5] proved the following theorem.

Theorem 2.2. The evolutionary process P is u.e.d. if and only if there exist $M, m > 0$ such that

\begin{align*}
(2.9) \quad & \int_t^\infty ||P_1(u,t_0)x|| \, du \leq M \cdot ||P_1(t,t_0)x||, \\
(2.10) \quad & \int_{t_0}^t ||P_2(u,t_0)x|| \, du \leq M \cdot ||P_2(t,t_0)x||,
\end{align*}

and

\begin{equation}
(2.11) \quad m \cdot ||P_2(t,t_0)x|| \leq ||P_2(t+1,t_0)x||
\end{equation}

for all $(t,t_0) \in T$ and $x \in X$.

Now, we are in a position to prove the main theorem in this paper.
Theorem 2.3. The evolutionary process P is N-u.e.d. if and only if there exist $N \in \mathbb{N}$ and $n, m > 0$ such that

$$
(2.12) \quad \int_t^\infty N(\|P_1(u, t_0)x\|)du \leq M \cdot N(\|P_1(t, t_0)x\|),
$$

$$
(2.13) \quad \int_{t_0}^t N(\|P_2(u, t_0)x\|)du \leq M \cdot N(\|P_2(t, t_0)x\|),
$$

and

$$
(2.14) \quad m \cdot N(\|P_2(t, t_0)x\|) \leq N(\|P_2(t + 1, t_0)x\|)
$$

for all $(t, t_0) \in T$ and $x \in X$.

Proof. The necessity is obvious.

For the sufficiency, let $t \geq s + 1 > s \geq t_0 \geq 0$. Then we have

$$
N(\|P_1(t, t_0)x\|) \cdot \int_0^1 (N(P(u)))^{-1}du
$$

$$
= \int_0^1 N(\|P(t, \tau)P_1(\tau, t_0)x\|) \cdot [N(P(u))]^{-1}du
$$

$$
\leq \int_{t-1}^t N(P(t - \tau)) \cdot N(\|P_1(\tau, t_0)x\|) \cdot (N(P(t - \tau)))^{-1}d\tau
$$

$$
= \int_{t-1}^t N(\|P_1(\tau, t_0)x\|)d\tau
$$

$$
\leq \int_s^\infty N(\|P_1(\tau, t_0)x\|)d\tau
$$

$$
\leq M \cdot N(\|P_1(s, t_0)x\|).
$$

Therefore

$$
N(\|P_1(t, t_0)x\|) \leq M(\int_0^1 (N(P(u)))^{-1}du)^{-1} \cdot N(\|P_1(s, t_0)x\|)
$$

for all $t \geq s + 1 > s \geq t_0 \geq 0$.

If \(t_0 \leq s \leq t < s + 1 \), then
\[
N(\|P_1(t, t_0)x\|) \leq N(P(t - s)) \cdot N(\|P_1(s, t_0)x\|) \\
\leq N(P(1)) \cdot N(\|P_1(s, t_0)x\|),
\]
and hence
\[
(2.15) \quad N(\|P_1(t, t_0)x\|) \leq H \cdot N(\|P_1(s, t_0)x\|)
\]
for all \(t \geq s \geq t_0 \geq 0 \) and \(x \in X \), where
\[
H = \max\{M \cdot (\int_0^1 N(P(u))du)^{-1}, N(P(1))\}.
\]
Integrating (2.15) from \(s \) to \(t \) we obtain
\[
(2.16) \quad (t - s)N(\|P_1(t, t_0)x\|) \leq H \int_s^t N(\|P_1(u, t_0)x\|)du \\
\leq H \int_s^\infty N(\|P_1(u, t_0)x\|)du \\
\leq H \cdot M \cdot N(\|P_1(s, t_0)x\|).
\]
Combining this and (2.15), we obtain
\[
(2.17) \quad N(\|P_1(t, t_0)x\|) \leq M(H + 1) \cdot (t - s + 1)^{-1} \cdot N(\|P_1(s, t_0)x\|)
\]
for all \(t \geq s \geq t_0 \geq 0 \).

It follows from Lemma 1.3, there are \(M_1 > 0 \) and \(\nu_1 > 0 \) such that
\[
(2.18) \quad N(\|P_1(t, t_0)x\|) \leq M_1 \exp[-\nu_1(t - s)] \cdot N(\|P_1(s, t_0)x\|)
\]
for all \(t \geq s \geq t_0 \geq 0 \).

Let \(x \in X \) and \(t \geq s \geq t_0 + 1 > t_0 \geq 0 \). Then we have
\[
N(\|P_2(s, t_0)x\|) \cdot \int_0^1 (N(P(u)))^{-1}du \\
= N(\|P_2(s, t_0)x\|) \cdot \int_{s-1}^a (N(P(s - \tau)))^{-1}d\tau \\
\leq \int_{t_0}^t N(\|P_2(\tau, t_0)x\|)d\tau \\
\leq M \cdot N(\|P_2(t, t_0)x\|).
\]
Therefore, for $t \geq v + 1 > v \geq t_0$

$$N(||P_2(t, t_0)x||) \geq M^{-1} \int_0^1 (N(P(u)))^{-1} du \cdot N(||P_2(v + 1, t_0)x||)K \cdot N(||P_2(v, t_0)x||),$$

where

$$K = M^{-1} \cdot m \cdot \int_0^1 (N(P(u)))^{-1} du.$$

Integrating (2.19) from $v + 1$ to t, we obtain

$$\int_{v+1}^t N(||P_2(r, t_0)x||) dr \geq K(t - v - 1) \cdot N(||P_2(v, t_0)x||)$$

for all $t \geq v + 1 > v \geq t_0 \geq 0$.

Therefore,

$$K(t - v - 1) \cdot N(||P_2(v, t_0)x||) \leq \int_v^t N(||P_2(\tau, t_0)x||) d\tau \leq M \cdot N(||P_2(t, t_0)x||)$$

for all $t \geq v + 1 > v \geq t_0 \geq 0$. Hence from (2.19) we obtain

$$N(||P_2(t, t_0)x||) \geq K(t - v) \cdot (M + 1)^{-1} \cdot N(||P_2(v, t_0)x||) \geq K_1(t - v + 1) \cdot N(||P_2(t, t_0)x||)$$

for all $t \geq v + 1 > v \geq t_0 \geq 0$ and $x \in X$, where $K_1 = K \cdot [2(M + 1)]^{-1}$.

If $v \leq t < v + 1$, then

$$N(||P_2(v + 1, t_0)x||) = N(||P(v + 1, t)P_2(t, t_0)x||) \leq N(P(v + 1 - t)) \cdot N(||P_2(t, t_0)x||).$$

Therefore,

$$N(||P_2(t, t_0)x||) \geq (N(P(1)))^{-1} \cdot N(||P_2(v + 1, t_0)x||) \geq m \cdot N(P(1))^{-1} \cdot N(||P_2(v, t_0)x||),$$
and

\[(2.24) \quad N(\|P_2(t, t_0)x\|) \geq m \cdot N(P(1))^{-1} \cdot N(\|P_2(v, t_0)x\|) \cdot (t - v)\]

for all \(0 \leq t_0 \leq v \leq t < v + 1\).

Combining (2.23) and (2.24), we have

\[(2.25) \quad N(\|P_2(t, t_0)x\|) \geq K_2(t - v + 1) \cdot N(\|P_2(v, t_0)x\|)\]

for all \(0 \leq t_0 \leq v \leq t < v + 1\), where

\[K_2 = (m + 1) \cdot [2N(P(1))]^{-1} > 0.\]

From (2.24) and (2.25), we have

\[N(\|P_2(t, t_0)x\|) \geq K'(t - v + 1) \cdot N(\|P_2(v, t_0)x\|)\]

for all \(t \geq s \geq t_0 \geq 0\) and \(x \in X\), where \(K' = \min\{K_1, K_2\}\).

From Lemma 1.4, we know that there are \(M_2 > 0\) and \(v_2 > 0\) such that

\[N(\|P_2(t, t_0)x\|) \geq M_2 \exp[v_2(t - s)] \cdot N(\|P_2(s, t_0)x\|)\]

for all \(t \geq s \geq t_0 \geq 0\) and \(x \in X\). This completes the proof.

References

C. Buse
Department of Mathematics
University of Timisoara
Herzegovina, Czechoslovakia

Y. C. Seo and Y. M. Nam
Department of Mathematical Education
Kyungnam University
Masan 631-701, Korea