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ON THE CENTROID OF THE PRIME GAMMA. RINGS

MEHMET ALI OzTURK AND YOUNG BAE JUN

ABSTRACT. We define and study the extended centroid of a prime
[-ring.

1. Introduction

N. Nobusawa [6] introduced the notion of a I'-ring, more general than
aring. W. E. Barnes [1] weakened slightly the conditions in the defini-
tion of I'ring in the sense of Nobusawa. W. E. Barnes [1], J. Luh 3]
and S. Kyuno (2] studied the structure of I'-rings and obtained various
generalizations analogous to corresponding parts in ring theory. In this
paper, we define and study the extended centroid of a prime I'-ring.

2. Preliminaries

Let M and T be two abelian groups. If for all z,y,2z € M and all o,
G € T’ the conditions

(i) zaye M,

(i) (z+ylaz = zaz +yaz, z(a + B)z = zaz + 252, zaly + z) =
Tay + raz,

(ili) (woy)8z = za(ydz)
are satisfied, then we call M a I'-ring. By a right (resp. left) ideal of a
I'ring M we mean an additive subgroup U/ of M such that UT'AM cU
(resp. MTU C U). If U is both a right and a left ideal, then we say
that U is an ideal of M. For each a of a [-ring M the smallest right
ideal containing a is called the principal right ideal generated by a and
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is denoted by < a >,. Similarly we define < a >, (resp. < a >), the
principal left (resp. two sided) ideal generated by a. An ideal P of a
[-ring M is said to be prime if for any ideals A and B of M, ATBCP
implies A C P or B C P. An ideal Q of a I'-ring M is said to be semi-
prime if for any ideal U of M, UTU C @ implies 7 C . A I-ring M
is said to be prime (resp. semi-prime) if the zero ideal is prime (resp.
semi-prime).

THEOREM 2.1. ([2, Theorem 4|) If M is a ['-ring, the following con-
ditions are equivalent:

(i) M is a prime I'-ring.

(i) Ifa,b€ M and aI'MTI'b = (0), thena =0 or b =0.

(iii} If < @ > and < b > are principal ideals in M such that < a >
' <b>=(0),thena=00rb=0.

(iv) If A and B are right ideals in M such that AT'B = (0), then
A =(0) or B={0).

(v) If A and B are left ideals in M such that AT'B = (0), then A = (0)
or B = (0).

3. Centroids

Let M be a DI-ring. A mapping D(-,-) : M x M — M is said
to be symmetric bi-additive if it is additive in both arguments and
D(z,y) = D(y,z) for all z,y € M. By the trace of D(-,-) we mean a
map d : M — M defined by d(z) = D(z,z) for all z € M. A symmet-
ric bi-additive map is called a symmetric bi-derivation if D(xfz,y) =
D(z,y)Bz + x8D(z,y) for all z,y,2 € M and 3 € I'. Since a map
D(-,-) is symmetric bi-additive, the trace of D(:,-) satisfies the relation
d(z+y) = d(z) +d(y)+2D(z,y) for all ¢,y € M and is an even function.

Let M be a prime I-ring such that MI'M # M. Denote

M = {(U, f) |U(# 0) is an ideal of M and
f:U — M is aright M-module homomorphism }.

Define a relation ~ on M by (U, f) ~ (V,g) <= IW(F0 CcUNV
such that f = g on W. Since M is a prime I'-ring, it is possible to find a
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non-zero W and so “~” is an equivalence relation. This gives a chance
for us to get a partition of M. We then denote the equivalence class by
ClU, )= f, where f:= {g:V — M|(U, f) ~{V, g)}, and denote by @
the set of all equivalence classes. Now we define an addition “4" on @
as follows:

f+a=ClUf)+CUV,g)=ClUNV, f+g)

where f+g:UNV — M is a right M-module homomorphism. Assume
that (U1, fi) ~ (Ua, f2) and (Vi,91) ~ (V2,g2). Then IAW;(# 0) C
Uy MUy such that fi = fo; and IWa(# 0) € V3 N V5 such that g = go.
Taking W = W; N W,. Then W # 0 and

W=W10W2C(U]ﬂUg)ﬁ(Vrlng)=(Ulﬂ‘/‘i)ﬂ(U2ﬂV2).

For any z € W, we have (f1 + g1){(z) = fi(z) + q1{z) = fo(2) + g2(2) =
(f2+92)(z), and so fi + g1 = fa+g2 in W. Therefore (U1 NV, fi +g1) ~
(Uz N Ve, fa + g2), which means that the addition “4+” is well-defined.

Now we will prove that @ is an additive abelian group. Let f = CI (U, ),
g = Cl(V,g) and h = CI(W, h) be elements of Q. Then

~

(f+8)+h=CHUNV,f+g)+ CLUW,h)
=CI{UNVYNW,(f +g)+h)
=CHUN(VNW), f+{g+h)
= CUU, f) + CUV NW, g+ h)
= f+(3+h).

Taking 0 := CI(M,0) where 0 : M — M, x — 0, for all € M we
have f + 0 = CUU, f) + CUM,0) = CL{U N M, f +0) = CUU, f) = f,
and similarly 0+ f f Hence 0 is the additive identity in Q. For any
element f = ClHU, f) of Q, it is easy to show that — f = C'l(U —f)is an
additive inverse of f = CI(U, f). Finally, for any elements f = Cl{U, f)
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and § = Ci(V, g) of Q, we have

-~

f+9=ClU, f)+Ci(V,g)
=CUUNV,f+9g)
=Cl(VNnUg+f)
= ClYV,g) + CUU, f)

=g+

Therefore Q is an additive abelian group.

Since MTM # M and since M is a prime Iring, MTM (+ 0) is an
ideal of M. We can take the homomorphistn 1 : MT'M — M as a unit
M-module homomorphism. Note that M3M # 0 for all 0 # 8 € ' so
that 15 : MBM — M is non-zero M-module homomorphism. Denote

N ={(MBM,1yp) | 0 # ST}

and define a relation “~” on N by (MAM, 1amg) ~ (MM, 1ymy) <>
IW = MaM{# 0) C M3M N MyM such that 1yz = 1y on W. We
can easily check that “~” is an equivalence relation on N. Denote by
CI(M BM, 1p3) = 3, the equivalence class containing (MBM, 1pyz) and

by I the set of all equivalence classes of N with respect to =, that is,
B = {lnry s MYM — M | (MBM,1npa) ~ (MyM, 1n4)}

and I' := {3 |0 +# 8 € I'}. Define an addition “+” on I' as follows:

~ ~

A+ é=Cl(MBM, 1Mﬂ) + CUMSM, 1pss)
= CZ(M,@M NMOM, Lyp + 1M5)

for every (3 0}, 6(# 0) € I'. Then (I',+) is an abelian group. Now we
define a mapping {—, —, —) : @ x xQ—@Q, (f.3,8) — § 33, as follows:

$85 = CUU, HYCUMPBM, 125)CLV, g)
= CUVTMBMTU, flusg)
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where
VIMBMTIU = {zvi%m,ﬁnmiu@ |v; € V,u, € Uymg,n; € M and
o,y € }

is an ideal of M and fluygg : VTIMABMTU — M which is given by

f 1Mﬁ9( > W’Y«.-:mo:ﬁnzazufa) =f ( > g(vi)’nmiﬁmaiw)

is a right M-module homomorphism. Then it is routine to check that
such mapping is well-defined. We will show that @ is a I‘—rmg with
unity. Let f,g,h € Qand 3,5 €, ie, f= ClU,f), § = CU(V,g),
h=ClW,h), 3 =ClUMBM, 1yp) and ¥ = C{(M~yM, 1as,). Then

(f + )8k = (CUU, f) + CUV, g))CL(MBM, 1345)CLUW, h)
=CUUNYV, f + g)CUMBM, 155)CI{W, h)
= CUWIMBMTUNV), (f + g)lnmph)
= CUWTMBMTU NWIMBMTYV, flpysh + glagh)
= CUWTMBMTU, flpph) + CUWTMBMIV, glarsh)

= fBh + g0k,

and the equalities /(¥ + 8)3 = f45 + 789 and f3(g+ k) = fB35+ fh
are proved in an analogous way. Moreover we have
(£19)Bh = (CUT, FYCUMYM, Ly )OUV, 9))CUMBM, Lagg) CU(W; h)
= CUVIMyMTU, flp,g)CUMBM, 148)CUW, h)
= CWTMBMT(VIMyMTIU), (flayg)1rsh
= CI((WTMBMIVYTMyMTU, fla.,{91mah))
= CUU, [CUMYM, 130, ) CHUWTMBMTV, glpssh)
= CUU, FYCUM~yM, Ly, (CUV, g)CUMBM, 1345)CI{W, k)

= F4(gBh).
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Next we will show that @ has an identity. Let f € ¢ and B c I.
Take I = CI(M,I) € @ where I : M — M, z + z, is a M-module
homomorphism. Then

FBI = CUU, HCUMBM, 1345)CUM, I
= CI{MTMBMTU, fiygsl)

= CUU, f) =7,

and similarly we have I B f = f . Hence ( is a f‘—ring with identity. Notic-
ing that the mapping p : I' — I" defined by () = Bforevery0# 3T
is an isomorphism, we know that the f‘—ring Q is a I'-ring. Finally we
prove that M is a subring of Q. For a fixed element a in M and every ele-
ment € I, consider a mapping Aa, : M — M defined by Ao, (z) = ayz
for all z € M. It is easy to prove that the mapping A, is a right
M-module homomorphism, so that A, is an element of Q. Define a
mapping ¢ : M — Q by ¥(a) = & = Cl(M, As,) for all @ € M and
v € I, Clearly ¢ is well-defined. To prove ¢ is one-to-one, it is enough
to show that

kerg = {a € M | $(a) = 0} = {On}.

Let a € keryy. Then 9(a) = 0, ie., CU{M, Aoy) = CUM,0). It follows
that Opg = Agy (M) = ayM. Since M is a prime I'-ring, we have a = Ups
and so keryy = {Op}. In order to prove 1 is a homomorphism, let
v, €l and a,b ¢ M. Then

Matpyr(2) = (2 + b)yz = avx + by
= Agr{) + Aoy (@) = (Aay + Ap)(2)

and

Aaghyr(2) = {aBb)yz = aB(byz) = Aag(byz)
= Aap(Lap(byz)) = Aag(Larg (Mey{z)))
= (Aaglaphey)(z)

for all @ € M. It follows that A ny = Asy + Aby and Apry =
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AaﬁlMﬁAb"(- Hence

$(a+b) = a+b=CI(M Aatny)
= CI(M N M, Aay + Aby)
= CU(M, Aor) + CL{M, Apy)
=a+b=1y(a)+P(b)

and

¥(afb) = aBb = CUM, A(upt)-)
= CUMTMBMTM, \ysl3raMsy)
= CUM, Aap)CUMBM, 1315)CLUM, Ap-))
= afb
= ¥(a)By(b). (T is isomorphic to IY.

Therefore M is a subring of 2, and in such case we call @ the quotient
I-ring of M.

Let M be any [-ring (in the sense of Barnes) and let E(M,T') be the
set of endomorphisms of the additive group of M. We can easily check
that E(M,I") is a I-ring. For a € M, define maps R, : M — M and
Ly M — M by R.(m) = mvya and L,{m) = aym, respectively, for all
m € M and vy € I'. Then R,, L, € E(M,T). Let B{M,T) be the subring
of E(M,I'} generated by all R, and L, for a € M.

DErFINITION 3.1. The set of elements in E{M,I') which commute
elementwise with B(M,I") is called the centroid of M.

For purposes of convenience, we use ¢ instead of § € Q.

LEMMA 3.2, Let M be a prime I'-ring. For each non-zero ¢ € Q,
there is a non-zero ideal U of M such that ¢(U) C M.

Proof. Straightforward. O

LeEMMA 3.3. Let M be a prime I-ring. Then the quotient I'-ring Q
of M is a prime I'-ring.
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Proof. Let p,q € @ be such that pI'Ql'g = 0. If p # 0 # q, then there
exist non-zero ideals I/ and V of M such that p(U} C M and ¢(V') C M.
Since p # 0 # g, there exist non-zero elements v € U and v € V' such
that p(u) # 0 # g(v). Noticing that M is a subring of Q, we have

p(u)TMTg(v) C p(u)l'Qlg(v) =0

and so p(u)I' MT'¢(v) = 0. This is a contradiction. Hence p = 0 or ¢ = 0,
ending the proof. O

DEFINITION 3.4. The set

Cr:={geQ|gyf=frgforal f€Qandyel}
is called the extended centroid of a I'-ring M.

Let M be a prime [-ring and let Cr be the extended centroid of M.
Note that if a; and b; are non-zero elements of M such that 3 a;yizFib; =
0 for all z € M and 3;,v; €I, then the a;’s (also b,’s) are linearly depen-
dent over Cr. Moreover, if ayx3b = byzxfa for all x € M and 3,7y €T
where a{# 0),b € M are fixed, then there exists A € Cp such that
b=Aaafora el

LEMMA 3.5. Let M be a 2-torsion free prime I'-ring, D(-,-) the
symmetric bi-derivation of M and d the trace of D(-,-). If

(1) avyd(z) =0

for all € M and v € I" where a is a fixed element of M, then a =0 or
D=4

Proof. Let z,y,z € M and 8,v € T. Replacing x by z + y in (1), we
get

(2) ayD(z,y) = 0.
If we substitute 28z for z in (2), then
(3) ayz3D(z,y) = 0.

Since M is a prime I'-ring, it follows that ¢ = 0 or D = (. !
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LEMMA 3.6. Let M be a 2-torsion free prime ['-ring, Di(-,-) and
Ds(:,-) the symmetric bi-derivations of M and dy and ds the traces of
Di(-,+) and Da(-,-), respectively. If
(4) d1 (2)vda(y) = da()yds (y)

for all z,y € M and v € T and dy # 0, then there exists A € Cr such
that da(z) = Aady(z) for o € T, where Cr is the extended centroid of
M. :

Proof. Let z,y,2 € M and §,v € I". Substituting y + z for y in (4),
we have

(5) d1(z)vD2(y, ) = da(z)¥ D1 (y, 2).
Replacing z by 28y in (5), we have

(6) di(z)v2Bda(y) = da()y28d1(y).
Now if we replace y by z in (6}, then

(7 dy (2)72Bda(z) = da(2)72Bd1 ().

If di(z) # 0 then da(z) = A(z)ody () for all @ € T and for some A(z) €
Cr. Thus if dy(z) # 0 # di(y), then it follows from (6) that

(8) (My) — Mz))ad: (z)vzBd1(y) = 0.

Since M is a prime [-ring, by using Lemma 3.5 we conclude that A(z) =
A(y). Hence we have proved that there exists A € Cr such that dy(z) =
Aady(z) for all « € T and = € M with dy(x) # 0. On the other hand,
if dy{x) = 0 then dz(z) = 0 as well. Therefore da(z) = Aad;(z) for all
rcMand a €T O

THEOREM 3.7. Let M be a 2-torsion free prime I-ring, Dy(-, ),
Da(-, «), Ds(:, ) and Dy(-, -) the symmetric bi-derivations of M and
dy, dg, ds3 and dy the traces of Dy(;, ), Da(:, -), Da(-, -) and Dy(-, )
respectively. If

(9) d1 (2)yda{y) = ds(x)vds(y)

forall z,y € M and v € I" and d; # 0 # dy, then there exists A € Cr
such that da(x) = Aads(z) and ds(z) = Aadi(z) for o € I" where Cr is
the extended centroid of M.
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Proof. Tet z,y,z,w € M and o, 3.7 € T'. Replacing y by y 4+ z in
(9), we get

(10) dy (.’E)"}‘Dg (ya z) = d3($)'7'D4(ya Z)

If we substitute zBz for z in (10), then

(11) di(z)yzBda(y) = da(z)yzBdaly).

Substituting zady{w) for z in {11), we have

(12) dy (z)yzads(w)Bdy(y) = da(@)yzads(w)Fda(y).

By (11), we know that di(z)yzads(w) = ds (x)yzads(w) and so

dr (2)yza(ds(w)Bda(y) — daf{w)Bda(y)) =0

which implies that ds(w)Bda(y) = da{w)Bdas(y) since di # 0 and M is
a prime I'-ring. It follows from d4 # 0 and Lemma 3.6 that da(y) =
Aady(y) for some A € Cp. Hence, by (11), we conclude that

(Aady(z) — da(z))vzBda(y) = 0,

and so ds(z) = Aad;(z). This completes the proof. O
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