ON THE CENTROID OF THE PRIME GAMMA RINGS

MEHMET ALI ÖZTÜRK AND YOUNG BAE JUN

ABSTRACT. We define and study the extended centroid of a prime Γ -ring.

1. Introduction

N. Nobusawa [6] introduced the notion of a Γ -ring, more general than a ring. W. E. Barnes [1] weakened slightly the conditions in the definition of Γ -ring in the sense of Nobusawa. W. E. Barnes [1], J. Luh [3] and S. Kyuno [2] studied the structure of Γ -rings and obtained various generalizations analogous to corresponding parts in ring theory. In this paper, we define and study the extended centroid of a prime Γ -ring.

2. Preliminaries

Let M and Γ be two abelian groups. If for all $x, y, z \in M$ and all α , $\beta \in \Gamma$ the conditions

- (i) $x\alpha y \in M$,
- (ii) $(x+y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha+\beta)z = x\alpha z + x\beta z$, $x\alpha(y+z) = x\alpha y + x\alpha z$,
 - (iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$

are satisfied, then we call M a Γ -ring. By a right (resp. left) ideal of a Γ -ring M we mean an additive subgroup U of M such that $U\Gamma M \subseteq U$ (resp. $M\Gamma U \subseteq U$). If U is both a right and a left ideal, then we say that U is an ideal of M. For each a of a Γ -ring M the smallest right ideal containing a is called the principal right ideal generated by a and

Received September 8, 1999. Revised May 11, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 16N60, 16W25, 16Y99.

Key words and phrases: extended centroid, symmetric bi-derivation, trace, quotient Γ -ring.

is denoted by $\langle a \rangle_r$. Similarly we define $\langle a \rangle_l$ (resp. $\langle a \rangle$), the principal left (resp. two sided) ideal generated by a. An ideal P of a Γ -ring M is said to be prime if for any ideals A and B of M, $A\Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. An ideal Q of a Γ -ring M is said to be semi-prime if for any ideal U of M, $U\Gamma U \subseteq Q$ implies $U \subseteq Q$. A Γ -ring M is said to be prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime).

THEOREM 2.1. ([2, Theorem 4]) If M is a Γ -ring, the following conditions are equivalent:

- (i) M is a prime Γ -ring.
- (ii) If $a, b \in M$ and $a\Gamma M\Gamma b = (0)$, then a = 0 or b = 0.
- (iii) If < a > and < b > are principal ideals in M such that < a > $\Gamma < b >= (0)$, then a = 0 or b = 0.
- (iv) If A and B are right ideals in M such that $A\Gamma B = (0)$, then A = (0) or B = (0).
- (v) If A and B are left ideals in M such that $A\Gamma B = (0)$, then A = (0) or B = (0).

3. Centroids

Let M be a Γ -ring. A mapping $D(\cdot,\cdot): M\times M\to M$ is said to be $symmetric\ bi\text{-}additive}$ if it is additive in both arguments and D(x,y)=D(y,x) for all $x,y\in M$. By the trace of $D(\cdot,\cdot)$ we mean a map $d:M\to M$ defined by d(x)=D(x,x) for all $x\in M$. A symmetric bi-additive map is called a $symmetric\ bi\text{-}derivation$ if $D(x\beta z,y)=D(x,y)\beta z+x\beta D(z,y)$ for all $x,y,z\in M$ and $\beta\in\Gamma$. Since a map $D(\cdot,\cdot)$ is symmetric bi-additive, the trace of $D(\cdot,\cdot)$ satisfies the relation d(x+y)=d(x)+d(y)+2D(x,y) for all $x,y\in M$ and is an even function. Let M be a prime Γ -ring such that $M\Gamma M\neq M$. Denote

 $\mathcal{M} := \{(U, f) \mid U \neq 0\}$ is an ideal of M and $f: U \to M$ is a right M-module homomorphism $\}$.

Define a relation \sim on \mathcal{M} by $(U, f) \sim (V, g) \iff \exists W (\neq 0) \subset U \cap V$ such that f = g on W. Since M is a prime Γ -ring, it is possible to find a

non-zero W and so " \sim " is an equivalence relation. This gives a chance for us to get a partition of \mathcal{M} . We then denote the equivalence class by $Cl(U,f)=\hat{f}$, where $\hat{f}:=\{g:V\to M|(U,f)\sim (V,g)\}$, and denote by Q the set of all equivalence classes. Now we define an addition "+" on Q as follows:

$$\hat{f} + \hat{g} = Cl(U, f) + Cl(V, g) = Cl(U \cap V, f + g)$$

where $f+g:U\cap V\to M$ is a right M-module homomorphism. Assume that $(U_1,f_1)\sim (U_2,f_2)$ and $(V_1,g_1)\sim (V_2,g_2)$. Then $\exists W_1(\neq 0)\subset U_1\cap U_2$ such that $f_1=f_2$; and $\exists W_2(\neq 0)\subset V_1\cap V_2$ such that $g_1=g_2$. Taking $W=W_1\cap W_2$. Then $W\neq 0$ and

$$W = W_1 \cap W_2 \subset (U_1 \cap U_2) \cap (V_1 \cap V_2) = (U_1 \cap V_1) \cap (U_2 \cap V_2).$$

For any $x \in W$, we have $(f_1 + g_1)(x) = f_1(x) + g_1(x) = f_2(x) + g_2(x) = (f_2 + g_2)(x)$, and so $f_1 + g_1 = f_2 + g_2$ in W. Therefore $(U_1 \cap V_1, f_1 + g_1) \sim (U_2 \cap V_2, f_2 + g_2)$, which means that the addition "+" is well-defined. Now we will prove that Q is an additive abelian group. Let $\hat{f} = Cl(U, f)$, $\hat{g} = Cl(V, g)$ and $\hat{h} = Cl(W, h)$ be elements of Q. Then

$$(\hat{f} + \hat{g}) + \hat{h} = Cl(U \cap V, f + g) + Cl(W, h)$$

= $Cl((U \cap V) \cap W, (f + g) + h)$
= $Cl(U \cap (V \cap W), f + (g + h))$
= $Cl(U, f) + Cl(V \cap W, g + h)$
= $\hat{f} + (\hat{g} + \hat{h}).$

Taking $\hat{0} := Cl(M,0)$ where $0 : M \to M$, $x \mapsto 0$, for all $x \in M$ we have $\hat{f} + \hat{0} = Cl(U,f) + Cl(M,0) = Cl(U \cap M, f+0) = Cl(U,f) = \hat{f}$, and similarly $\hat{0} + \hat{f} = \hat{f}$. Hence $\hat{0}$ is the additive identity in Q. For any element $\hat{f} = Cl(U,f)$ of Q, it is easy to show that $-\hat{f} = Cl(U,-f)$ is an additive inverse of $\hat{f} = Cl(U,f)$. Finally, for any elements $\hat{f} = Cl(U,f)$

Ź

and $\hat{g} = Cl(V, g)$ of Q, we have

$$\begin{split} \hat{f} + \hat{g} &= Cl(U, f) + Cl(V, g) \\ &= Cl(U \cap V, f + g) \\ &= Cl(V \cap U, g + f) \\ &= Cl(V, g) + Cl(U, f) \\ &= \hat{g} + \hat{f}. \end{split}$$

Therefore Q is an additive abelian group.

Since $M\Gamma M \neq M$ and since M is a prime Γ -ring, $M\Gamma M \ (\neq 0)$ is an ideal of M. We can take the homomorphism $1_{M\Gamma}: M\Gamma M \to M$ as a unit M-module homomorphism. Note that $M\beta M \neq 0$ for all $0 \neq \beta \in \Gamma$ so that $1_{M\beta}: M\beta M \to M$ is non-zero M-module homomorphism. Denote

$$\mathcal{N} := \{(M\beta M, 1_{M\beta}) \mid 0 \neq \beta \in \Gamma\},\$$

and define a relation " \approx " on \mathcal{N} by $(M\beta M, 1_{M\beta}) \approx (M\gamma M, 1_{M\gamma}) \iff \exists W := M\alpha M (\neq 0) \subset M\beta M \cap M\gamma M$ such that $1_{M\beta} = 1_{M\gamma}$ on W. We can easily check that " \approx " is an equivalence relation on \mathcal{N} . Denote by $Cl(M\beta M, 1_{M\beta}) = \hat{\beta}$, the equivalence class containing $(M\beta M, 1_{M\beta})$ and by $\hat{\Gamma}$ the set of all equivalence classes of \mathcal{N} with respect to \approx , that is,

$$\hat{\beta} := \{1_{M\gamma} : M\gamma M \to M \mid (M\beta M, 1_{M\beta}) \approx (M\gamma M, 1_{M\gamma})\}$$

and $\hat{\Gamma} := \{\hat{\beta} \mid 0 \neq \beta \in \Gamma\}$. Define an addition "+" on $\hat{\Gamma}$ as follows:

$$\hat{\beta} + \hat{\delta} = Cl(M\beta M, 1_{M\beta}) + Cl(M\delta M, 1_{M\delta})$$
$$= Cl(M\beta M \cap M\delta M, 1_{M\beta} + 1_{M\delta})$$

for every $\beta(\neq 0)$, $\delta(\neq 0) \in \Gamma$. Then $(\hat{\Gamma}, +)$ is an abelian group. Now we define a mapping $(-, -, -): Q \times \hat{\Gamma} \times Q \to Q$, $(\hat{f}, \hat{\beta}, \hat{g}) \mapsto \hat{f} \hat{\beta} \hat{g}$, as follows:

$$\begin{split} \hat{f}\hat{\beta}\hat{g} &= Cl(U,f)Cl(M\beta M,1_{M\beta})Cl(V,g) \\ &= Cl(V\Gamma M\beta M\Gamma U,f1_{M\beta}g) \end{split}$$

where

$$V\Gamma Meta M\Gamma U = \Big\{\sum v_i \gamma_i m_i eta n_i lpha_i u_i \ | \ v_i \in V, u_i \in U, m_i, n_i \in M \ ext{and} \ lpha_i, \gamma_i \in \Gamma \Big\}$$

is an ideal of M and $f1_{M\beta}g:V\Gamma M\beta M\Gamma U\to M$ which is given by

$$f1_{M\beta}g\Big(\sum v_i\gamma_im_i\beta n_i\alpha_iu_i\Big)=f\Big(\sum g(v_i)\gamma_im_i\beta n_i\alpha_iu_i\Big)$$

is a right M-module homomorphism. Then it is routine to check that such mapping is well-defined. We will show that Q is a $\hat{\Gamma}$ -ring with unity. Let $\hat{f}, \hat{g}, \hat{h} \in Q$ and $\hat{\beta}, \hat{\gamma} \in \hat{\Gamma}$, i.e., $\hat{f} = Cl(U, f), \ \hat{g} = Cl(V, g), \ \hat{h} = Cl(W, h), \ \hat{\beta} = Cl(M\beta M, 1_{M\beta})$ and $\hat{\gamma} = Cl(M\gamma M, 1_{M\gamma})$. Then

$$\begin{split} (\hat{f}+\hat{g})\hat{\beta}\hat{h} &= (Cl(U,f)+Cl(V,g))Cl(M\beta M,1_{M\beta})Cl(W,h) \\ &= Cl(U\cap V,f+g)Cl(M\beta M,1_{M\beta})Cl(W,h) \\ &= Cl(W\Gamma M\beta M\Gamma(U\cap V),(f+g)1_{M\beta}h) \\ &= Cl(W\Gamma M\beta M\Gamma U\cap W\Gamma M\beta M\Gamma V,f1_{M\beta}h+g1_{M\beta}h) \\ &= Cl(W\Gamma M\beta M\Gamma U,f1_{M\beta}h)+Cl(W\Gamma M\beta M\Gamma V,g1_{M\beta}h) \\ &= \hat{f}\hat{\beta}\hat{h}+\hat{q}\hat{\beta}\hat{h}, \end{split}$$

and the equalities $\hat{f}(\hat{\gamma} + \hat{\beta})\hat{g} = \hat{f}\hat{\gamma}\hat{g} + \hat{f}\hat{\beta}\hat{g}$ and $\hat{f}\hat{\beta}(\hat{g} + \hat{h}) = \hat{f}\hat{\beta}\hat{g} + \hat{f}\hat{\beta}\hat{h}$ are proved in an analogous way. Moreover we have

$$\begin{split} (\hat{f}\hat{\gamma}\hat{g})\hat{\beta}\hat{h} &= (Cl(U,f)Cl(M\gamma M,1_{M\gamma})Cl(V,g))Cl(M\beta M,1_{M\beta})Cl(W,h) \\ &= Cl(V\Gamma M\gamma M\Gamma U,f1_{M\gamma}g)Cl(M\beta M,1_{M\beta})Cl(W,h) \\ &= Cl(W\Gamma M\beta M\Gamma (V\Gamma M\gamma M\Gamma U),(f1_{M\gamma}g)1_{M\beta}h \\ &= Cl((W\Gamma M\beta M\Gamma V)\Gamma M\gamma M\Gamma U,f1_{M\gamma}(g1_{M\beta}h)) \\ &= Cl(U,f)Cl(M\gamma M,1_{M\gamma})Cl(W\Gamma M\beta M\Gamma V,g1_{M\beta}h) \\ &= Cl(U,f)Cl(M\gamma M,1_{M\gamma})(Cl(V,g)Cl(M\beta M,1_{M\beta})Cl(W,h)) \\ &= \hat{f}\hat{\gamma}(\hat{g}\hat{\beta}\hat{h}). \end{split}$$

Next we will show that Q has an identity. Let $\hat{f} \in Q$ and $\hat{\beta} \in \hat{\Gamma}$. Take $\hat{I} = Cl(M, I) \in Q$ where $I : M \to M$, $x \mapsto x$, is a M-module homomorphism. Then

$$\begin{split} \hat{f}\hat{\beta}\hat{I} &= Cl(U,f)Cl(M\beta M,1_{M\beta})Cl(M,I) \\ &= Cl(M\Gamma M\beta M\Gamma U,f1_{M\beta}I) \\ &= Cl(U,f) = \hat{f}, \end{split}$$

and similarly we have $\hat{I}\hat{\beta}\hat{f}=\hat{f}$. Hence Q is a $\hat{\Gamma}$ -ring with identity. Noticing that the mapping $\varphi:\Gamma\to\hat{\Gamma}$ defined by $\varphi(\beta)=\hat{\beta}$ for every $0\neq\beta\in\Gamma$ is an isomorphism, we know that the $\hat{\Gamma}$ -ring Q is a Γ -ring. Finally we prove that M is a subring of Q. For a fixed element a in M and every element $\gamma\in\Gamma$, consider a mapping $\lambda_{a\gamma}:M\to M$ defined by $\lambda_{a\gamma}(x)=a\gamma x$ for all $x\in M$. It is easy to prove that the mapping $\lambda_{a\gamma}$ is a right M-module homomorphism, so that $\lambda_{a\gamma}$ is an element of Q. Define a mapping $\psi:M\to Q$ by $\psi(a)=\hat{a}=Cl(M,\lambda_{a\gamma})$ for all $a\in M$ and $\gamma\in\Gamma$. Clearly ψ is well-defined. To prove ψ is one-to-one, it is enough to show that

$$\ker \psi = \{ a \in M \mid \psi(a) = \hat{0} \} = \{ 0_M \}.$$

Let $a \in \text{ker}\psi$. Then $\psi(a) = \hat{0}$, i.e., $Cl(M, \lambda_{a\gamma}) = Cl(M, 0)$. It follows that $0_M = \lambda_{a\gamma}(M) = a\gamma M$. Since M is a prime Γ -ring, we have $a = 0_M$ and so $\text{ker}\psi = \{0_M\}$. In order to prove ψ is a homomorphism, let $\gamma, \beta \in \Gamma$ and $a, b \in M$. Then

$$\lambda_{(a+b)\gamma}(x) = (a+b)\gamma x = a\gamma x + b\gamma x$$
$$= \lambda_{a\gamma}(x) + \lambda_{b\gamma}(x) = (\lambda_{a\gamma} + \lambda_{b\gamma})(x)$$

and

$$\begin{split} \lambda_{(a\beta b)\gamma}(x) &= (a\beta b)\gamma x = a\beta(b\gamma x) = \lambda_{a\beta}(b\gamma x) \\ &= \lambda_{a\beta}(\mathbf{1}_{M\beta}(b\gamma x)) = \lambda_{a\beta}(\mathbf{1}_{M\beta}(\lambda_{b\gamma}(x))) \\ &= (\lambda_{a\beta}\mathbf{1}_{M\beta}\lambda_{b\gamma})(x) \end{split}$$

for all $x \in M$. It follows that $\lambda_{(a+b)\gamma} = \lambda_{a\gamma} + \lambda_{b\gamma}$ and $\lambda_{(a\beta b)\gamma} =$

 $\lambda_{a\beta} 1_{M\beta} \lambda_{b\gamma}$. Hence

$$\psi(a+b) = \widehat{a+b} = Cl(M, \lambda_{(a+b)\gamma})$$

$$= Cl(M \cap M, \lambda_{a\gamma} + \lambda_{b\gamma})$$

$$= Cl(M, \lambda_{a\gamma}) + Cl(M, \lambda_{b\gamma})$$

$$= \hat{a} + \hat{b} = \psi(a) + \psi(b)$$

and

$$\begin{split} \psi(a\beta b) &= \widehat{a\beta b} = Cl(M, \lambda_{(a\beta b)\gamma}) \\ &= Cl(M\Gamma M\beta M\Gamma M, \lambda_{a\beta} 1_{M\beta} \lambda_{b\gamma}) \\ &= Cl(M, \lambda_{a\beta}) Cl(M\beta M, 1_{M\beta}) Cl(M, \lambda_{b\gamma}) \\ &= \hat{a}\hat{\beta}\hat{b} \\ &= \psi(a)\beta\psi(b). \quad [\Gamma \text{ is isomorphic to } \hat{\Gamma}]. \end{split}$$

Therefore M is a subring of Q, and in such case we call Q the quotient Γ -ring of M.

Let M be any Γ -ring (in the sense of Barnes) and let $E(M,\Gamma)$ be the set of endomorphisms of the additive group of M. We can easily check that $E(M,\Gamma)$ is a Γ -ring. For $a\in M$, define maps $R_a:M\to M$ and $L_a:M\to M$ by $R_a(m)=m\gamma a$ and $L_a(m)=a\gamma m$, respectively, for all $m\in M$ and $\gamma\in\Gamma$. Then $R_a,L_a\in E(M,\Gamma)$. Let $B(M,\Gamma)$ be the subring of $E(M,\Gamma)$ generated by all R_a and L_a for $a\in M$.

DEFINITION 3.1. The set of elements in $E(M,\Gamma)$ which commute elementwise with $B(M,\Gamma)$ is called the *centroid* of M.

For purposes of convenience, we use q instead of $\hat{q} \in Q$.

LEMMA 3.2. Let M be a prime Γ -ring. For each non-zero $q \in Q$, there is a non-zero ideal U of M such that $q(U) \subset M$.

LEMMA 3.3. Let M be a prime Γ -ring. Then the quotient Γ -ring Q of M is a prime Γ -ring.

Proof. Let $p, q \in Q$ be such that $p\Gamma Q\Gamma q = 0$. If $p \neq 0 \neq q$, then there exist non-zero ideals U and V of M such that $p(U) \subset M$ and $q(V) \subset M$. Since $p \neq 0 \neq q$, there exist non-zero elements $u \in U$ and $v \in V$ such that $p(u) \neq 0 \neq q(v)$. Noticing that M is a subring of Q, we have

$$p(u)\Gamma M\Gamma q(v) \subset p(u)\Gamma Q\Gamma q(v) = 0$$

and so $p(u)\Gamma M\Gamma q(v)=0$. This is a contradiction. Hence p=0 or q=0, ending the proof.

Definition 3.4. The set

$$C_{\Gamma} := \{ g \in Q \mid g\gamma f = f\gamma g \text{ for all } f \in Q \text{ and } \gamma \in \Gamma \}$$

is called the *extended centroid* of a Γ -ring M.

Let M be a prime Γ -ring and let C_{Γ} be the extended centroid of M. Note that if a_i and b_i are non-zero elements of M such that $\sum a_i \gamma_i x \beta_i b_i = 0$ for all $x \in M$ and $\beta_i, \gamma_i \in \Gamma$, then the a_i 's (also b_i 's) are linearly dependent over C_{Γ} . Moreover, if $a\gamma x\beta b = b\gamma x\beta a$ for all $x \in M$ and $\beta, \gamma \in \Gamma$ where $a(\neq 0), b \in M$ are fixed, then there exists $\lambda \in C_{\Gamma}$ such that $b = \lambda \alpha a$ for $\alpha \in \Gamma$.

LEMMA 3.5. Let M be a 2-torsion free prime Γ -ring, $D(\cdot, \cdot)$ the symmetric bi-derivation of M and d the trace of $D(\cdot, \cdot)$. If

$$a\gamma d(x) = 0$$

for all $x \in M$ and $\gamma \in \Gamma$ where a is a fixed element of M, then a = 0 or D = 0.

Proof. Let $x, y, z \in M$ and $\beta, \gamma \in \Gamma$. Replacing x by x + y in (1), we get

(2)
$$a\gamma D(x,y) = 0.$$

If we substitute $z\beta x$ for x in (2), then

(3)
$$a\gamma z\beta D(x,y) = 0.$$

Since M is a prime Γ -ring, it follows that a=0 or D=0.

LEMMA 3.6. Let M be a 2-torsion free prime Γ -ring, $D_1(\cdot, \cdot)$ and $D_2(\cdot, \cdot)$ the symmetric bi-derivations of M and d_1 and d_2 the traces of $D_1(\cdot, \cdot)$ and $D_2(\cdot, \cdot)$, respectively. If

$$d_1(x)\gamma d_2(y) = d_2(x)\gamma d_1(y)$$

for all $x, y \in M$ and $\gamma \in \Gamma$ and $d_1 \neq 0$, then there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \alpha d_1(x)$ for $\alpha \in \Gamma$, where C_{Γ} is the extended centroid of M.

Proof. Let $x, y, z \in M$ and $\beta, \gamma \in \Gamma$. Substituting y + z for y in (4), we have

(5)
$$d_1(x)\gamma D_2(y,z) = d_2(x)\gamma D_1(y,z).$$

Replacing z by $z\beta y$ in (5), we have

(6)
$$d_1(x)\gamma z\beta d_2(y) = d_2(x)\gamma z\beta d_1(y).$$

Now if we replace y by x in (6), then

(7)
$$d_1(x)\gamma z\beta d_2(x) = d_2(x)\gamma z\beta d_1(x).$$

If $d_1(x) \neq 0$ then $d_2(x) = \lambda(x)\alpha d_1(x)$ for all $\alpha \in \Gamma$ and for some $\lambda(x) \in C_{\Gamma}$. Thus if $d_1(x) \neq 0 \neq d_1(y)$, then it follows from (6) that

(8)
$$(\lambda(y) - \lambda(x))\alpha d_1(x)\gamma z\beta d_1(y) = 0.$$

Since M is a prime Γ -ring, by using Lemma 3.5 we conclude that $\lambda(x) = \lambda(y)$. Hence we have proved that there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \alpha d_1(x)$ for all $\alpha \in \Gamma$ and $x \in M$ with $d_1(x) \neq 0$. On the other hand, if $d_1(x) = 0$ then $d_2(x) = 0$ as well. Therefore $d_2(x) = \lambda \alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$.

THEOREM 3.7. Let M be a 2-torsion free prime Γ -ring, $D_1(\cdot, \cdot)$, $D_2(\cdot, \cdot)$, $D_3(\cdot, \cdot)$ and $D_4(\cdot, \cdot)$ the symmetric bi-derivations of M and d_1 , d_2 , d_3 and d_4 the traces of $D_1(\cdot, \cdot)$, $D_2(\cdot, \cdot)$, $D_3(\cdot, \cdot)$ and $D_4(\cdot, \cdot)$ respectively. If

(9)
$$d_1(x)\gamma d_2(y) = d_3(x)\gamma d_4(y)$$

for all $x, y \in M$ and $\gamma \in \Gamma$ and $d_1 \neq 0 \neq d_4$, then there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \alpha d_4(x)$ and $d_3(x) = \lambda \alpha d_1(x)$ for $\alpha \in \Gamma$ where C_{Γ} is the extended centroid of M.

Proof. Let $x, y, z, w \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Replacing y by y + z in (9), we get

(10)
$$d_1(x)\gamma D_2(y,z) = d_3(x)\gamma D_4(y,z).$$

If we substitute $z\beta x$ for z in (10), then

(11)
$$d_1(x)\gamma z\beta d_2(y) = d_3(x)\gamma z\beta d_4(y).$$

Substituting $z\alpha d_4(w)$ for z in (11), we have

(12)
$$d_1(x)\gamma z\alpha d_4(w)\beta d_2(y) = d_3(x)\gamma z\alpha d_4(w)\beta d_4(y).$$

By (11), we know that $d_1(x)\gamma z\alpha d_2(w)=d_3(x)\gamma z\alpha d_4(w)$ and so

$$d_1(x)\gamma z\alpha(d_4(w)\beta d_2(y) - d_2(w)\beta d_4(y)) = 0$$

which implies that $d_4(w)\beta d_2(y) = d_2(w)\beta d_4(y)$ since $d_1 \neq 0$ and M is a prime Γ -ring. It follows from $d_4 \neq 0$ and Lemma 3.6 that $d_2(y) = \lambda \alpha d_4(y)$ for some $\lambda \in C_{\Gamma}$. Hence, by (11), we conclude that

$$(\lambda \alpha d_1(x) - d_3(x))\gamma z\beta d_4(y) = 0,$$

and so $d_3(x) = \lambda \alpha d_1(x)$. This completes the proof.

References

- W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
- [2] S. Kyuno, On prime gamma-rings, Pacific J. Math. 75(1)18 (1978), 185-190.
- [3] J. Luh, On the theory of simple Γ-rings, Michigan Math. J. 16 (1969), 65-75.
- [4] _____, The structure of primitive gamma-rings. Osaka J. Math. 7 (1970), 267-
- [5] W. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
- [6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
- [7] M. Sapanci and M. A. Ozturk, Symmetric bi-derivations on prime rings, Greek Math. Soc. (to appear).

M. A. Öztürk
Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58140-Sivas, Turkey
E-mail: maozturk@bim.cumhuriyet.edu.tr

Y. B. Jun
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
E-mail: ybjun@nongae.gsnu.ac.kr