ON DISTINGUISHED PRIME SUBMODULES

Yong Hwan Cho

ABSTRACT. In this paper we find some properties of distinguished prime submodules of modules and prove theorems about the dimension of modules.

1. Introduction

In this paper all rings are commutative with identity and all modules are unitary. Let R be a ring and M an R-module. A proper submodule P of M is said to be prime if $rm \in P$ for $r \in R$ and $m \in M$ implies that either $m \in P$ or $r \in (P:M)$. Specially prime submodule P is called \mathcal{P} -prime if $(P:M)=\mathcal{P}$. Clearly if P is a prime submodule of M, then (P:M) is a prime ideal of R. A proper submodule Q of M is called a primary submodule if $rm \in Q$ for $r \in R$ and $m \in M$ implies that either $m \in Q$ or $r \in \sqrt{(Q:M)}$. A primary submodule Q of M is said to be \mathcal{P} -primary if $\sqrt{(Q:M)} = \mathcal{P}$. Clearly if Q is a \mathcal{P} -primary submodule, then \mathcal{P} is a prime ideal of R. An R-module M is called multiplication module if every submodule N of M is of the form AM for some ideal Aof R and an R-module M is said to be a weak multiplication module if every prime submodule N of M is of the form AM for some ideal A of R. It is clear that every multiplication module is a weak multiplication but the converse is not true; for example, the Z-module Q is a weak multiplication module which is not a multiplication module. Let N be a non-zero prime submodule of Q. Then $N \neq Q$. Therefore we can take $x \in Q - N$ and $y \in N - 0$. Let x = k/l, y = r/s for some non-zero integers k, l, r, s. Hence $rlx = rk = (r/s)sk = (sk)y \in N$. But $x \notin N$ and N is a prime submodule. Thus $rl \in (N:Q)$. So $rlQ \subseteq N$. Now

Received October 29, 1999. Revised March 18, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 13C11, 13C99.

Key words and phrases: distributive module, multiplication module, prime submodule, primary submodule, Krull dimension.

since rlQ = Q, we have N = Q, a contradiction. Hence 0 is the only prime submodule of Q and 0 = 0M. This means that Q is a weak multiplication module. On the other hand, Z is a submodule of Q and $0 \neq Z \neq AQ = Q$ for every non-zero ideal A of Z. Thus Q is not a multiplication module. In section 2 of this paper we consider some other conditions (Proposition 2.2, Proposition 2.3) which give results of Proposition 1.1 of [1], and prove a theorem (Theorem 2.4) about primary submodules which is very similar to Proposition 1.1 of [1]. In section 3, we prove that dimM = cl.k.dimM (Theorem 3.5, Theorem 3.6) if M belongs to any of the following cases:

- (1) M is a finitely generated distributive module.
- (2) M is a distributive module with $\mathcal{M}M \neq M$ over a local ring (R, \mathcal{M})

Lastly, we prove that for every prime ideal \mathcal{P} of R and for a finitely generated distributive R-module M, $dim M_{\mathcal{P}} = cl.k.dim M_{\mathcal{P}}$ (Theorem 3.7).

2. Distinguished Prime Submodules

Let N_1 and N_2 be submodules of an R-module M. Then we write $N_1 \sim N_2$ if and only if $N_1 : M = N_2 : M$. It is clear that \sim is an equivalence relation on the set of all submodules of M. We denote each class by C_A where A = N : M for each $N \in C_A$. Let M be an R-module, \mathcal{P} a prime ideal of R, $S_{\mathcal{P}} = R - \mathcal{P}$ and $\mathcal{P}M(S_{\mathcal{P}}) = \{x \in M : sx \in \mathcal{P}M \text{ for some } s \in S_{\mathcal{P}}\}$. Then it is clear that $\mathcal{P}M(S_{\mathcal{P}})$ is a submodule of M containing $\mathcal{P}M$ and $\mathcal{P} \subseteq \mathcal{P}M : M \subseteq \mathcal{P}M(S_{\mathcal{P}}) : M$.

PROPOSITION 2.1 ([1]). Let M be an R-module and \mathcal{P} a prime ideal of R such that $\mathcal{P}M(S_{\mathcal{P}}) \neq M$. Then $\mathcal{P}M(S_{\mathcal{P}})$ is a \mathcal{P} -prime submodule of M and $\mathcal{P}M(S_{\mathcal{P}})$ is the intersection of all \mathcal{P} -prime submodules of $C_{\mathcal{P}}$.

PROPOSITION 2.2. Let M be an R-module containing a \mathcal{P} -prime submodule. Then $\mathcal{P}M(S_{\mathcal{P}})$ is a \mathcal{P} -prime submodule of M and $\mathcal{P}M(S_{\mathcal{P}})$ is the intersection of all \mathcal{P} -prime submodules of $C_{\mathcal{P}}$.

PROOF. Let N be a \mathcal{P} -prime submodule of M. Then, $(N:M) = \mathcal{P}$ and let $m \in \mathcal{P}M(S_{\mathcal{P}})$. Then there exist $s \in S_{\mathcal{P}}$ such that $sm \in \mathcal{P}M$ and hence $sm \in N$. However since N is a \mathcal{P} -prime submodule and $s \notin \mathcal{P}$,

 $m \in N$, i.e., $\mathcal{P}M(S_{\mathcal{P}}) \subseteq N \neq M$. The result follows from Proposition 2.1.

PROPOSITION 2.3. Let M be an R-module and \mathcal{P} a prime ideal of R such that $\mathcal{P} = (\mathcal{P}M : M)$ and $M/\mathcal{P}M$ is a finitely generated R/\mathcal{P} -module. Then $\mathcal{P}M(S_{\mathcal{P}})$ is a \mathcal{P} -prime submodule of M and $\mathcal{P}M(S_{\mathcal{P}})$ is the intersection of all \mathcal{P} -prime submodules of $C_{\mathcal{P}}$.

PROOF. In view of Proposition 2.1, it suffices to prove that $\mathcal{P}M(S_{\mathcal{P}}) \neq M$. Now assume that $\mathcal{P}M(S_{\mathcal{P}}) = M$. Since $M/\mathcal{P}M$ is finitely generated, $M/\mathcal{P}M = (R/\mathcal{P})\bar{m}_1 + \cdots + (R/\mathcal{P})\bar{m}_k$. Hence $M = Rm_1 + \cdots + Rm_k + \mathcal{P}M$. However $m_i(i = 1, \dots, k) \in M = \mathcal{P}M(S_{\mathcal{P}})$. So, there exists $s_i \in S_{\mathcal{P}}$ for each $i = 1, \dots, k$, such that $s_i m_i \in \mathcal{P}M$. Therefore $s_1 s_2 \cdots s_k M \subseteq \mathcal{P}M$ and $s_1 s_2 \cdots s_k \subseteq (\mathcal{P}M : M) = \mathcal{P}$. Since \mathcal{P} is a prime ideal there exists j such that $s_j \in \mathcal{P}$, a contradiction. Thus $\mathcal{P}M(S_{\mathcal{P}}) \neq M$.

Next, we have similar result for primary submodules.

THEOREM 2.4. Let M be a finitely generated R-module and Q a \mathcal{P} -primary ideal of R containing Ann_RM . Then $QM(S_{\mathcal{P}}) = \{x \in M : sx \in QM \text{ for some } s \in S_{\mathcal{P}}\}$ is a \mathcal{P} -primary submodule of M and $QM(S_{\mathcal{P}})$ is the intersection of all \mathcal{P} -primary submodules of M in C_B where $B = QM(S_{\mathcal{P}}) : M$.

PROOF. We first prove that $QM(S_{\mathcal{P}}) \neq M$. Assume that $QM(S_{\mathcal{P}}) = M$. Then since M is finitely generated, there exist $m_1, m_2, \cdots, m_n \in QM(S_{\mathcal{P}})$ and $s_1, s_2, \cdots, s_n \in S_{\mathcal{P}}$ such that $M = Rm_1 + Rm_2 + \cdots + Rm_n$ and $s_i m_i \in QM$ for each i. Consequently, for every i, there are $q_{ij} \in Q$ such that $s_i m_i = \sum_{j=1}^n q_{ij} m_j$. Then it follows that $\sum_{j=1}^n (q_{ij} - s_i \delta_{ij}) m_j = 0$ for each i. Hence $dm_j = 0$ for every j where $d = det(q_{ij} - s_i \delta_{ij}) = q \pm s_1 s_2 \cdots s_n$ and $q \in Q$. Therefore dM = 0 and so $d \in Ann_R M \subseteq Q$. Since $\sqrt{Q} = \mathcal{P}$ and \mathcal{P} is a prime ideal of R, there exist $j(1 \leq j \leq n)$ such that $s_j \in \mathcal{P}$, a contradiction. Thus $QM(S_{\mathcal{P}}) \neq M$. Now suppose that $r \in \sqrt{QM(S_{\mathcal{P}})} : M$ and $r \notin \mathcal{P}$. Then there exist n such that $r^n M \subseteq QM(S_{\mathcal{P}})$. Hence for every $m \in M, r^n m \in QM(S_{\mathcal{P}})$ and so there exist $t \in S_{\mathcal{P}}$ such that $tr^n m \in QM$. Since $tr^n \in S_{\mathcal{P}}$ we have $m \in QM(S_{\mathcal{P}})$. So $M = QM(S_{\mathcal{P}})$, a contradiction,

i.e., $\sqrt{\mathcal{Q}M(S_{\mathcal{P}})}: M \subseteq \mathcal{P}$. On the other hand, for every $p \in \mathcal{P} = \sqrt{\mathcal{Q}}$ there exists n such that $p^n \in \mathcal{Q}$. Hence $p^n M \subseteq \mathcal{Q}M \subseteq \mathcal{Q}M(S_{\mathcal{P}})$ and $p^n \in (\mathcal{Q}M(S_{\mathcal{P}}):M)$. This means that $p \in \sqrt{\mathcal{Q}M(S_{\mathcal{P}}):M}$ and so $\mathcal{P}=$ $\sqrt{\mathcal{Q}M(S_{\mathcal{P}}):M}$. Lastly, let $rm\in\mathcal{Q}M(S_{\mathcal{P}})$ for $r\notin\mathcal{P}=\sqrt{\mathcal{Q}M(S_{\mathcal{P}}):M}$ and $m \in M$. Then $r \in S_{\mathcal{P}}$ and there exists $s \in S_{\mathcal{P}}$ such that $s(rm) \in$ $\mathcal{Q}M$. Since $sr \in S_{\mathcal{P}}$ we have $m \in \mathcal{Q}M(S_{\mathcal{P}})$. Therefore $\mathcal{Q}M(S_{\mathcal{P}})$ is a \mathcal{P} -primary submodule of M. Next, let N be a \mathcal{P} -primary submodule of M in C_B where $B = \mathcal{Q}M(S_{\mathcal{P}}): M$. Supose that $m \in \mathcal{Q}M(S_{\mathcal{P}})$. Then there exists $s \in S_{\mathcal{P}}$ such that $sm \in \mathcal{Q}M$. However, $\mathcal{Q}M \subseteq \mathcal{Q}M(S_{\mathcal{P}})$ and so $\mathcal{Q} \subseteq (\mathcal{Q}M(S_{\mathcal{P}}):M)$. Since $N \in C_B$ and $B = (\mathcal{Q}M(S_{\mathcal{P}}):M), \mathcal{Q} \subseteq$ $(\mathcal{Q}M(S_{\mathcal{P}}):M)=(N:M)$ and $sm\in\mathcal{Q}M\subseteq N.$ Since N is P-primary and $s \notin \mathcal{P}$ and $m \in M$, we have $m \in N$. By above discussion we know that $QM(S_{\mathcal{P}})$ is a \mathcal{P} -primary submodule of M. Therefore $QM(S_{\mathcal{P}})$ is the intersection of all \mathcal{P} -primary submodules of M in $C_B, B = \mathcal{Q}M(S_{\mathcal{P}})$: M.

A \mathcal{P} -prime submodule N of an R-module M is called a distinguished \mathcal{P} -prime submodule if and only if $N = \mathcal{P}M(S_{\mathcal{P}})$.

3. The Dimension of Modules

The classical Krull dimension of a ring R (cl.k.dim R) is either infinite or cl.k.dim R = n, where n is nonnegative integer such that R has a strict increasing chain $P_0 \subset P_1 \subset \cdots \subset P_n$ of n+1 distinct prime ideals of R but no chain of n+2 distinct prime ideals.

We know that the classical Krull dimension of an R-module M is defined as the cl.k.dim (R/ann_RM) . On the other hand, Sadi Abu-Saymeh ([1]) defined the classical Krull dimension of a module in terms of lengths of chains of distinguished prime submodules and investigated the relation between these two dimensions.

The classical Krull dimension of an R-module M, dimM, is defined in terms of ascending chains of distinguished prime submodules. We set dimM = n if there is a strictly increasing chain $N_0 \subset \cdots \subset N_n$ of n+1 distinguished prime submodules and there is no such chain of n+2 distinguished prime submodules and we set $dimM = \infty$ if there is a chain of the above kind for every value of n.

THEOREM 3.1 ([1]). Let M be a finitely generated R-module. Then $dim M \leq cl.k.dim M$.

THEOREM 3.2 ([1]). Let M be a finitely generated R-module. Then dim M = cl.k.dim M if M belongs to any of the following cases:

- (1) M is a weak multiplication module.
- (2) M is a content module such that $rc(x) \subseteq \sqrt{c(rx)}$ for every $r \in R$ and $x \in M$.
- (3) M is a flat module.
- (4) M is a serial module.

A submodule N of M will be called a distributive submodule if the following equivalent conditions are satisfied: $(P+Q)\cap N=(P\cap N)+(Q\cap N)$; $(P\cap Q)+N=(P+N)\cap (Q+N)$ for all submodules P,Q,N of M. Thus a module M is distributive if every submodule of M is a distributive submodule ([3],[4],[6]).

PROPOSITION 3.3 ([4]). Let R be a local ring and let M be an R-module. Then M is a distributive R-module if and only if the set of submodules of M is linearly ordered.

PROPOSITION 3.4 ([3]). Let R be a ring, M an R-module and S be a multiplicatively closed subset of R. Then if M is a distributive R-module, then $S^{-1}M$ is a distributive $S^{-1}R$ -module.

Theorem 3.5. Let M be a finitely generated distributive R-module. Then dim M = cl.k.dim M.

PROOF. First take R to be a local ring and let M be a finitely generated distributive R-module. Then the set of submodules of M is linearly ordered by Proposition 3.3. Since M is finitely generated, M is cyclic. So, M is a multiplication module ([2]).

Now we go to the general case. Let R be any ring and N a submodule of M. Since M is finitely generated, we know that $(N:M)_P = (N_P:M_P)$ for each prime ideal P of R. By Proposition 3.4, we know that M_M is a finitely generated distributive R_M -module. By the local case, $N_M = (N_M:M_M)M_M = ((N:M)M)_M$ for all maximal ideals M of R. Hence N = (N:M)M and M is a multiplication module. Clearly, since any multiplication module is a weak multiplication module, by Theorem 3.2 dimM = cl.k.dimM.

THEOREM 3.6. Let R be a local ring with maximal ideal \mathcal{M} and M an distributive R-module with $\mathcal{M}M \neq M$. Then dim M = cl.k.dim M.

PROOF. Since M is distributive and $\mathcal{M}M \neq M$, we can easily show that $M/\mathcal{M}M$ is a non-zero distributive vector space over the field R/\mathcal{M} . So, we can take $0 \neq m \in M - \mathcal{M}M$. Then $Rm + \mathcal{M}M/\mathcal{M}M$ is a distributive submodule of $M/\mathcal{M}M$. However since we know that any module over a field has no non-trivial distributive submodule ([2]), $Rm + \mathcal{M}M/\mathcal{M}M = M/\mathcal{M}M$. Hence $Rm + \mathcal{M}M = M$. But by Proposition 3.3 and $Rm \nsubseteq \mathcal{M}M$ we have $\mathcal{M}M \subset Rm$. Therefore it follows that M = Rm. Thus M is cyclic and a weak multiplication module. Hence we have the result by Theorem 3.2.

An R-module M is called a *serial module* if its submodules are linearly ordered with respect to inclusion.

THEOREM 3.7. Let M be a finitely generated distributive R-module. Then for any prime ideal \mathcal{P} of R, $dim M_{\mathcal{P}} = cl.k.dim M_{\mathcal{P}}$.

PROOF. Let \mathcal{P} be any prime ideal of R. Then, by Proposition 3.4, $M_{\mathcal{P}}$ is a finitely generated distributive $R_{\mathcal{P}}$ -module and we know that $M_{\mathcal{P}}$ is a serial module from Proposition 3.3. Thus Theorem 3.2 gives the result.

References

- [1] Sadi Abu-Saymeh, On dimension of finitely generated modules, Comm. in Algebra 23 (1995), no. 3, 1131-1144.
- [2] A. D. Barnard, Multiplication Modules, J. Algebra 71 (1981), 174-178.
- [3] T. M. K. Davison, Distributive homomorphisms of rings and modules, J. Reine Angew. Math. 270 (1974), 28-34.
- [4] V. Erdőgdu, Distributive Modules, Canad. Math. Bull. 30 (1987), 248-254.
- [5] Y. H. Cho, On Multiplication Modules (II), Commun. Korean Math. Soc. 13 (1998), no. 4, 727-733.
- [6] _____, On Multiplication Modules (III), Korean Annals of Mathematics 16 (1999), 21-25.

Department of Mathematics Education Chonbuk National University Chonju, Chonbuk 561-756, Korea E-mail: cyh@moak.chonbuk.ac.kr