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ON DISTINGUISHED PRIME SUBMODULES

Yong Hwan CHo

ABSTRACT. In this paper we find some properties of distinguished
prime submodules of modules and prove theorems about the dimen-
sion of modules.

1. Introduction

In this paper all rings are commutative with identity and all modules
are unitary. Let R be a ring and M an R-module. A proper submodule
P of M is said to be prime if rm € P for r € R and m € M implies that
either m € P or r € (P : M). Specially prime submodule P is called
P-prime if (P : M)} = P. Clearly if P is a prime submodule of M, then
{P: M) is a prime ideal of R. A proper submodule @ of M is called a
primary submodule if rm € ) for r € B and m € M implies that either
m e Qorr € ,/(Q: M) A primary submodule @ of M is said to be
P-primary if 1/{Q: M) =P. Clearly if (J is a P-primary submodule,
then P is a prime ideal of R. An R-module M is called multiplication
module if every submodule N of M is of the form AM for some ideal A
of B and an E-module M is said to be a weak multiplication module if
every prime submodule N of M is of the form A4M for some ideal A of
R. It is clear that every multiplication module is a weak multiplication
but the converse is not true; for example, the Z-module @ is a weak
multiplication module which is not a multiplication module. Let N be
a non-zero prime submodule of (3. Then N #£ . Therefore we can take
re@—Nandye N—0. Let * = k/l,y = r/s for some non-zero
integers k,l,r,s. Hence rlz = rk = (r/s)sk = (sk)y € N. But z ¢ N
and N is a prime submodule. Thus I € (N : @). So viQ C N. Now
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since 7l = @, we have N = (), a contradiction. Hence 0 is the only
prime submodule of @ and 0 = OM. This means that @ is a weak
multiplication module. On the other hand, Z is a submodule of ¢ and
0 £ Z # AQ = @ for every non-zero ideal A of Z. Thus @ is not
a multiplication module. In section 2 of this paper we consider some
other conditions (Proposition 2.2, Proposition 2.3) which give results of
Proposition 1.1 of [1], and prove a theorem {Theorem 2.4) about primary
submodules which is very similar to Proposition 1.1 of [1]. In section 3,
we prove that dimM = cl.k.dimM {Theorem 3.5, Theorem 3.6) if M
belongs to any of the following cases:

{1} M is a finitely generated distributive module.
(2} M is a distributive module with MM # M over a local ring
(R, M)
Lastly, we prove that for every prime ideal P of R and for a finitely
generated distributive R-module M, dimMp = cl.k.dimMp {Theorem
3.7).

2. Distinguished Prime Submodules

Let Ny and Ny be submodules of an R-module M. Then we write
Ny ~ Ny if and only if Ny : M = Ny : M. It is clear that ~ is an
equivalence relation on the set of all submodules of M. We denote each
class by C4 where A = N : M foreach N € C4. Let M be an H-module,
P a prime ideal of R, Sp = R— P and PM{Sp)={z c M :sx € PM
for some s € Sp}. Then it is clear that PM{Sp) is a submodule of M
containing PM and P C PM : M C PM(Sp) : M.

ProposiTioN 2.1 ([1]}. Let M be an R-module and P a prime ideal
of R such that PM{Sp) # M. Then PM(Sp) is a P-prime submodule
of M and PM{Sp) is the intersection of all P-prime submodules of Cp.

PROPOSITION 2.2. Let M be an R-module containing a P-prime sub-
module. Then PM(Sp) is a P-prime submodule of M and PM(Sp) is
the intersection of all P-prime submodules of Cp.

ProoF. Let N be a P-prime submodule of Af. Then, (N : M) =P
and let m € PM (Sp). Then there exist s € Sp such that sm € PM and
hence sm € N. However since N is a P-prime submodule and s ¢ P,
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m € N, ie, PM(Sp) C N # M. The result follows from Proposition
2.1. O

PROPOSITION 2.3. Let M be an R-module and P a prime ideal of
R such that P = (PM : M) and M/PM is a finitely generated R/P-
module. Then PM(Sp) is a P-prime submnodule of M and PM(Sp) is
the intersection of all P-prime submodules of Cp.

PROOF. In view of Proposition 2.1, it suffices to prove that PM(Sp)
7# M. Now assume that PM (Sp) = M. Since M/PM is finitely gener-
ated, M/PM = (R/P)m1 + -+ (R/P)mg. Hence M = Rmy +--- +
REmy + PM. However my(i = 1,--- k) € M = PM(Sp). So, there
exists s; € &5p for each i = 1,--- ,k, such that s,m; € PM. There-
fore s152-- 5, M C PM and s189---sp C (PM : M) = P. Since P
is a prime ideal there exists j such that s; € P, a contradiction. Thus
PM(Sp) £ M. .

Next, we have similar result for primary submodules.

THEOREM 2.4. Let M be a finitely generated R-module and Q a P-
primary ideal of R containing AnngM. Then QM (Sp)={r € M : sz €
QM for some s € Sp} is a P-primary submodule of M and QM (Sp)
is the intersection of all P-primary submodules of M in Cp where B =
OM{Sp): M.

PrOOF. We first prove that QM (Sp) # M. Assume that QM (Sp) =
M. Then since M is finitely generated, there exist my, mg,--- ,my, €
QM(Sp) and 81,82, - ,8, € Sp such that M = Rm; + Rmgy + - +
Rm, and s;m, € OM for each i. Consequently, for every ¢, there are
g;; € @ such that s;m; = Z;.":l gi;m;. Then it follows that E?:l (gij —
8;0;5)m; = 0 for each i. Hence dm; = 0 for every j where d = det(g;; —
5i0,;) = ¢+ s182---s, and ¢ € Q. Therefore dM = 0 and so d €
AnnpM C Q. Since /@ = P and P is a prime ideal of R, there exist
J{1 € j < n) such that s; € P, a contradiction. Thus QM(Sp) #
M. Now suppose that r € \/OM(Sp): M and r ¢ P. Then there
exist n such that ¥"M C OM{(Sp). Hence for every m € M,r"m &€
QM{Sp) and so there exist t € Sp such that tr*m € QM. Since
tr™ € Sp we have m € QM (Sp). So M = QM(Sp), a contradiction,
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ie., /OM(Sp): M C P. On the other hand, for every p € P =40
there exists n such that p* € Q. Hence p"M C OM C QM(Sp) and
p" € (QM(Sp) : M). This means that p € /QM(Sp): M and so P =
VOM(Sp) : M. Lastly, let rm € QM(Sp) for r ¢ P = /QM(Sp) : M
and m € M. Then r € Sp and there exists s € Sp such that s(rm) €
QM. Since sr € Sp we have m € QM(Sp). Therefore QM (Sp) is a
P-primary submodule of M. Next, let N be a P-primary submodule of
M in Cg where B = QM(Sp) : M. Supose that m € @M(Sp). Then
there exists s € Sp such that sm € QM. However, QM C QM (Sp) and
so O C (QM(Sp) - M). Since N € Cp and B = (QM(Sp) : M), Q C
(QM(Sp) : M) = (N : M) and sm ¢ @M C N. Since N is P-primary
and s ¢ P and m € M, we have m € N. By above discussion we know
that QM (Sp) is a P-primary submodule of M. Therefore QM (Sp) is
the intersection of all P-primary submodules of M in Cg, B = @M (Sp} -
M. O

A P-prime submodule N of an R-module M is called a distinguished
P-prime submodule if and only if N = PM(Sp).

3. The Dimension of Modules

The classical Krull dimension of a ring R (cLk.dim R) is either infinite
or cL.k.dim R = n, where n is nonnegative integer such that R has a strict
increasing chain Py C P, C+-- C P, of n 4 1 distinct prime ideals of B
but no chain of n + 2 distinct prime ideals.

We know that the classical Krull dimension of an R-module M is
defined as the clk.dim (R/anngM). On the other hand, Sadi Abu-
Saymeh ([1]) defined the classical Krull dimension of a module in terms
of lengths of chains of distingnished prime submodules and investigated
the relation between these two dimensions.

The classical Krull dimension of an R-module M, dimM, is defined
in terms of ascending chains of distinguished prime submodules. We
set dimM = n if there is a strictly increasing chain Ny C --- C Ny
of n + 1 distinguished prime submodules and there is no such chain of
n + 2 distinguished prime submodules and we set dimM = oo if there is
a chain of the above kind for every value of n.
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THEOREM 3.1 ([1]). Let M be a finitely generated R-module. Then
dimM < cl.k.dimM.

THEOREM 3.2 ([1]). Let M be a finitely generated R-module. Then
dimM = cl.k.dimM if M belongs to any of the following cases:

(1) M is a weak multiplication module.

(2) M is a content module such that re{x) C v/e(rz) foreveryr € R
andx € M.

(3) M is a flat module.

(4) M is a serial module.

A submodule N of M will be called a distributive submodule if the
following equivalent conditions are satisfied (P+Q)NN =(PNN)+
Q@NNY; (PNQ)+N=(P+N)n (Q + N) for all submodules P, Q, N
of M. Thus a module M is distributive if every submodule of A is a
distributive submodule ([3],[4],[6]).

PROPOSITION 3.3 ([4]). Let R be a local ring and let M be an R-
module. Then M is a distributive R-module if and only if the set of
submodules of M is linearly ordered.

PROPOSITION 3.4 ([3]). Let R be a ring, M an R-module and S
be a multiplicatively closed subset of R. Then if M 18 a distributive
R-module, then S7'M is a distributive S~ R-module.

THEOREM 3.5. Let M be a finitely generated distributive R-module.
Then dimM = cl.k.dimM.

Proor. First take R to be a local ring and let M be a finitely gener-
ated distributive R-module. Then the set of submodules of M is linearly
ordered by Proposition 3.3. Since M is finitely generated, M is cyclic.
So, M is a multiplication module ([2]).

Now we go to the general case. Let R be any ring and N a submodule
of M. Since M is finitely generated, we know that (N:M)p =(Np:
Mp) for each prime ideal P of R. By Proposition 3.4, we know that
Muq is a finitely generated distributive R m-module. By the local case,
Nt = (Npq : Mag)Mpq = (N : M)M) 4 for all maximal ideals M of
R. Hence N = (N : M)M and M is a multiplication module. Clearly,
since any multiplication module is a weak multiplication module, by
Theorem 3.2 dimM = cl.k.dimM. - d



408 Yong Hwan Cho

THEOREM 3.6. Let R be a local ring with maximal ideal M and M
an distributive R-module with MM # M. Then dimM = cl.k.dimM.

PROOF. Since M is distributive and MM ## M, we can easily show
that M/ MM is a non-zero distributive vector space over the feld R/ M.
So, we can take 0 # m € M — MM. Then Rm + MM/MM is
a distributive submodule of M/MM. However since we know that
any module over a field has no non-trivial distributive submodule (12]),
Rm + MM /MM = M/MM. Hence Rm + MM = M. But by Propo-
sition 3.3 and Rm ¢ MM we have MM C Rm. Therefore it follows
that M = Rm. Thus M is cyclic and a weak multiplication module.
Hence we have the result by Theorem 3.2. []

An R-module M is called a serial module if its submodules are linearly
ordered with respect t0 inclusion.

TuEOREM 3.7. Let M be a finitely generated distributive R-module.
Then for any prime ideal P of R, dimMp = cl.k.dimMp.

PROOF. Let P be any prime ideal of R. Then, by Proposition 3.4,
Mp is a finitely generated distributive Rp-module and we know that
My is a serial module from Proposition 3.3. Thus Theorem 3.2 gives the
- result. O
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